Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-10T14:26:33.622Z Has data issue: false hasContentIssue false

Part III - An Individual’s Cognitive Aging with Others: Key Findings, Issues, and Implications

Published online by Cambridge University Press:  28 September 2023

Jeanyung Chey
Affiliation:
Seoul National University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Society within the Brain
How Social Networks Interact with Our Brain, Behavior and Health as We Age
, pp. 193 - 296
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ajrouch, K. J., Blandon, A. Y., & Antonucci, T. C. (2005). Social networks among men and women: The effects of age and socioeconomic status. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(6), S311S317.Google Scholar
Amieva, H., Stoykova, R., Matharan, F., Helmer, C., Antonucci, T. C., & Dartigues, J.-F. (2010). What aspects of social network are protective for dementia? Not the quantity but the quality of social interactions is protective up to 15 years later. Psychosomatic Medicine, 72(9), 905911.CrossRefGoogle ScholarPubMed
Anstey, K. J., Cherbuin, N., & Herath, P. M. (2013). Development of a new method for assessing global risk of Alzheimer’s disease for use in population health approaches to prevention. Prevention Science, 14(4), 411421.CrossRefGoogle ScholarPubMed
Avlund, K., Lund, R., Holstein, B. E., Due, P., Sakari-Rantala, R., & Heikkinen, R.-L. (2004). The impact of structural and functional characteristics of social relations as determinants of functional decline. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 59(1), S44S51.Google Scholar
Barnes, L. L., De Leon, C. M., Wilson, R. S., Bienias, J. L., & Evans, D. A. (2004). Social resources and cognitive decline in a population of older African Americans and whites. Neurology, 63(12), 23222326.Google Scholar
Bassuk, S. S., Glass, T. A., & Berkman, L. F. (1999). Social disengagement and incident cognitive decline in community-dwelling elderly persons. Annals of Internal Medicine, 131(3), 165173.Google Scholar
Béland, F., Zunzunegui, M.-V., Alvarado, B., Otero, A., & Del Ser, T. (2005). Trajectories of cognitive decline and social relations. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(6), P320P330.Google Scholar
Bennett, D. A., Schneider, J. A., Tang, Y., Arnold, S. E., & Wilson, R. S. (2006). The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: A longitudinal cohort study. The Lancet Neurology, 5(5), 406412.CrossRefGoogle ScholarPubMed
Bielak, A. A. (2010). How can we not “lose it” if we still don’t understand how to “use it”? Unanswered questions about the influence of activity participation on cognitive performance in older age – A mini-review. Gerontology, 56(5), 507519.CrossRefGoogle ScholarPubMed
Brown, C. L., Gibbons, L. E., Kennison, R. F., Robitaille, A., Lindwall, M., Mitchell, M. B., Shirk, S. D., Atri, A., Cimino, C. R., Benitez, A., Macdonald, S. W., Zelinski, E. M., Willis, S. L., Schaie, K. W., Johansson, B., Dixon, R. A., Mungas, D. M., Hofer, S. M., & Piccinin, A. M. (2012). Social activity and cognitive functioning over time: A coordinated analysis of four longitudinal studies. Journal of Aging Research, 2012, 287438.Google Scholar
Chan, D., Shafto, M., Kievit, R., Matthews, F., Spink, M., Valenzuela, M., & Henson, R. N. (2018). Lifestyle activities in mid-life contribute to cognitive reserve in late-life, independent of education, occupation, and late-life activities. Neurobiology of Aging, 70, 180183.CrossRefGoogle ScholarPubMed
Choi, J., Kim, H., & Youm, Y. (2016). Social network, social support, social conflict and mini-mental state examination scores of rural older adults: Differential associations across relationship types. Journal of Korean Geriatric Psychiatry 20(2), 8.Google Scholar
Clare, L., Wu, Y.-T., Teale, J. C., MacLeod, C., Matthews, F., Brayne, C., Woods, B., & Team, C.-W. S. (2017). Potentially modifiable lifestyle factors, cognitive reserve, and cognitive function in later life: A cross-sectional study. PLoS Medicine, 14(3), e1002259.Google Scholar
Cohen, S. (2004). Social relationships and health. American Psychologist, 59(8), 676684.Google Scholar
Cornwell, B., Laumann, E. O., & Schumm, L. P. (2008). The social connectedness of older adults: A national profile. American Sociological Review, 73(2), 185203.Google Scholar
Crooks, V. C., Lubben, J., Petitti, D. B., Little, D., & Chiu, V. (2008). Social network, cognitive function, and dementia incidence among elderly women. American Journal of Public Health, 98(7), 12211227.Google Scholar
Daviglus, M. L., Bell, C. C., Berrettini, W., Bowen, P. E., Connolly, E. S., Jr., Cox, N. J., Dunbar-Jacob, J. M., Granieri, E. C., Hunt, G., McGarry, K., Patel, D., Potosky, A. L., Sanders-Bush, E., Silberberg, D., & Trevisan, M. (2010). NIH state-of-the-science conference statement: Preventing Alzheimer’s disease and cognitive decline. NIH consensus and state-of-the-science statements, 27(4), 130.Google ScholarPubMed
DeVries, A. C., Glasper, E. R., & Detillion, C. E. (2003). Social modulation of stress responses. Physiology & Behavior, 79(3), 399407.Google Scholar
Donovan, N. J., Wu, Q., Rentz, D. M., Sperling, R. A., Marshall, G. A., & Glymour, M. M. (2017). Loneliness, depression and cognitive function in older U.S. adults. International Journal of Geriatric Psychiatry, 32(5), 564573.Google Scholar
Ellwardt, L., Aartsen, M., Deeg, D., & Steverink, N. (2013). Does loneliness mediate the relation between social support and cognitive functioning in later life? Social Science & Medicine, 98, 116124.CrossRefGoogle ScholarPubMed
Elovainio, M., Sommerlad, A., Hakulinen, C., Pulkki-Råback, L., Virtanen, M., Kivimäki, M., & Singh-Manoux, A. (2018). Structural social relations and cognitive ageing trajectories: Evidence from the Whitehall II cohort study. International Journal of Epidemiology, 47(3), 701708.Google Scholar
Erickson, K. I., & Kramer, A. F. (2009). Aerobic exercise effects on cognitive and neural plasticity in older adults. British Journal of Sports Medicine, 43(1), 2224.Google Scholar
Ertel, K. A., Glymour, M. M., & Berkman, L. F. (2008). Effects of social integration on preserving memory function in a nationally representative US elderly population. American Journal of Public Health, 98(7), 12151220.Google Scholar
Etnier, J. (2007). Interrelationships of exercise, mediator variables, and cognition. In Spirduso, W. W., Poon, L. W., & Chodzko-Zajko, W. J. (eds.), Exercise and Its Mediating Effects on Cognition, vol. 2, pp. 1330. Human Kinetics.Google Scholar
Evans, I. E., Martyr, A., Collins, R., Brayne, C., & Clare, L. (2019). Social isolation and cognitive function in later life: A systematic review and meta-analysis. Journal of Alzheimer’s Disease, 70(s1), S119S144.CrossRefGoogle ScholarPubMed
Fisk, J. E., & Sharp, C. A. (2004). Age-related impairment in executive functioning: Updating, inhibition, shifting, and access. Journal of Clinical and Experimental Neuropsychology, 26 (7), 874890.Google Scholar
Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. The Lancet Neurology, 3(6), 343353.Google Scholar
Fratiglioni, L., Wang, H.-X., Ericsson, K., Maytan, M., & Winblad, B. (2000). Influence of social network on occurrence of dementia: A community-based longitudinal study. The Lancet, 355(9212), 13151319.CrossRefGoogle ScholarPubMed
Gazzaley, A., Cooney, J. W., Rissman, J., & D’Esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8 (10), 12981300.CrossRefGoogle ScholarPubMed
Giles, L. C., Anstey, K. J., Walker, R. B., & Luszcz, M. A. (2012). Social networks and memory over 15 years of followup in a cohort of older Australians: Results from the Australian longitudinal study of ageing. Journal of Aging Research, 2012, 856048.Google Scholar
Glei, D. A., Landau, D. A., Goldman, N., Chuang, Y.-L., Rodríguez, G., & Weinstein, M. (2005). Participating in social activities helps preserve cognitive function: An analysis of a longitudinal, population-based study of the elderly. International Journal of Epidemiology, 34(4), 864871.Google Scholar
Gorelick, P. B., Scuteri, A., Black, S. E., DeCarli, C., Greenberg, S. M., Iadecola, C., Launer, L. J., Laurent, S., Lopez, O. L., & Nyenhuis, D. (2011). Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 42(9), 26722713.Google Scholar
Gow, A. J., Corley, J., Starr, J. M., & Deary, I. J. (2013). Which social network or support factors are associated with cognitive abilities in old age? Gerontology, 59(5), 454463.CrossRefGoogle ScholarPubMed
Green, A. F., Rebok, G., & Lyketsos, C. G. (2008). Influence of social network characteristics on cognition and functional status with aging. International Journal of Geriatric Psychiatry, 23(9), 972978.Google Scholar
Hedden, T., & Gabrieli, J. D. (2004). Insights into the ageing mind: A view from cognitive neuroscience. Nature Reviews Neuroscience, 5(2), 8796.Google Scholar
Hendrie, H. C., Albert, M. S., Butters, M. A., Gao, S., Knopman, D. S., Launer, L. J., Yaffe, K., Cuthbert, B. N., Edwards, E., & Wagster, M. V. (2006). The NIH Cognitive and Emotional Health Project. Report of the Critical Evaluation Study Committee. Alzheimer’s & Dementia, 2(1), 1232.Google Scholar
Henry, J. D., MacLeod, M. S., Phillips, L. H., & Crawford, J. R. (2004). A Meta-analytic review of prospective memory and aging. Psychology and Aging, 19 (1), 2739.Google Scholar
Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2008). Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9(1), 165.CrossRefGoogle ScholarPubMed
Holtzman, R. E., Rebok, G. W., Saczynski, J. S., Kouzis, A. C., Wilcox Doyle, K., & Eaton, W. W. (2004). Social network characteristics and cognition in middle-aged and older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 59(6), P278P284.Google Scholar
Hughes, T. F., Andel, R., Small, B. J., Borenstein, A. R., & Mortimer, J. A. (2008). The association between social resources and cognitive change in older adults: Evidence from the Charlotte County Healthy Aging Study. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 63(4), P241P244.Google Scholar
Ihle, A., Oris, M., Fagot, D., Baeriswyl, M., Guichard, E., & Kliegel, M. (2015). The association of leisure activities in middle adulthood with cognitive performance in old age: The moderating role of educational level. Gerontology, 61(6), 543550.CrossRefGoogle ScholarPubMed
James, B. D., Wilson, R. S., Barnes, L. L., & Bennett, D. A. (2011). Late-life social activity and cognitive decline in old age. Journal of the International Neuropsychological Society, 17(6), 9981005.Google Scholar
Kang, S., Kim, H., & Youm, Y. (2016). Influence of social activity on cognitive function in older adults: Moderating effects of education. Korean Journal of Psychology: General, 35(4), 525549.Google Scholar
Kelly, M. E., Duff, H., Kelly, S., McHugh Power, J. E., Brennan, S., Lawlor, B. A., & Loughrey, D. G. (2017). The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: A systematic review. Systematic Reviews, 6(1), 259.Google Scholar
Kray, J., Li, K. Z., & Lindenberger, U. (2002). Age-related changes in task-switching components: The role of task uncertainty. Brain and Cognition, 49 (3), 363381.CrossRefGoogle ScholarPubMed
Kuiper, J. S., Zuidersma, M., Oude Voshaar, R. C., Zuidema, S. U., van den Heuvel, E. R., Stolk, R. P., & Smidt, N. (2015). Social relationships and risk of dementia: A systematic review and meta-analysis of longitudinal cohort studies. Ageing Research Reviews, 22, 3957.Google Scholar
Kuiper, J. S., Zuidersma, M., Zuidema, S. U., Burgerhof, J. G., Stolk, R. P., Oude Voshaar, R. C., & Smidt, N. (2016). Social relationships and cognitive decline: A systematic review and meta-analysis of longitudinal cohort studies. International Journal of Epidemiology, 45(4), 11691206.Google Scholar
Leigh-Hunt, N., Bagguley, D., Bash, K., Turner, V., Turnbull, S., Valtorta, N., & Caan, W. (2017). An overview of systematic reviews on the public health consequences of social isolation and loneliness. Public Health, 152, 157171.Google Scholar
Liao, J., & Scholes, S. (2017). Association of social support and cognitive aging modified by sex and relationship type: A prospective investigation in the English Longitudinal Study of Ageing. American Journal of Epidemiology, 186(7), 787795.Google Scholar
Lupien, S. J., Schwartz, G., Ng, Y. K., Fiocco, A., Wan, N., Pruessner, J. C., Meaney, M. J., & Nair, N. P. (2005). The Douglas Hospital Longitudinal Study of Normal and Pathological Aging: Summary of findings. Journal of Psychiatry and Neuroscience, 30(5), 328334.Google Scholar
McDonough, I. M., Haber, S., Bischof, G. N., & Park, D. C. (2015). The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency. Restorative Neurology and Neuroscience, 33(6), 865882.Google Scholar
McHugh Power, J., Tang, J., Lawlor, B., Kenny, R. A., & Kee, F. (2018). Mediators of the relationship between social activities and cognitive function among older Irish adults: Results from the Irish Longitudinal Study on Ageing. Aging & Mental Health, 22(1), 129134.Google Scholar
Nguyen, L., Murphy, K., & Andrews, G. (2019). Cognitive and neural plasticity in old age: A systematic review of evidence from executive functions cognitive training. Ageing Research Reviews, 53, 100912.Google Scholar
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16 (5), 292305.Google Scholar
Pahl, R., & Pevalin, D. J. (2005). Between family and friends: A longitudinal study of friendship choice. The British Journal of Sociology, 56(3), 433450.Google Scholar
Park, D. C., & Bischof, G. N. (2013). The aging mind: Neuroplasticity in response to cognitive training. Dialogues in Clinical Neuroscience, 15(1), 109119.Google Scholar
Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17 (2), 299.Google Scholar
Park, D. C., Lodi-Smith, J., Drew, L., Haber, S., Hebrank, A., Bischof, G. N., & Aamodt, W. (2014). The impact of sustained engagement on cognitive function in older adults: The Synapse Project. Psychological Science, 25(1), 103112.Google Scholar
Penn, D. L., Corrigan, P. W., Bentall, R. P., Racenstein, J. M., & Newman, L. (1997). Social cognition in schizophrenia. Psychological Bulletin, 121(1), 114132.Google Scholar
Polidori, M. C., Nelles, G., & Pientka, L. (2010). Prevention of dementia: Focus on lifestyle. International Journal of Alzheimer’s Disease, 2010, 393579.Google Scholar
Richards, M., & Deary, I. J. (2005). A life course approach to cognitive reserve: A model for cognitive aging and development? Annals of Neurology, 58(4), 617622.CrossRefGoogle Scholar
Rose, N. S., Rendell, P. G., Hering, A., Kliegel, M., Bidelman, G. M., & Craik, F. I. M. (2015). Cognitive and neural plasticity in older adults’ prospective memory following training with the Virtual Week computer game. Frontiers in Human Neuroscience, 9(592), 113.Google Scholar
Rowe, J. W., & Kahn, R. L. (1987). Human aging: Usual and successful. Science, 237(4811), 143149.Google Scholar
Salthouse, T. A. (2010). Selective review of cognitive aging. Journal of the International Neuropsychological Society, 16(5), 754760.Google Scholar
Scarmeas, N., & Stern, Y. (2003). Cognitive reserve and lifestyle. Journal of Clinical and Experimental Neuropsychology, 25(5), 625633.Google Scholar
Seeman, T. E., Lusignolo, T. M., Albert, M., & Berkman, L. (2001). Social relationships, social support, and patterns of cognitive aging in healthy, high-functioning older adults: MacArthur studies of successful aging. Health Psychology, 20(4), 243255.Google Scholar
Seeman, T. E., Miller-Martinez, D. M., Stein Merkin, S., Lachman, M. E., Tun, P. A., & Karlamangla, A. S. (2011). Histories of social engagement and adult cognition: Midlife in the U.S. study. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences 66 (Suppl 1), i141i152.Google Scholar
Shankar, A., Hamer, M., McMunn, A., & Steptoe, A. (2013). Social isolation and loneliness: Relationships with cognitive function during 4 years of follow-up in the English Longitudinal Study of Ageing. Psychosomatic Medicine, 75(2), 161170.Google Scholar
Sharifian, N., Manly, J. J., Brickman, A. M., & Zahodne, L. B. (2019). Social network characteristics and cognitive functioning in ethnically diverse older adults: The role of network size and composition. Neuropsychology, 33(7), 956963.Google Scholar
Small, B. J., Dixon, R. A., McArdle, J. J., & Grimm, K. J. (2012). Do changes in lifestyle engagement moderate cognitive decline in normal aging? Evidence from the Victoria Longitudinal Study. Neuropsychology, 26(2), 144155.Google Scholar
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 20152028.Google Scholar
Sutin, A. R., Stephan, Y., Luchetti, M., & Terracciano, A. (2020). Loneliness and risk of dementia. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 75(7), 14141422.Google Scholar
Uchino, B. N., Cacioppo, J. T., & Kiecolt-Glaser, J. K. (1996). The relationship between social support and physiological processes: A review with emphasis on underlying mechanisms and implications for health. Psychological Bulletin, 119(3), 488531.CrossRefGoogle ScholarPubMed
Wang, H.-X., Karp, A., Winblad, B., & Fratiglioni, L. (2002). Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: A longitudinal study from the Kungsholmen project. American Journal of Epidemiology, 155(12), 10811087.Google Scholar
Wecker, N. S., Kramer, J. H., Hallam, B. J., & Delis, D. C. (2005). Mental flexibility: Age effects on switching. Neuropsychology, 19 (3), 345352.Google Scholar
West, R., & Alain, C. (2000). Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37 (2), 179189.Google Scholar
Wilson, R. S., Arnold, S. E., Schneider, J. A., Kelly, J. F., Tang, Y., & Bennett, D. A. (2006). Chronic psychological distress and risk of Alzheimer’s disease in old age. Neuroepidemiology, 27(3), 143153.Google Scholar
Wilson, R. S., Barnes, L. L., Krueger, K. R., Hoganson, G., Bienias, J. L., & Bennett, D. A. (2005). Early and late life cognitive activity and cognitive systems in old age. Journal of the International Neuropsychological Society, 11(4), 400407.Google Scholar
Wilson, R. S., Boyle, P. A., James, B. D., Leurgans, S. E., Buchman, A. S., & Bennett, D. A. (2015). Negative social interactions and risk of mild cognitive impairment in old age. Neuropsychology, 29(4), 561570.Google Scholar
Windsor, T. D., Gerstorf, D., Pearson, E., Ryan, L. H., & Anstey, K. J. (2014). Positive and negative social exchanges and cognitive aging in young-old adults: Differential associations across family, friend, and spouse domains. Psychology and Aging, 29(1), 2843.Google Scholar
Xu, H., Yang, R., Qi, X., Dintica, C., Song, R., Bennett, D. A., & Xu, W. (2019). Association of lifespan cognitive reserve indicator with dementia risk in the presence of brain pathologies. JAMA Neurology, 76(10), 11841191.Google Scholar
Yang, R., Wang, H., Edelman, L. S., Tracy, E. L., Demiris, G., Sward, K. A., & Donaldson, G. W. (2020). Loneliness as a mediator of the impact of social isolation on cognitive functioning of Chinese older adults. Age and Ageing, 49(4), 599604.Google Scholar
Ybarra, O., Burnstein, E., Winkielman, P., Keller, M. C., Manis, M., Chan, E., & Rodriguez, J. (2008). Mental exercising through simple socializing: Social interaction promotes general cognitive functioning. Personality and Social Psychology Bulletin, 34(2), 248259.CrossRefGoogle ScholarPubMed
Yim, J., Kim, H., & Youm, Y. (2016). The effect of social support and conflict in different types of relationships on depression and suicidal ideation among the young-old and the old-old. Korean Journal of Clinical Psychology 35(3), 645657.Google Scholar
Zunzunegui, M.-V., Alvarado, B. E., Del Ser, T., & Otero, A. (2003). Social networks, social integration, and social engagement determine cognitive decline in community-dwelling Spanish older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 58(2), S93S100.Google Scholar

References

Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences, 1191(1), 42.Google Scholar
Barton, R. (2001). The evolutionary ecology of the primate brain. In Lee, P. (ed.), Comparative Primate Socioecology, Cambridge Studies in Biological and Evolutionary Anthropology, pp. 167203. Cambridge University Press.Google Scholar
Bickart, K. C., Brickhouse, M., Negreira, A., Sapolsky, D., Barrett, L. F., & Dickerson, B. C. (2014). Atrophy in distinct corticolimbic networks in frontotemporal dementia relates to social impairments measured using the Social Impairment Rating Scale. Journal of Neurology, Neurosurgery & Psychiatry, 85(4), 438448.Google Scholar
Bickart, K. C., Dickerson, B. C., & Barrett, L. F. (2014). The amygdala as a hub in brain networks that support social life. Neuropsychologia, 63, 235248.Google Scholar
Bickart, K. C., Hollenbeck, M. C., Barrett, L. F., & Dickerson, B. C. (2012). Intrinsic amygdala–cortical functional connectivity predicts social network size in humans. Journal of Neuroscience, 32(42), 1472914741.Google Scholar
Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011). Amygdala volume and social network size in humans. Nature Neuroscience, 14(2), 163164.Google Scholar
Bunner, K. D., & Rebec, G. V. (2016). Corticostriatal dysfunction in Huntington’s disease: The basics. Frontiers in Human Neuroscience, 10, 317.Google Scholar
Burt, R. S. (1992). Structural Holes, Harvard University Press.Google Scholar
Burt, R. S. (2005). Brokerage and Closure: An Introduction to Social Capital, Oxford University Press.Google Scholar
Christelis, D., & Dobrescu, L. (2019). The causal effect of social activities on cognition: Evidence from 20 European countries. Social Science & Medicine, 247, 112783.Google Scholar
Cornwell, B. (2009). Good health and the bridging of structural holes. Social Networks, 31(1), 92103.Google Scholar
Craig, M. C., Catani, M., Deeley, Q., Latham, R., Daly, E., Kanaan, R., Picchioni, M., McGuire, P. K., Fahy, T., & Murphy, D. G. (2009). Altered connections on the road to psychopathy. Molecular Psychiatry 14(10), 946953.Google Scholar
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology: Issues, News, and Reviews, 6(5), 178190.Google Scholar
Dunbar, R. I. M. (2014). The social brain: Psychological underpinnings and implications for the structure of organizations. Current Directions in Psychological Science, 23(2), 109114.Google Scholar
Dunbar, R. I. M., & Shultz, S. (2007). Evolution in the social brain. Science, 317(5843), 13441347.Google Scholar
Dunbar, R. I. M., & Shultz, S. (2017). Why are there so many explanations for primate brain evolution? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1727), 20160244.Google Scholar
Dziura, S. L., & Thompson, J. C. (2014). Social-network complexity in humans is associated with the neural response to social information. Psychological Science, 25(11), 20952101.Google Scholar
Evans, I. E. M., Martyr, A., Collins, R., Brayne, C., & Clare, L. (2019). Social isolation and cognitive function in later life: A systematic review and meta-analysis. Journal of Alzheimer’s Disease, 70(s1), S119S144.Google Scholar
Festinger, L., Schachter, S., & Back, K. (1950). Social Pressures in Informal Groups: A Study of Human Factors in Housing. Harper.Google Scholar
Gould, R. V., & Fernandez, R. M. (1989). Structures of mediation: A formal approach to brokerage in transaction networks. Sociological Methodology, 19, 89126.Google Scholar
Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 13601380.Google Scholar
Hultsch, D. F., Hertzog, C., Small, B. J., & Dixon, R. A. (1999). Use it or lose it: Engaged lifestyle as a buffer of cognitive decline in aging? Psychology and Aging, 14(2), 245.Google Scholar
Joo, W.-t., Kwak, S., Youm, Y., & Chey, J. (2017). Brain functional connectivity difference in the complete network of an entire village: The role of social network size and embeddedness. Scientific Reports, 7(1), 112.Google Scholar
Kanai, R., Bahrami, B., Roylance, R., & Rees, G. (2012). Online social network size is reflected in human brain structure. Proceedings of the Royal Society B: Biological Sciences, 279(1732), 13271334.Google Scholar
Klein, J. T., Shepherd, S. V., Platt, M. L. (2009). Social attention and the brain. Current Biology, 19(20), R958R962.CrossRefGoogle ScholarPubMed
Krackhardt, D. (1998). Super strong and sticky. In Kramer, R. M. & Neale, M. A. (eds.), Power and Influence in Organizations. SAGE Publications.Google Scholar
Kwak, S., Joo, W.-t., Youm, Y., & Chey, J. (2018). Social brain volume is associated with in-degree social network size among older adults. Proceedings of the Royal Society B: Biological Sciences, 285(1871), 20172708.Google Scholar
Lewis, P. A., Rezaie, R., Brown, R., Roberts, N., & Dunbar, R. I. M. (2011). Ventromedial prefrontal volume predicts understanding of others and social network size. Neuroimage, 57(4), 16241629.Google Scholar
Lin, C., Keles, U., Tyszka, J. M., Gallo, M., Paul, L., & Adolphs, R. (2020). No strong evidence that social network index is associated with gray matter volume from a data-driven investigation. Cortex, 125, 307317.Google Scholar
Milgram, S. (1967). The small world problem. Psychology Today, 2(1). 6067.Google Scholar
Parkinson, C., Kleinbaum, A., & Wheatley, T. (2017). Spontaneous neural encoding of social network position. Nature Human Behaviour, 1(5), 17.Google Scholar
Sallet, J., Mars, R. B., Noonan, M. P., Andersson, J. L., O’Reilly, J. X., Jbabdi, S., Croxson, P. L., Jenkinson, M., Miller, K. L., & Rushworth, M. F. (2011). Social network size affects neural circuits in macaques. Science, 334(6056), 697700.Google Scholar
Shankar, A., Hamer, M., McMunn, A., & Steptoe, A. (2013). Social isolation and loneliness: Relationships with cognitive function during 4 years of follow-up in the English Longitudinal Study of Ageing. Psychosomatic Medicine, 75(2). 161170.Google Scholar
Strombach, T., Weber, B., Hangebrauk, Z., Kenning, P., Karipidis, I. I., Tobler, P. N., Kalenscher, T. (2015). Social discounting involves modulation of neural value signals by temporoparietal junction. Proceedings of the National Academy of Sciences, 112(5), 16191624. https://doi.org/10.1073/pnas.1414715112Google Scholar
Van Overwalle, F. (2009). Social cognition and the brain: A meta‐analysis. Human Brain Mapping, 30(3), 829858.Google Scholar
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665670.Google Scholar
Youm, Y., Kim, J., Kwak, S., & Chey, J. (2021). Neural and social correlates of attitudinal brokerage: Using the complete social networks of two entire villages. Proceedings of the Royal Society B, 288(1944), 20202866.Google Scholar
Zerubavel, N., Bearman, P. S., Weber, J., & Ochsner, K. N. (2015). Neural mechanisms tracking popularity in real-world social networks. Proceedings of the National Academy of Sciences, 112(49), 1507215077.Google Scholar

References

Adler, N. E., Epel, E. S., Castellazzo, G., & Ickovics, J. R. (2000). Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy white women. Health Psychology, 19(6), 586592.CrossRefGoogle ScholarPubMed
Ajrouch, K. J., Blandon, A. Y., & Antonucci, T. C. (2005). Social networks among men and women: The effects of age and socioeconomic status. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(6), S311S317.Google Scholar
Algoe, S. B., & Way, B. M. (2014). Evidence for a role of the oxytocin system, indexed by genetic variation in CD38, in the social bonding effects of expressed gratitude. Social Cognitive and Affective Neuroscience, 9(12), 18551861.Google Scholar
Anderson, C., Kraus, M. W., Galinsky, A. D., & Keltner, D. (2012). The local-ladder effect: Social status and subjective well-being. Psychological Science, 23(7), 764771.Google Scholar
Andersson, L., & Stevens, N. (1993). Associations between early experiences with parents and well-being in old age. Journal of Gerontology, 48(3), P109P116.Google Scholar
Arias, N., Calvo, M. D., Benítez-Andrades, J. A., Álvarez, M. J., Alonso-Cortés, B., & Benavides, C. (2018). Socioeconomic status in adolescents: A study of its relationship with overweight and obesity and influence on social network configuration. International Journal of Environmental Research and Public Health, 15(9), 2014.Google Scholar
Avinun, R., Ebstein, R. P., & Knafo, A. (2012). Human maternal behaviour is associated with arginine vasopressin receptor 1A gene. Biology Letters, 8(5), 894896.Google Scholar
Avinun, R., Israel, S., Shalev, I., Gritsenko, I., Bornstein, G., Ebstein, R. P., & Knafo, A. (2011). AVPR1A variant associated with preschoolers’ lower altruistic behavior. PLoS ONE, 6(9), e25274.Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2008). Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Social Cognitive and Affective Neuroscience, 3(2), 128134.Google Scholar
Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational Psychologist, 28(2), 117148.Google Scholar
Bartz, J., Simeon, D., Hamilton, H., Kim, S., Crystal, S., Braun, A., Vicens, V., & Hollander, E. (2011). Oxytocin can hinder trust and cooperation in borderline personality disorder. Social Cognitive and Affective Neuroscience, 6(5), 556563.Google Scholar
Bartz, J. A., Zaki, J., Bolger, N., & Ochsner, K. N. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 15(7), 301309.Google Scholar
Baum, A., Garofalo, J. P., & Yali, A. M. (1999). Socioeconomic status and chronic stress: Does stress account for SES effects on health? Annals of the New York Academy of Sciences, 896(1), 131144.Google Scholar
Ben-Shlomo, Y., & Kuh, D. (2002). A life course approach to chronic disease epidemiology: Conceptual models, empirical challenges and interdisciplinary perspectives. International Journal of Epidemiology, 31(2), 285293.Google Scholar
Bernhard, R. M., Chaponis, J., Siburian, R., Gallagher, P., Ransohoff, K., Wikler, D., Perlis, R. H., & Greene, J. D. (2016). Variation in the oxytocin receptor gene (OXTR) is associated with differences in moral judgment. Social Cognitive and Affective Neuroscience, 11(12), 18721881.Google Scholar
Bielderman, A., de Greef, M. H., Krijnen, W. P., & van der Schans, C. P. (2015). Relationship between socioeconomic status and quality of life in older adults: A path analysis. Quality of Life Research, 24(7), 16971705.Google Scholar
Bost, K. K., Vaughn, B. E., Washington, W. N., Cielinski, K. L., & Bradbard, M. R. (1998). Social competence, social support, and attachment: Demarcation of construct domains, measurement, and paths of influence for preschool children attending Head Start. Child Development, 69(1), 192218.Google Scholar
Bradley, B., Davis, T. A., Wingo, A. P., Mercer, K. B., & Ressler, K. J. (2013). Family environment and adult resilience: Contributions of positive parenting and the oxytocin receptor gene. European Journal of Psychotraumatology, 4(1), 21659.Google Scholar
Brewster, P. W., Melrose, R. J., Marquine, M. J., Johnson, J. K., Napoles, A., MacKay-Brandt, A., Farias, S., Reed, B., Mungas, D. (2014). Life experience and demographic influences on cognitive function in older adults. Neuropsychology, 28(6), 846858.Google Scholar
Brito, N. H., & Noble, K. G. (2014). Socioeconomic status and structural brain development. Frontiers in Neuroscience, 8, 276.Google Scholar
Butterworth, P., Cherbuin, N., Sachdev, P., & Anstey, K. J. (2012). The association between financial hardship and amygdala and hippocampal volumes: Results from the PATH through life project. Social Cognitive and Affective Neuroscience, 7(5), 548556.CrossRefGoogle ScholarPubMed
Calkins, S. D., Smith, C. L., Gill, K. L., & Johnson, M. C. (1998). Maternal interactive style across contexts: Relations to emotional, behavioral and physiological regulation during toddlerhood. Social Development, 7(3), 350369.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., McClay, J., Mill, J., Martin, J., Braithwaite, A., & Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301(5631), 386389.Google Scholar
Chen, F. S., Barth, M., Johnson, S. L., Gotlib, I. H., & Johnson, S. C. (2011). Oxytocin receptor (OXTR) polymorphisms and attachment in human infants. Frontiers in Psychology, 2, 200.Google Scholar
Cohen, S., Janicki‐Deverts, D., Chen, E., & Matthews, K. A. (2010). Childhood socioeconomic status and adult health. Annals of the New York Academy of Sciences, 1186(1), 3755.Google Scholar
Cohn, D. A. (1990). Child‐mother attachment of six‐year‐olds and social competence at school. Child Development, 61(1), 152162.Google Scholar
Cohodes, E. M., Kitt, E. R., Baskin‐Sommers, A., & Gee, D. G. (2021). Influences of early‐life stress on frontolimbic circuitry: Harnessing a dimensional approach to elucidate the effects of heterogeneity in stress exposure. Developmental Psychobiology, 63(2), 153172.Google Scholar
Coleman, P. K. (2003). Perceptions of parent‐child attachment, social self‐efficacy, and peer relationships in middle childhood. Infant and Child Development: An International Journal of Research and Practice, 12(4), 351368.Google Scholar
Conger, R. D., & Donnellan, M. B. (2007). An interactionist perspective on the socioeconomic context of human development. Annual Review of Psychology, 58, 175199.Google Scholar
Conger, R. D., Wallace, L. E., Sun, Y., Simons, R. L., McLoyd, V. C., & Brody, G. H. (2002). Economic pressure in African American families: A replication and extension of the family stress model. Developmental Psychology, 38(2), 179193.Google Scholar
Corcoran, M., & McNulty, M. (2018). Examining the role of attachment in the relationship between childhood adversity, psychological distress and subjective well-being. Child Abuse & Neglect, 76, 297309.Google Scholar
Crandall, A., Magnusson, B. M., Novilla, M. L. B., Novilla, L. K. B., & Dyer, W. J. (2017). Family financial stress and adolescent sexual risk-taking: The role of self-regulation. Journal of Youth and Adolescence, 46(1), 4562.Google Scholar
Crawford, K. M., Choi, K., Davis, K. A., Zhu, Y., Soare, T. W., Smith, A. D. A. C., Germine, L., & Dunn, E. C. (2022). Exposure to early childhood maltreatment and its effect over time on social cognition. Development and Psychopathology, 34(1), 409419.Google Scholar
Cummings, E. M., & Zahn-Waxler, C. (1992). Emotions and the socialization of aggression: Adults’ angry behavior and children’s arousal and aggression. In Socialization and Aggression, pp. 6184. Springer.Google Scholar
Cutting, A. L., & Dunn, J. (1999). Theory of mind, emotion understanding, language, and family background: Individual differences and interrelations. Child Development, 70(4), 853865.Google Scholar
Dannlowski, U., Kugel, H., Grotegerd, D., Redlich, R., Opel, N., Dohm, K., Zaremba, D., Grögler, A., Schwieren, J., Suslow, T., Ohrmann, P., Bauer, J., Krug, A., Kircher, T., Jansen, A., Domschke, K., Hohoff, C., Zwitserlood, P., Heinrichs, M., … Baune, B. T. (2016). Disadvantage of social sensitivity: Interaction of oxytocin receptor genotype and child maltreatment on brain structure. Biological Psychiatry, 80(5), 398405.Google Scholar
Dawson, G., Frey, K., Panagiotides, H., Yamada, E., Hessl, D., & Osterling, J. (1999). Infants of depressed mothers exhibit atypical frontal electrical brain activity during interactions with mother and with a familiar, nondepressed adult. Child Development, 70(5), 10581066.CrossRefGoogle ScholarPubMed
Dawson, G., Klinger, L. G., Panagiotides, H., Hill, D., & Spieker, S. (1992). Frontal lobe activity and affective behavior of infants of mothers with depressive symptoms. Child Development, 63(3), 725737.Google Scholar
De Dreu, C. K., Greer, L. L., Handgraaf, M. J., Shalvi, S., Van Kleef, G. A., Baas, M., Ten Velden, F. S., Van Dijk, E., & Feith, S. W. (2010). The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science, 328(5984), 14081411.Google Scholar
Dunn, J., Brown, J., & Beardsall, L. (1991). Family talk about feeling states and children’s later understanding of others’ emotions. Developmental Psychology, 27(3), 448455.Google Scholar
Ebert, S., Peterson, C., Slaughter, V., & Weinert, S. (2017). Links among parents’ mental state language, family socioeconomic status, and preschoolers’ theory of mind development. Cognitive Development, 44, 3248.Google Scholar
Ebner, N. C., Lin, T., Muradoglu, M., Weir, D. H., Plasencia, G. M., Lillard, T. S., Pournajafi-Nazarloo, H., Cohen, R. A., Sue Carter, C., & Connelly, J. J. (2019). Associations between oxytocin receptor gene (OXTR) methylation, plasma oxytocin, and attachment across adulthood. International Journal of Psychophysiology, 136, 2232.Google Scholar
Ein-Dor, T., Verbeke, W. J., Mokry, M., & Vrtička, P. (2018). Epigenetic modification of the oxytocin and glucocorticoid receptor genes is linked to attachment avoidance in young adults. Attachment & Human Development, 20(4), 439454.Google Scholar
Enge, S., Mothes, H., Fleischhauer, M., Reif, A., & Strobel, A. (2017). Genetic variation of dopamine and serotonin function modulates the feedback-related negativity during altruistic punishment. Scientific Reports, 7(1), 112.Google Scholar
Ensminger, M.E., & Fothergill, K.E. (2003). A decade of measuring SES: What it tells us and where to go from here. In Bornstein, M.H. & Bradley, R.H. (eds.), Socioeconomic Status, Parenting and Child Development, pp. 13–2). Lawrence Erlbaum Associates.Google Scholar
Ensor, R., & Hughes, C. (2008). Content or connectedness? Mother–child talk and early social understanding. Child Development, 79(1), 201216.Google Scholar
Ensor, R., Spencer, D., & Hughes, C. (2011). “You feel sad?” Emotion understanding mediates effects of verbal ability and mother–child mutuality on prosocial behaviors: Findings from 2 years to 4 years. Social Development, 20(1), 93110.Google Scholar
Fagot, B. I. (1997). Attachment, parenting, and peer interactions of toddler children. Developmental Psychology, 33(3), 489499.Google Scholar
Fan, Y., Herrera‐Melendez, A. L., Pestke, K., Feeser, M., Aust, S., Otte, C., Pruessner, J. C., Böker, H., Bajbouj, M., & Grimm, S. (2014). Early life stress modulates amygdala‐prefrontal functional connectivity: Implications for oxytocin effects. Human Brain Mapping, 35(10), 53285339.Google Scholar
Farber, M. J., Romer, A. L., Kim, M. J., Knodt, A. R., Elsayed, N. M., Williamson, D. E., & Hariri, A. R. (2018). Paradoxical associations between familial affective responsiveness, stress, and amygdala reactivity. Emotion, 19(4), 645654.Google Scholar
Farley, J. P., & Kim-Spoon, J. (2017). Parenting and adolescent self-regulation mediate between family socioeconomic status and adolescent adjustment. The Journal of Early Adolescence, 37(4), 502524.Google Scholar
Finger, B., Eiden, R. D., Edwards, E. P., Leonard, K. E., & Kachadourian, L. (2010). Marital aggression and child peer competence: A comparison of three conceptual models. Personal Relationships, 17(3), 357376.Google Scholar
Fischer, C. S. (1982). To Dwell Among Friends: Personal Networks in Town and City. University of Chicago Press.Google Scholar
Ford, E., Clark, C., & Stansfeld, S. A. (2011). The influence of childhood adversity on social relations and mental health at mid-life. Journal of Affective Disorders, 133(1–2), 320327.Google Scholar
Fujisawa, T. X., Nishitani, S., Takiguchi, S., Shimada, K., Smith, A. K., & Tomoda, A. (2019). Oxytocin receptor DNA methylation and alterations of brain volumes in maltreated children. Neuropsychopharmacology, 44(12), 20452053.Google Scholar
Furman, D. J., Chen, M. C., & Gotlib, I. H. (2011). Variant in oxytocin receptor gene is associated with amygdala volume. Psychoneuroendocrinology, 36(6), 891897.Google Scholar
Gallo, L. C., Bogart, L. M., Vranceanu, A. M., & Matthews, K. A. (2005). Socioeconomic status, resources, psychological experiences, and emotional responses: A test of the reserve capacity model. Journal of Personality and Social Psychology, 88(2), 386399.Google Scholar
Gartland, D., Riggs, E., Muyeen, S., Giallo, R., Afifi, T. O., MacMillan, H., Herrman, H., Bulford, E., & Brown, S. J. (2019). What factors are associated with resilient outcomes in children exposed to social adversity? A systematic review. BMJ Open, 9(4), e024870.Google Scholar
Gärtner, A., Strobel, A., Reif, A., Lesch, K. P., & Enge, S. (2018). Genetic variation in serotonin function impacts on altruistic punishment in the ultimatum game: A longitudinal approach. Brain and Cognition, 125, 3744.Google Scholar
Gee, D. G. (2016). Sensitive periods of emotion regulation: Influences of parental care on frontoamygdala circuitry and plasticity. In Rutherford, H. J. V. & Mayes, L. C. (eds.), Maternal Brain Plasticity: Preclinical and Human Research and Implications for Intervention, pp. 87110. Jossey-Bass/Wiley.Google Scholar
Gee, D. G., Gabard-Durnam, L. J., Flannery, J., Goff, B., Humphreys, K. L., Telzer, E. H., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013). Early developmental emergence of human amygdala–prefrontal connectivity after maternal deprivation. Proceedings of the National Academy of Sciences, 110(39), 1563815643.Google Scholar
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala–prefrontal circuitry. Journal of Neuroscience, 33(10), 45844593.CrossRefGoogle ScholarPubMed
Germine, L., Dunn, E. C., McLaughlin, K. A., & Smoller, J. W. (2015). Childhood adversity is associated with adult theory of mind and social affiliation, but not face processing. PLoS ONE, 10(6), e0129612.Google Scholar
Gianaros, P. J., Horenstein, J. A., Cohen, S., Matthews, K. A., Brown, S. M., Flory, J. D., Critchley, H. D., Manuck, S. B., & Hariri, A. R. (2007). Perigenual anterior cingulate morphology covaries with perceived social standing. Social Cognitive and Affective Neuroscience, 2(3), 161173.Google Scholar
Gianaros, P. J., Horenstein, J. A., Hariri, A. R., Sheu, L. K., Manuck, S. B., Matthews, K. A., & Cohen, S. (2008). Potential neural embedding of parental social standing. Social Cognitive and Affective Neuroscience, 3(2), 9196.Google Scholar
Greenfield, E. A., & Moorman, S. M. (2019). Childhood socioeconomic status and later life cognition: Evidence from the Wisconsin Longitudinal Study. Journal of Aging and Health, 31(9), 15891615.Google Scholar
Gunnar, M. R. (2000). Early adversity and the development of stress reactivity and regulation. In Nelson, C. A. (ed.), The Minnesota Symposia on Child Psychology, Vol. 31. The Effects of Early Adversity on Neurobehavioral Development (pp. 163200). Lawrence Erlbaum Associates.Google Scholar
Haas, B. W., Filkowski, M. M., Cochran, R. N., Denison, L., Ishak, A., Nishitani, S., & Smith, A. K. (2016). Epigenetic modification of OXT and human sociability. Proceedings of the National Academy of Sciences, 113(27), E3816E3823.Google Scholar
Hanson, J. L., Chandra, A., Wolfe, B. L., & Pollak, S. D. (2011). Association between income and the hippocampus. PLoS ONE, 6(5), e18712.Google Scholar
Hanson, J. L., Hair, N., Shen, D. G., Shi, F., Gilmore, J. H., Wolfe, B. L., & Pollak, S. D. (2013). Family poverty affects the rate of human infant brain growth. PLoS ONE, 8(12), e80954.Google Scholar
Hanson, J. L., Nacewicz, B. M., Sutterer, M. J., Cayo, A. A., Schaefer, S. M., Rudolph, K. D., Shirtcliff, E. A., Pollak, S. D., & Davidson, R. J. (2015). Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biological Psychiatry, 77(4), 314323.Google Scholar
Hardy, D. F., Power, T. G., & Jaedicke, S. (1993). Examining the relation of parenting to children’s coping with everyday stress. Child Development, 64(6), 18291841.Google Scholar
Hariri, A. R., & Holmes, A. (2006). Genetics of emotional regulation: The role of the serotonin transporter in neural function. Trends in Cognitive Sciences, 10(4), 182191.Google Scholar
Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., Egan, M. F., & Weinberger, D. R. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297(5580), 400403.Google Scholar
Heinz, A., Braus, D. F., Smolka, M. N., Wrase, J., Puls, I., Hermann, D., Klein, S., Grüsser, S. M., Flor, H., Schumann, G., Mann, K., & Büchel, C. (2005). Amygdala–prefrontal coupling depends on a genetic variation of the serotonin transporter. Nature Neuroscience, 8(1), 2021.Google Scholar
Herd, T., King-Casas, B., & Kim-Spoon, J. (2020). Developmental changes in emotion regulation during adolescence: Associations with socioeconomic risk and family emotional context. Journal of Youth and Adolescence, 49(7), 15451557.Google Scholar
Hiraoka, D., Nishitani, S., Shimada, K., Kasaba, R., Fujisawa, T. X., & Tomoda, A. (2021). Epigenetic modification of the oxytocin gene is associated with gray matter volume and trait empathy in mothers. Psychoneuroendocrinology, 123, 105026.Google Scholar
Hostinar, C. E., Cicchetti, D., & Rogosch, F. A. (2014). Oxytocin receptor gene polymorphism, perceived social support, and psychological symptoms in maltreated adolescents. Development and Psychopathology, 26(2), 465477.Google Scholar
House, J. S., Landis, K. R., & Umberson, D. (1988). Social relationships and health. Science, 241(4865), 540545.Google Scholar
Huth‐Bocks, A. C., Levendosky, A. A., Bogat, G. A., & Von Eye, A. (2004). The impact of maternal characteristics and contextual variables on infant–mother attachment. Child Development, 75(2), 480496.Google Scholar
Huxhold, O., Miche, M., & Schüz, B. (2014). Benefits of having friends in older ages: Differential effects of informal social activities on well-being in middle-aged and older adults. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 69(3), 366375.Google Scholar
Inoue, H., Yamasue, H., Tochigi, M., Abe, O., Liu, X., Kawamura, Y., Takei, K., Suga, M., Yamada, H., Rogers, M. A., Aoki, S., Sasaki, T., & Kasai, K. (2010). Association between the oxytocin receptor gene and amygdalar volume in healthy adults. Biological Psychiatry, 68(11), 10661072.Google Scholar
Israel, S., Lerer, E., Shalev, I., Uzefovsky, F., Riebold, M., Laiba, E., Bachner-Melman, R., Maril, A., Bornstein, G., Knafo, A., & Ebstein, R. P. (2009). The oxytocin receptor (OXTR) contributes to prosocial fund allocations in the dictator game and the social value orientations task. PLoS ONE, 4(5), e5535.Google Scholar
Javanbakht, A., King, A. P., Evans, G. W., Swain, J. E., Angstadt, M., Phan, K. L., & Liberzon, I. (2015). Childhood poverty predicts adult amygdala and frontal activity and connectivity in response to emotional faces. Frontiers in Behavioral Neuroscience, 9, 154.Google Scholar
Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., Houshyar, S., Lipschitz, D., Krystal, J. H., & Gelernter, J. (2004). Social supports and serotonin transporter gene moderate depression in maltreated children. Proceedings of the National Academy of Sciences, 101(49), 1731617321.Google Scholar
Kelly, P. A., Viding, E., Wallace, G. L., Schaer, M., De Brito, S. A., Robustelli, B., & McCrory, E. J. (2013). Cortical thickness, surface area, and gyrification abnormalities in children exposed to maltreatment: Neural markers of vulnerability? Biological Psychiatry, 74(11), 845852.Google Scholar
Kim, P., Evans, G. W., Angstadt, M., Ho, S. S., Sripada, C. S., Swain, J. E., Liberzon, I., & Phan, K. L. (2013). Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proceedings of the National Academy of Sciences, 110(46), 1844218447.Google Scholar
Kim, H. S., Sherman, D. K., Sasaki, J. Y., Xu, J., Chu, T. Q., Ryu, C., Suh, E. M., Graham, K., & Taylor, S. E. (2010). Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking. Proceedings of the National Academy of Sciences, 107(36), 1571715721.Google Scholar
Knafo, A., Israel, S., Darvasi, A., Bachner‐Melman, R., Uzefovsky, F., Cohen, L., Feldman, E., Lerer, E., Laiba, E., Raz, Y., Nemanov, L., Gritsenko, I., Dina, C., Agam, G., Dean, B., Bornstein, G., & Ebstein, R. P. (2008). Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. Genes, Brain and Behavior, 7(3), 266275.Google Scholar
Kobayashi, L. C., Glymour, M. M., Kahn, K., Payne, C. F., Wagner, R. G., Montana, L., Mateen, F. J., Tollman, S. M., & Berkman, L. F. (2017). Childhood deprivation and later-life cognitive function in a population-based study of older rural South Africans. Social Science & Medicine, 190, 2028.Google Scholar
Kogan, A., Saslow, L. R., Impett, E. A., Oveis, C., Keltner, D., & Saturn, S. R. (2011). Thin-slicing study of the oxytocin receptor (OXTR) gene and the evaluation and expression of the prosocial disposition. Proceedings of the National Academy of Sciences, 108(48), 1918919192.Google Scholar
Kok, R., Thijssen, S., Bakermans-Kranenburg, M. J., Jaddoe, V. W., Verhulst, F. C., White, T., van IJzendoorn, M. H., & Tiemeier, H. (2015). Normal variation in early parental sensitivity predicts child structural brain development. Journal of the American Academy of Child & Adolescent Psychiatry, 54(10), 824831.Google Scholar
Kopala‐Sibley, D. C., Cyr, M., Finsaas, M. C., Orawe, J., Huang, A., Tottenham, N., & Klein, D. N. (2020). Early childhood parenting predicts late childhood brain functional connectivity during emotion perception and reward processing. Child Development, 91(1), 110128.Google Scholar
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673676.Google Scholar
Kraus, M. W., Côté, S., & Keltner, D. (2010). Social class, contextualism, and empathic accuracy. Psychological Science, 21(11), 17161723.Google Scholar
Kraus, M. W., Piff, P. K., Mendoza-Denton, R., Rheinschmidt, M. L., & Keltner, D. (2012). Social class, solipsism, and contextualism: How the rich are different from the poor. Psychological Review, 119(3), 546572.CrossRefGoogle ScholarPubMed
Krause, N., & Borawski-Clark, E. (1995). Social class differences in social support among older adults. The Gerontologist, 35(4), 498508.Google Scholar
Krol, K. M., Puglia, M. H., Morris, J. P., Connelly, J. J., & Grossmann, T. (2019). Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain. Developmental Cognitive Neuroscience, 37, 100648.Google Scholar
Ladd, G. W., & Pettit, G. S. (2002). Parenting and the development of children’s peer relationships. In Bornstein, M. H. (ed.), Handbook of Parenting: Practical Issues in Parenting, pp. 269309. Lawrence Erlbaum Associates.Google Scholar
Laursen, H. R., Siebner, H. R., Haren, T., Madsen, K., Grønlund, R., Hulme, O., & Henningsson, S. (2014). Variation in the oxytocin receptor gene is associated with behavioral and neural correlates of empathic accuracy. Frontiers in Behavioral Neuroscience, 8, 423.Google Scholar
Lawson, G. M., Camins, J. S., Wisse, L., Wu, J., Duda, J. T., Cook, P. A., Gee, J. C., & Farah, M. J. (2017). Childhood socioeconomic status and childhood maltreatment: Distinct associations with brain structure. PLoS ONE, 12(4), e0175690.Google Scholar
Leerkes, E. M., Su, J., Calkins, S., Henrich, V. C., & Smolen, A. (2017). Variation in mothers’ arginine vasopressin receptor 1a and dopamine receptor D4 genes predicts maternal sensitivity via social cognition. Genes, Brain and Behavior, 16(2), 233240.Google Scholar
Li, J., Zhao, Y., Li, R., Broster, L. S., Zhou, C., & Yang, S. (2015). Association of oxytocin receptor gene (OXTR) rs53576 polymorphism with sociality: A meta-analysis. PLoS ONE, 10(6), e0131820.Google Scholar
Liberzon, I., Ma, S. T., Okada, G., Shaun Ho, S., Swain, J. E., & Evans, G. W. (2015). Childhood poverty and recruitment of adult emotion regulatory neurocircuitry. Social Cognitive and Affective Neuroscience, 10(11), 15961606.Google Scholar
Liu, Y., & Lachman, M. E. (2019). Socioeconomic status and parenting style from childhood: Long-term effects on cognitive function in middle and later adulthood. The Journals of Gerontology: Series B, 74(6), e13e24.Google Scholar
Liu, J. J., Lou, F., Lavebratt, C., & Forsell, Y. (2015). Impact of childhood adversity and vasopressin receptor 1a variation on social interaction in adulthood: A cross-sectional study. PLoS ONE, 10(8), e0136436.Google Scholar
Luby, J., Belden, A., Botteron, K., Marrus, N., Harms, M. P., Babb, C., Nishino, T., & Barch, D. (2013). The effects of poverty on childhood brain development: The mediating effect of caregiving and stressful life events. JAMA pediatrics, 167(12), 11351142.Google Scholar
Luke, N., & Banerjee, R. (2013). Differentiated associations between childhood maltreatment experiences and social understanding: A meta-analysis and systematic review. Developmental Review, 33(1), 128.Google Scholar
Lyu, J., & Burr, J. A. (2016). Socioeconomic status across the life course and cognitive function among older adults: An examination of the latency, pathways, and accumulation hypotheses. Journal of Aging and Health, 28(1), 4067.Google Scholar
Main, M., & Weston, D. R. (1981). The quality of the toddler’s relationship to mother and to father: Related to conflict behavior and the readiness to establish new relationships. Child Development, 52(3), 932940.Google Scholar
Manstead, A. S. (2018). The psychology of social class: How socioeconomic status impacts thought, feelings, and behaviour. British Journal of Social Psychology, 57(2), 267291.Google Scholar
Matsudaira, I., Yokota, S., Hashimoto, T., Takeuchi, H., Asano, K., Asano, M., Sassa, Y., Taki, Y., & Kawashima, R. (2016). Parental praise correlates with posterior insular cortex gray matter volume in children and adolescents. PLoS ONE, 11(4), e0154220.Google Scholar
Mazur, J., Malkowska-Szkutnik, A., & Tabak, I. (2014). Changes in family socio-economic status as predictors of self-efficacy in 13-year-old Polish adolescents. International Journal of Public Health, 59(1), 107115.Google Scholar
McCrory, C., Dooley, C., Layte, R., & Kenny, R. A. (2015). The lasting legacy of childhood adversity for disease risk in later life. Health Psychology, 34(7), 687696.Google Scholar
McLaughlin, K. A., Peverill, M., Gold, A. L., Alves, S., & Sheridan, M. A. (2015). Child maltreatment and neural systems underlying emotion regulation. Journal of the American Academy of Child & Adolescent Psychiatry, 54(9), 753762.Google Scholar
McLaughlin, K. A., Sheridan, M. A., Winter, W., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2014). Widespread reductions in cortical thickness following severe early-life deprivation: A neurodevelopmental pathway to attention-deficit/hyperactivity disorder. Biological Psychiatry, 76(8), 629638.Google Scholar
McQuaid, R. J., McInnis, O. A., Stead, J. D., Matheson, K., & Anisman, H. (2013). A paradoxical association of an oxytocin receptor gene polymorphism: Early-life adversity and vulnerability to depression. Frontiers in Neuroscience, 7, 128.Google Scholar
Mehta, M. A., Golembo, N. I., Nosarti, C., Colvert, E., Mota, A., Williams, S. C., Rutter, M., & Sonuga‐Barke, E. J. (2009). Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: The English and Romanian Adoptees study pilot. Journal of Child Psychology and Psychiatry, 50(8), 943951.Google Scholar
Meins, E., Fernyhough, C., Russell, J., & Clark‐Carter, D. (1998). Security of attachment as a predictor of symbolic and mentalising abilities: A longitudinal study. Social Development, 7(1), 124.Google Scholar
Meins, E., Fernyhough, C., Wainwright, R., Das Gupta, M., Fradley, E., & Tuckey, M. (2002). Maternal mind–mindedness and attachment security as predictors of theory of mind understanding. Child Development, 73(6), 17151726.Google Scholar
Melkman, E. P. (2017). Childhood adversity, social support networks and well-being among youth aging out of care: An exploratory study of mediation. Child Abuse & Neglect, 72, 8597.Google Scholar
Meyer-Lindenberg, A., Kolachana, B., Gold, B., Olsh, A., Nicodemus, K. K., Mattay, V., Dean, M., & Weinberger, D. R. (2009). Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Molecular Psychiatry, 14(10), 968975.Google Scholar
Miller, J. G., Kahle, S., & Hastings, P. D. (2015). Roots and benefits of costly giving: Children who are more altruistic have greater autonomic flexibility and less family wealth. Psychological Science, 26(7), 10381045.Google Scholar
Montagrin, A., Saiote, C., & Schiller, D. (2018). The social hippocampus. Hippocampus, 28(9), 672679.Google Scholar
Moons, W. G., Way, B. M., & Taylor, S. E. (2014). Oxytocin and vasopressin receptor polymorphisms interact with circulating neuropeptides to predict human emotional reactions to stress. Emotion, 14(3), 562572.Google Scholar
Morris, A. S., Silk, J. S., Steinberg, L., Myers, S. S., & Robinson, L. R. (2007). The role of the family context in the development of emotion regulation. Social Development, 16(2), 361388.Google Scholar
Moulson, M. C., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2009). Early adverse experiences and the neurobiology of facial emotion processing. Developmental Psychology, 45(1), 1730.Google Scholar
Muscatell, K. A., Morelli, S. A., Falk, E. B., Way, B. M., Pfeifer, J. H., Galinsky, A. D., Lieberman, M. D., Dapretto, M., & Eisenberger, N. I. (2012). Social status modulates neural activity in the mentalizing network. Neuroimage, 60(3), 17711777.Google Scholar
Nishina, K., Takagishi, H., Takahashi, H., Sakagami, M., & Inoue-Murayama, M. (2019). Association of polymorphism of arginine-vasopressin receptor 1A (AVPR1a) gene with trust and reciprocity. Frontiers in Human Neuroscience, 13, 230.Google Scholar
Nishitani, S., Ikematsu, K., Takamura, T., Honda, S., Yoshiura, K. I., & Shinohara, K. (2017). Genetic variants in oxytocin receptor and arginine-vasopressin receptor 1A are associated with the neural correlates of maternal and paternal affection towards their child. Hormones and Behavior, 87, 4756.Google Scholar
Noble, K. G., Houston, S. M., Kan, E., & Sowell, E. R. (2012). Neural correlates of socioeconomic status in the developing human brain. Developmental Science, 15(4), 516527.Google Scholar
Oshio, T., Umeda, M., & Kawakami, N. (2013). Childhood adversity and adulthood subjective well-being: Evidence from Japan. Journal of Happiness Studies, 14(3), 843860.Google Scholar
Owens, M., Goodyer, I. M., Wilkinson, P., Bhardwaj, A., Abbott, R., Croudace, T., Dunn, V., Jones, P. B., Walsh, N. D., Ban, M., & Sahakian, B. J. (2012). 5-HTTLPR and early childhood adversities moderate cognitive and emotional processing in adolescence. PLoS ONE, 7(11), e48482.Google Scholar
Pavela, G., & Latham, K. (2016). Childhood conditions and multimorbidity among older adults. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 71(5), 889901.Google Scholar
Pears, K. C., & Moses, L. J. (2003). Demographics, parenting, and theory of mind in preschool children. Social Development, 12(1), 120.Google Scholar
Pérez-Edgar, K., Bar-Haim, Y., McDermott, J. M., Gorodetsky, E., Hodgkinson, C. A., Goldman, D., Ernst, M., Pine, D. S., & Fox, N. A. (2010). Variations in the serotonin-transporter gene are associated with attention bias patterns to positive and negative emotion faces. Biological Psychology, 83(3), 269271.Google Scholar
Pergamin-Hight, L., Bakermans-Kranenburg, M. J., Van Ijzendoorn, M. H., & Bar-Haim, Y. (2012). Variations in the promoter region of the serotonin transporter gene and biased attention for emotional information: A meta-analysis. Biological Psychiatry, 71(4), 373379.Google Scholar
Piff, P. K., Kraus, M. W., Côté, S., Cheng, B. H., & Keltner, D. (2010). Having less, giving more: The influence of social class on prosocial behavior. Journal of Personality and Social Psychology, 99(5), 771784.Google Scholar
Piff, P. K., Stancato, D. M., Côté, S., Mendoza-Denton, R., & Keltner, D. (2012). Higher social class predicts increased unethical behavior. Proceedings of the National Academy of Sciences, 109(11), 40864091.Google Scholar
Prinstein, M. J., & La Greca, A. M. (1999). Links between mothers’ and children’s social competence and associations with maternal adjustment. Journal of Clinical Child Psychology, 28(2), 197210.Google Scholar
Raizada, R. D., Richards, T. L., Meltzoff, A., & Kuhl, P. K. (2008). Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. Neuroimage, 40(3), 13921401.Google Scholar
Raver, C. C. (2004). Placing emotional self‐regulation in sociocultural and socioeconomic contexts. Child Development, 75(2), 346353.Google Scholar
Repetti, R. L., Taylor, S. E., & Seeman, T. E. (2002). Risky families: Family social environments and the mental and physical health of offspring. Psychological Bulletin, 128(2), 330366.Google Scholar
Rivizzigno, A. S., Brendgen, M., Feng, B., Vitaro, F., Dionne, G., Tremblay, R. E., & Boivin, M. (2014). Gene–environment interplay between number of friends and prosocial leadership behavior in children. Merrill-Palmer Quarterly, 60(2), 110141.Google Scholar
Rodrigues, S. M., Saslow, L. R., Garcia, N., John, O. P., & Keltner, D. (2009). Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proceedings of the National Academy of Sciences, 106(50), 2143721441.Google Scholar
Romund, L., Raufelder, D., Flemming, E., Lorenz, R. C., Pelz, P., Gleich, T., Heinz, A., & Beck, A. (2016). Maternal parenting behavior and emotion processing in adolescents – An fMRI study. Biological Psychology, 120, 120125.Google Scholar
Saegert, S. C., Adler, N. E., Bullock, H. E., Cauce, A. M., Liu, W. M., & Wyche, K. F. (2006). Report of the APA Task Force on Socioeconomic Status. http://www.apa.org/pi/ses/resources/publications/task-force-2006.pdfGoogle Scholar
Salzinger, S., Feldman, R. S., Hammer, M., & Rosario, M. (1993). The effects of physical abuse on children’s social relationships. Child Development, 64(1), 169187.Google Scholar
Samuelsson, M. A. (1997). Social networks of children in single-parent families: Differences according to sex, age, socioeconomic status and housing-type and their associations with behavioural disturbances. Social Networks, 19(2), 113127.Google Scholar
Sandi, C., & Haller, J. (2015). Stress and the social brain: Behavioural effects and neurobiological mechanisms. Nature Reviews Neuroscience, 16(5), 290304.Google Scholar
Seibert, A., & Kerns, K. (2015). Early mother–child attachment: Longitudinal prediction to the quality of peer relationships in middle childhood. International Journal of Behavioral Development, 39(2), 130138.Google Scholar
Shatz, M., Diesendruck, G., Martinez-Beck, I., & Akar, D. (2003). The influence of language and socioeconomic status on children’s understanding of false belief. Developmental Psychology, 39(4), 717729.Google Scholar
Shavers, V. L. (2007). Measurement of socioeconomic status in health disparities research. Journal of the National Medical Association, 99(9), 10131023.Google Scholar
Sheikh, M. A. (2018). The potential protective effect of friendship on the association between childhood adversity and psychological distress in adulthood: A retrospective, preliminary, three-wave population-based study. Journal of Affective Disorders, 226, 2127.Google Scholar
Sheikh, M. A., Abelsen, B., & Olsen, J. A. (2016). Clarifying associations between childhood adversity, social support, behavioral factors, and mental health, health, and well-being in adulthood: A population-based study. Frontiers in Psychology, 7, 727.Google Scholar
Skuse, D. (2006). Genetic influences on the neural basis of social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 21292141.Google Scholar
Smith, K. E., Porges, E. C., Norman, G. J., Connelly, J. J., & Decety, J. (2014). Oxytocin receptor gene variation predicts empathic concern and autonomic arousal while perceiving harm to others. Social Neuroscience, 9(1), 19.Google Scholar
Stein, M. B., Campbell‐Sills, L., & Gelernter, J. (2009). Genetic variation in 5HTTLPR is associated with emotional resilience. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150(7), 900906.Google Scholar
Stellar, J. E., Manzo, V. M., Kraus, M. W., & Keltner, D. (2012). Class and compassion: Socioeconomic factors predict responses to suffering. Emotion, 12(3), 449459.Google Scholar
Stoltenberg, S. F., Christ, C. C., & Carlo, G. (2013). Afraid to help: Social anxiety partially mediates the association between 5-HTTLPR triallelic genotype and prosocial behavior. Social Neuroscience, 8(5), 400406.Google Scholar
Stringhini, S., Berkman, L., Dugravot, A., Ferrie, J. E., Marmot, M., Kivimaki, M., & Singh-Manoux, A. (2012). Socioeconomic status, structural and functional measures of social support, and mortality: The British Whitehall II Cohort Study, 1985–2009. American Journal of Epidemiology, 175(12), 12751283.Google Scholar
Suess, G. J., Grossmann, K. E., & Sroufe, L. A. (1992). Effects of infant attachment to mother and father on quality of adaptation in preschool: From dyadic to individual organisation of self. International Journal of Behavioral Development, 15(1), 4365.Google Scholar
Sugden, K., Arseneault, L., Harrington, H., Moffitt, T. E., Williams, B., & Caspi, A. (2010). Serotonin transporter gene moderates the development of emotional problems among children following bullying victimization. Journal of the American Academy of Child & Adolescent Psychiatry, 49(8), 830840.Google Scholar
Tani, Y., Fujiwara, T., Kondo, N., Noma, H., Sasaki, Y., & Kondo, K. (2016). Childhood socioeconomic status and onset of depression among Japanese older adults: The JAGES prospective cohort study. The American Journal of Geriatric Psychiatry, 24(9), 717726.Google Scholar
Taylor, S. E., Eisenberger, N. I., Saxbe, D., Lehman, B. J., & Lieberman, M. D. (2006). Neural responses to emotional stimuli are associated with childhood family stress. Biological Psychiatry, 60(3), 296301.Google Scholar
Tost, H., Kolachana, B., Hakimi, S., Lemaitre, H., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer–Lindenberg, A. (2010). A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proceedings of the National Academy of Sciences, 107(31), 1393613941.Google Scholar
Tottenham, N., Hare, T. A., Millner, A., Gilhooly, T., Zevin, J. D., & Casey, B. J. (2011). Elevated amygdala response to faces following early deprivation. Developmental Science, 14(2), 190204.Google Scholar
Tottenham, N., Hare, T. A., Quinn, B. T., McCarry, T. W., Nurse, M., Gilhooly, T., Millner, A., Galvan, A., Davidson, M. C., Eigsti, I. M., Thomas, K. M., Freed, P. J., Booma, E. S., Gunnar, M. R., Altemus, M., Aronson, J., & Casey, B. J. (2010). Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Developmental Science, 13(1), 4661.Google Scholar
Trickett, P. K., & Kuczynski, L. (1986). Children’s misbehaviors and parental discipline strategies in abusive and nonabusive families. Developmental Psychology, 22(1), 115123.Google Scholar
Tucker-Seeley, R. D., Li, Y., Sorensen, G., & Subramanian, S. V. (2011). Lifecourse socioeconomic circumstances and multimorbidity among older adults. BMC Public Health, 11(1), 19.Google Scholar
Turner, R. J., Thomas, C. S., & Brown, T. H. (2016). Childhood adversity and adult health: Evaluating intervening mechanisms. Social Science & Medicine, 156, 114124.Google Scholar
Uzefovsky, F., Shalev, I., Israel, S., Edelman, S., Raz, Y., Mankuta, D., Knafo-Noam, A., & Ebstein, R. P. (2015). Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy. Hormones and Behavior, 67, 6065.Google Scholar
Van Groenou, M. I. B., & Van Tilburg, T. (2003). Network size and support in old age: Differentials by socio-economic status in childhood and adulthood. Ageing & Society, 23(5), 625645.CrossRefGoogle Scholar
Veenema, A. H. (2012). Toward understanding how early-life social experiences alter oxytocin-and vasopressin-regulated social behaviors. Hormones and Behavior, 61(3), 304312.Google Scholar
Veroff, J., Douvan, E., & Kulka, R. A. (1981). The Inner American: A Self-Portrait from 1957 to 1976. Basic Books.Google Scholar
Verschueren, K., & Marcoen, A. (1999). Representation of self and socioemotional competence in kindergartners: Differential and combined effects of attachment to mother and to father. Child Development, 70(1), 183201.Google Scholar
Wade, M., Hoffmann, T. J., Wigg, K., & Jenkins, J. M. (2014). Association between the oxytocin receptor (OXTR) gene and children’s social cognition at 18 months. Genes, Brain and Behavior, 13(7), 603610.Google Scholar
Walum, H., Westberg, L., Henningsson, S., Neiderhiser, J. M., Reiss, D., Igl, W., Ganiban, J. M., Spotts, E. L., Pedersen, N. L., Eriksson, E., & Lichtenstein, P. (2008). Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proceedings of the National Academy of Sciences, 105(37), 1415314156.Google Scholar
Whittle, S., Simmons, J. G., Dennison, M., Vijayakumar, N., Schwartz, O., Yap, M. B., Sheeber, L., & Allen, N. B. (2014). Positive parenting predicts the development of adolescent brain structure: A longitudinal study. Developmental Cognitive Neuroscience, 8, 717.Google Scholar
Whittle, S., Vijayakumar, N., Dennison, M., Schwartz, O., Simmons, J. G., Sheeber, L., & Allen, N. B. (2016). Observed measures of negative parenting predict brain development during adolescence. PLoS ONE, 11(1), e0147774.Google Scholar
Whittle, S., Yap, M. B., Yücel, M., Sheeber, L., Simmons, J. G., Pantelis, C., & Allen, N. B. (2009). Maternal responses to adolescent positive affect are associated with adolescents’ reward neuroanatomy. Social Cognitive and Affective Neuroscience, 4(3), 247256.Google Scholar
Wu, J., Guo, Z., Gao, X., & Kou, Y. (2020). The relations between early-life stress and risk, time, and prosocial preferences in adulthood: A meta-analytic review. Evolution and Human Behavior, 41(6), 557572.Google Scholar
Yanagisawa, K., Masui, K., Furutani, K., Nomura, M., Yoshida, H., & Ura, M. (2013). Family socioeconomic status modulates the coping-related neural response of offspring. Social Cognitive and Affective Neuroscience, 8(6), 617622.Google Scholar
Youngblade, L. M., & Belsky, J. (1992). Parent-child antecedents of 5-year-olds’ close friendships: A longitudinal analysis. Developmental Psychology, 28(4), 700713.Google Scholar
Yu, Q., Daugherty, A. M., Anderson, D. M., Nishimura, M., Brush, D., Hardwick, A., Lacey, W., Raz, S., & Ofen, N. (2018). Socioeconomic status and hippocampal volume in children and young adults. Developmental Science, 21(3), e12561.Google Scholar
Zink, C. F., & Meyer-Lindenberg, A. (2012). Human neuroimaging of oxytocin and vasopressin in social cognition. Hormones and Behavior, 61(3), 400409.Google Scholar
Zhong, Y., Wang, J., & Nicholas, S. (2017). Gender, childhood and adult socioeconomic inequalities in functional disability among Chinese older adults. International Journal for Equity in Health, 16(1), 111.Google Scholar

References

Akbaraly, T. N., Portet, F., Fustinoni, S., Dartigues, J. F., Artero, S., Rouaud, O., Touchon, J., Ritchie, K., & Berr, C. (2009). Leisure activities and the risk of dementia in the elderly: Results from the Three-City Study. Neurology, 73(11), 854861. https://doi.org/10.1212/wnl.0b013e3181b7849bGoogle Scholar
Alzheimer’s Disease International (2010). World Alzheimer Report 2010: The Global Economic Impact of Dementia. Alzheimer’s Disease International.Google Scholar
Andersson, L., & Stevens, N. (1993). Associations between early experiences with parents and well-being in old age. Journal of Gerontology, 48(3), P109P116. https://doi.org/10.1093/geronj/48.3.P109Google Scholar
Banerjee, D., & Rai, M. (2020). Social isolation in Covid-19: The impact of loneliness. International Journal of Social Psychiatry, 66(6), 525527. https://doi.org/10.1177/0020764020922269Google Scholar
Barnes, L. L., De Leon, C. M., Wilson, R. S., Bienias, J. L., & Evans, D. A. (2004). Social resources and cognitive decline in a population of older African Americans and whites. Neurology, 63(12), 23222326. https://doi.org/10.1212/01.wnl.0000147473.04043.b3Google Scholar
Bassuk, S. S., Glass, T. A., & Berkman, L. F. (1999). Social disengagement and incident cognitive decline in community-dwelling elderly persons. Annals of Internal Medicine, 131(3), 165173. https://doi.org/10.7326/0003-4819-131-3-199908030-00002Google Scholar
Baumeister, R., & Leary, M. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497529. https://doi.org/10.1037/0033-2909.117.3.497Google Scholar
Béland, F., Zunzunegui, M. V., Alvarado, B., Otero, A., & Del Ser, T. (2005). Trajectories of cognitive decline and social relations. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(6), P320P330. https://doi.org/10.1093/geronb/60.6.p320Google Scholar
Bennett, D. A., Schneider, J. A., Tang, Y., Arnold, S. E., & Wilson, R. S. (2006). The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: A longitudinal cohort study. The Lancet Neurology, 5(5), 406412. https://doi.org/10.1016/s1474-4422(06)70417-3Google Scholar
Berkman, L.F., Ertel, K.Q., & Glymour, M.M. (2011). Aging and social intervention: Life course perspectives. In Binstock, R. H., George, L. K. (eds.), Handbook of Aging and the Social Sciences, 7th ed, pp. 337351. Academic Press. https://doi.org/10.1016/B978-0-12-380880-6.00024-1Google Scholar
Bianco, F., Lecce, S., & Banerjee, R. (2016). Conversations about mental states and theory of mind development during middle childhood: A training study. Journal of Experimental Child Psychology, 149, 4161. https://doi.org/10.1016/j.jecp.2015.11.006Google Scholar
Bielak, A. A. (2010). How can we not “lose it” if we still don’t understand how to “use it”? Unanswered questions about the influence of activity participation on cognitive performance in older age – A mini-review. Gerontology, 56(5), 507519. https://doi.org/10.1159/000264918Google Scholar
Brady, S. T., Cohen, G. L., Jarvis, S. N., & Walton, G. M. (2020). A brief social-belonging intervention in college improves adult outcomes for black Americans. Science Advances, 6(18), eaay3689. https://doi.org/10.1126/sciadv.aay3689Google Scholar
Brehmer, Y., Kalpouzos, G., Wenger, E., & Lövdén, M. (2014). Plasticity of brain and cognition in older adults. Psychological Research, 78(6), 790802. https://doi.org/10.1007/s00426-014-0587-zGoogle Scholar
Burde, D., & Linden, L. L. (2013). Bringing education to Afghan girls: A randomized controlled trial of village-based schools. American Economic Journal: Applied Economics, 5(3), 2740. https://doi.org/10.1257/app.5.3.27Google Scholar
Burzynska, A. Z., Jiao, Y., Knecht, A. M., Fanning, J., Awick, E. A., Chen, T., Gothe, N., Voss, M. W., McAuley, E., & Kramer, A. F. (2017). White matter integrity declined over 6-months, but dance intervention improved integrity of the fornix of older adults. Frontiers in Aging Neuroscience, 9, 115. https://doi.org/10.3389/fnagi.2017.00059Google Scholar
Cabeza, R., Albert, M., Belleville, S., Craik, F. I. M., Duarte, A., Grady, C. L., Lindenberger, U., Nyberg, L., Park, D. C., Reuter-Lorenz, P. A., Rugg, M. D., Steffener, J., & Rajah, M. N. (2018). Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nature Reviews Neuroscience, 19(11), 701710. https://doi.org/10.1038/s41583–018-0068-2Google Scholar
Cacioppo, J. T., & Hawkley, L. C. (2009). Perceived social isolation and cognition. Trends in Cognitive Sciences, 13(10), 447454. https://doi.org/10.1016/j.tics.2009.06.005Google Scholar
Cao, Q., Tan, C. C., Xu, W., Hu, H., Cao, X. P., Dong, Q., Tan, L., & Yu, J. T. (2020). The prevalence of dementia: A systematic review and meta-analysis. Journal of Alzheimer’s Disease, 73(3), 11571166. https://doi.org/10.3233/jad-191092Google Scholar
Carlson, M. C., Erickson, K. I., Kramer, A. F., Voss, M. W., Bolea, N., Mielke, M., McGill, S., Rebok, G. W., Seeman, T., & Fried, L. P. (2009). Evidence for neurocognitive plasticity in at-risk older adults: The Experience Corps program. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 64(12), 12751282. https://doi.org/10.1093/gerona/glp117Google Scholar
Carlson, M. C., Saczynski, J. S., Rebok, G. W., Seeman, T., Glass, T. A., McGill, S., Tielsch, J., Frick, K. D., Hill, J., & Fried, L. P. (2008). Exploring the effects of an “everyday” activity program on executive function and memory in older adults: Experience Corps®. The Gerontologist, 48(6), 793801. https://doi.org/10.1093/geront/48.6.793Google Scholar
Chan, D., Shafto, M., Kievit, R., Matthews, F., Spink, M., Valenzuela, M., & Henson, R. N. (2018). Lifestyle activities in mid-life contribute to cognitive reserve in late-life, independent of education, occupation, and late-life activities. Neurobiology of Aging, 70, 180183. https://doi.org/10.1016/j.neurobiolaging.2018.06.012Google Scholar
Chang, K. S. (2009). Normalized Crisis of Korean Family. In Family, Life, and Politico-Economics: Micro-Foundation of Compressed Modernity, pp. 293313. Seoul Changbi.Google Scholar
Chey, J., & Lee, H. (2022). Improving effectiveness of mental health system with licensed psychologists in OECD member countries. Journal of Korean Psychological Association: General, 41(3), 221242. https://doi.org/10.22257/kjp.2022.8.41.3.221Google Scholar
Cohen, S. (2004). Social Relationships and Health. American Psychologist, 59(8), 676684. https://doi.org/10.1037/0003-066X.59.8.676Google Scholar
Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., Elavsky, S., Marquez, D. X., Hu, L., & Kramer, A. F. (2006). Aerobic exercise training increases brain volume in aging humans. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(11), 11661170. https://doi.org/10.1093/gerona/61.11.1166Google Scholar
Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 15101512. https://doi.org/10.1126/science.1155466Google Scholar
Diehl, M., Hay, E. L., & Chui, H. (2012). Personal risk and resilience factors in the context of daily stress. In Hayslip, B. & Smith, G. C. (eds.), Annual Review of Gerontology and Geriatrics: Vol. 32. Emerging Perspectives on Resilience in Adulthood and Later Life, pp. 251274. Springer Publishing. https://doi.org/10.1891/0198-8794.32.251Google Scholar
Diener, E, & Tay, L. (2015). Subjective well-being and human welfare around the world as reflected in the Gallup World Poll. International Journal of Psychology, 50(2), 135–149. https://doi.org/10.1002/ijop.12136Google Scholar
Dodge, H. H., Zhu, J., Mattek, N. C., Bowman, M., Ybarra, O., Wild, K. V., Loewenstein, D. A., & Kaye, J. A. (2015). Web-enabled conversational interactions as a method to improve cognitive functions: Results of a 6-week randomized controlled trial. Alzheimer’s and Dementia: Translational Research and Clinical Interventions, 1(1), 112. https://doi.org/10.1016/j.trci.2015.01.001Google Scholar
Dresler, M., Shirer, W. R., Konrad, B. N., Müller, N. C. J., Wagner, I. C., Fernández, G., Czisch, M., & Greicius, M. D. (2017). Mnemonic training reshapes brain networks to support superior memory. Neuron, 93(5), 12271235. https://doi.org/10.1016/j.neuron.2017.02.003Google Scholar
Engvig, A., Fjell, A. M., Westlye, L. T., Skaane, N. V., Dale, A. M., Holland, D., Due-Tønnessen, P., Sundseth, O., & Walhovd, K. B. (2014). Effects of cognitive training on gray matter volumes in memory clinic patients with subjective memory impairment. Journal of Alzheimer’s Disease, 41(3), 779791. https://doi.org/10.3233/JAD-131889Google Scholar
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 30173022. https://doi.org/10.1073/pnas.1015950108Google Scholar
Erickson, K. I., Hillman, C. H., & Kramer, A. F. (2015). Physical activity, brain, and cognition. Current Opinion in Behavioral Sciences, 4, 2732. https://doi.org/10.1016/j.cobeha.2015.01.005Google Scholar
Ertel, K. A., Glymour, M. M., & Berkman, L. F. (2008). Effects of social integration on preserving memory function in a nationally representative US elderly population. American Journal of Public Health, 98(7), 12151220. https://doi.org/10.2105/ajph.2007.113654Google Scholar
Findlay, R. A. (2003). Interventions to reduce social isolation amongst older people: Where is the evidence? Ageing and Society, 23(5), 647658. https://doi.org/10.1017/S0144686X03001296Google Scholar
Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. The Lancet Neurology, 3(6), 343353. https://doi.org/10.1016/s1474-4422(04)00767-7Google Scholar
Goldstein, T. R., & Winner, E. (2012). Enhancing empathy and theory of mind. Journal of Cognition and Development, 13(1), 1937. https://doi.org/10.1080/15248372.2011.573514Google Scholar
Hawkley, L. C., & Capitanio, J. P. (2015). Perceived social isolation, evolutionary fitness and health outcomes: A lifespan approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1669), 20140114. https://doi.org/10.1098/rstb.2014.0114.Google Scholar
Henry, J. D., von Hippel, W., & Baynes, K. (2009). Social inappropriateness, executive control, and aging. Psychology and Aging, 24(1), 239244. https://doi.org/10.1037/a0013423Google Scholar
Holt-Lunstad, J., Smith, T. B., Baker, M., Harris, T., & Stephenson, D. (2015). Loneliness and social isolation as risk factors for mortality. Perspectives on Psychological Science, 10(2), 227237. https://doi.org/10.1177/1745691614568352Google Scholar
Hughes, T. F., Andel, R., Small, B. J., Borenstein, A. R., & Mortimer, J. A. (2008). The association between social resources and cognitive change in older adults: Evidence from the Charlotte County Healthy Aging Study. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 63(4), P241P244. https://doi.org/10.1093/geronb/63.4.p241Google Scholar
Jaeggi, S. M., Buschkuehl, M., Jonides, J., Shah, P., Morrison, A. B., & Chein, J. M. (2011). Short-and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 4660. https://doi.org/10.1073/pnas.1103228108Google Scholar
James, B. D., Wilson, R. S., Barnes, L. L., & Bennett, D. A. (2011). Late-life social activity and cognitive decline in old age. Journal of the International Neuropsychological Society: JINS, 17(6), 9981005. https://doi.org/10.1017/s1355617711000531Google Scholar
Jarvis, M. A., Padmanabhanunni, A., Chipps, J. (2019). An evaluation of a low-intensity cognitive behavioral therapy mhealth-supported intervention to reduce loneliness in older people. International Journal of Environmental Research and Public Health, 16(7), 1305. https://doi.org/10.3390/ijerph16071305Google Scholar
Jo, J., Kim, H., Youm, Y., & Chey, J. (2021). Late-life social activity moderates the association between temporal lobe atrophy and episodic memory decline. Poster presentation, Alzheimer’s Association International Conference (AAIC), July 26–30, 2021.Google Scholar
Kelly, M. E., Duff, H., Kelly, S., McHugh Power, J. E., Brennan, S., Lawlor, B. A., & Loughrey, D. G. (2017). The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: A systematic review. Systematic Reviews, 6(1), 118. https://doi.org/10.1186/s13643–017-0632-2Google Scholar
Kim, C., Kim, J., & Thapa, B. (2020). Bidirectional association between leisure time physical activity and well-being: Longitudinal evidence. Journal of Leisure Research, 51(5), 559580. https://doi.org/10.1080/00222216.2020.1807428Google Scholar
Kim, H., Kwak, S., Kim, J., Youm, Y., & Chey, J. (2019). Social network position moderates the relationship between late-life depressive symptoms and memory differently in men and women. Scientific Reports, 9, 6142. https://doi.org/10.1038/s41598-019-42388-3Google Scholar
Kim, H., Kwak, S., Youm, Y., Chey, J. (2021). Social network characteristics predict loneliness in older adults. Gerontology, 68(3), 309320. https://doi.org/10.1159/000516226Google Scholar
Kodama, S. (2021). Japan appoints “minister of loneliness” to help people home alone. Report on NikkeiAsia on February 13, 2021. https://asia.nikkei.com/Spotlight/Coronavirus/Japan-appoints-minister-of-loneliness-to-help-people-home-aloneGoogle Scholar
Kremen, W. S., Beck, A., Elman, J. A., Gustavson, D. E., Reynolds, C. A., Tu, X. M., Sanderson-Cimino, M. E., Panizzon, M. S., Vuoksimaa, E., Toomey, R., Fennema-Notestine, C., Haggler, D. J. Jr., Fang, B., Dale, A. M., Lyons, M. L., & Franz, C. E. (2019). Influence of young adult cognitive ability and additional education on later-life cognition. Proceedings of the National Academy of Sciences, 116(6), 20212026. https://doi.org/10.1073/pnas.1811537116Google Scholar
Krendl, A. C., Kennedy, D. P., Hugenberg, K., & Perry, B. L. (2021). Social cognitive abilities predict unique aspects of older adults’ personal social networks. The Journals of Gerontology: Series B, 77(1), 1828. https://doi.org/10.1093/geronb/gbab048Google Scholar
Kuiper, J. S., Zuidersma, M., Oude Voshaar, R. C., Zuidema, S. U., van den Heuvel, E. R., Stolk, R. P., & Smidt, N. (2015). Social relationships and risk of dementia: A systematic review and meta-analysis of longitudinal cohort studies. Ageing Research Reviews, 22, 3957. https://doi.org/10.1016/j.arr.2015.04.006Google Scholar
Kwak, S., Kim, H., Chey, J., & Youm, Y. (2018). Feeling how old I am: Subjective age is associated with estimated brain age. Frontiers in Aging Neuroscience, 10. https://doi.org/10.3389/fnagi.2018.00168Google Scholar
LaCosse, J., Canning, E. A., Bowman, N. A., Murphy, M. C., & Logel, C. (2020). A social-belonging intervention improves STEM outcomes for students who speak English as a second language. Science Advances, 6(40). https://doi.org/10.1126/sciadv.abb6543Google Scholar
Lecce, S., Bianco, F., Devine, R. T., Hughes, C., & Banerjee, R. (2014). Promoting theory of mind during middle childhood: A training program. Journal of Experimental Child Psychology, 126, 5267. https://doi.org/10.1016/j.jecp.2014.03.002Google Scholar
Lecce, S., Bottiroli, S., Bianco, F., Rosi, A., & Cavallini, E. (2015). Training older adults on Theory of Mind (ToM): Transfer on metamemory. Archives of Gerontology and Geriatrics, 60(1), 217226. https://doi.org/10.1016/j.archger.2014.10.001Google Scholar
Le Penne, S. (2017). Longing to belong: Needing to be needed in a world in need. III Young perspectives. Society, 54(6), 535536. https://doi.org/10.1007/s12115-017-0185-yGoogle Scholar
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Ogunniyi, A., … Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet, 396(10248), 413446. https://doi.org/10.1016/s0140-6736(20)30367-6Google Scholar
Logel, C., Le Forestier, J. M., Witherspoon, E. B., & Fotuhi, O. (2021). A social-belonging intervention benefits higher weight students’ weight stability and academic achievement. Social Psychological and Personality Science, 12(6), 10481057. https://doi.org/10.1177/1948550620959236Google Scholar
Lopes, M. A., Hototian, S. R., Reis, G. C., Elkis, H., & Bottino, C. M. D. C. (2007). Systematic review of dementia prevalence-1994 to 2000. Dementia & Neuropsychologia, 1(3), 230240. https://doi.org/10.1590/s1980-57642008dn10300003Google Scholar
Lövdén, M., Schaefer, S., Noack, H., Bodammer, N. C., Kühn, S., Heinze, H. J., Düzel, E., Bäckman, L., & Lindenberger, U. (2012). Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiology of Aging, 33(3), 620.e9620.e22. https://doi.org/10.1016/j.neurobiolaging.2011.02.013Google Scholar
Lövdén, M., Wenger, E., Mårtensson, J., Lindenberger, U., & Bäckman, L. (2013). Structural brain plasticity in adult learning and development. Neuroscience & Biobehavioral Reviews, 37(9), 22962310. https://doi.org/10.1016/j.neubiorev.2013.02.014Google Scholar
Luo, Y., Hawkley, L. C., Waite, L. J., & Cacioppo, J. T. (2012). Loneliness, health, and mortality in old age: A national longitudinal study. Social Science & Medicine, 74(6), 907914. https://doi.org/10.1016/j.socscimed.2011.11.028Google Scholar
Maccora, J., Peters, R., & Anstey, K. J. (2020). What does (low) education mean in terms of dementia risk? A systematic review and meta-analysis highlighting inconsistency in measuring and operationalising education. SSM Population Health, 29(12), 100654. https://doi.org/10.1016/j.ssmph.2020.100654Google Scholar
Masi, C. M., Chen, H. Y., Hawkley, L. C., & Cacioppo, J. T. (2011). A meta-analysis of interventions to reduce loneliness. Personality and Social Psychology Review, 15(3), 219266. https://doi.org/10.1177/1088868310377394Google Scholar
McDonough, I. M., Haber, S., Bischof, G. N., & Park, D. C. (2015). The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency. Restorative Neurology and Neuroscience, 33(6), 865882. https://doi.org/10.3233/rnn-150533Google Scholar
Mortimer, J. A., Ding, D., Borenstein, A. R., DeCarli, C., Guo, Q., Wu, Y., Zhao, Q., & Chu, S. (2012). Changes in brain volume and cognition in a randomized trial of exercise and social interaction in a community-based sample of non-demented Chinese elders. Journal of Alzheimer’s Disease, 30(4), 757766. https://doi.org/10.3233/jad-2012-120079Google Scholar
Murphy, M. C., Gopalan, M., Carter, E. R., Emerson, K. T., Bottoms, B. L., & Walton, G. M. (2020). A customized belonging intervention improves retention of socially disadvantaged students at a broad-access university. Science Advances, 6(29), eaba4677. https://doi.org/10.1126/sciadv.aba4677Google Scholar
Newsom, J. T., Rook, K. S., Nishishiba, M., Sorkin, D. H., & Mahan, T. L. (2005). Understanding the relative importance of positive and negative social exchanges: Examining specific domains and appraisals. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(6), P304P312. https://doi.org/10.1093/geronb/60.6.p304Google Scholar
Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K., & Brayne, C. (2014). Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. The Lancet Neurology, 13(8), 788794. https://doi.org/10.1016/s1474-4422(14)70136-xGoogle Scholar
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292305. https://doi.org/10.1016/j.tics.2012.04.005Google Scholar
OECD (2020), Social Connections. In How’s Life? 2020: Measuring Well-Being, OECD Publishing. https://doi.org/10.1787/b2090ea8-enGoogle Scholar
Orellano, E., Colón, W. I., & Arbesman, M. (2012). Effect of occupation- and activity-based interventions on instrumental activities of daily living performance among community-dwelling older adults: A systematic review. American Journal of Occupational Therapy, 66(3), 292300. https://doi.org/10.5014/ajot.2012.003053Google Scholar
Park, D. C., Lodi-Smith, J., Drew, L., Haber, S., Hebrank, A., Bischof, G. N., & Aamodt, W. (2014). The impact of sustained engagement on cognitive function in older adults: The Synapse Project. Psychological Science, 25(1), 103112. https://doi.org/10.1177/0956797613499592Google Scholar
Pinker, S. (2015). The Village Effect: How Face-To-Face Contact Can Make Us Healthier and Happier. Vintage Books Canada.Google Scholar
Pitkala, K. H., Routasalo, P., Kautiainen, H., Sintonen, H., & Tilvis, R. S. (2011). Effects of socially stimulating group intervention on lonely, older people’s cognition: A randomized, controlled trial. The American Journal of Geriatric Psychiatry, 19(7), 654663. https://doi.org/10.1097/jgp.0b013e3181f7d8b0Google Scholar
Qualls, S. H. (2014). Family Therapy with Ageing Families. In Pachana, N. A. & Laidlaw, K. (eds.), The Oxford Handbook of Clinical Gerontology, pp. 710732. Oxford Library of Psychology. https://doi.org/10.1093/oxfordhb/9780199663170.013.020Google Scholar
Rafnsson, S. B., Orrell, M., D’Orsi, E., Hogervorst, E., & Steptoe, A. (2020). Loneliness, social integration, and incident dementia over 6 years: Prospective findings from the English Longitudinal Study of Ageing. The Journals of Gerontology: Series B, 75(1), 114124. https://doi.org/10.1093/geronb/gbx087Google Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. https://doi.org/10.1007/s11065-014-9270-9Google Scholar
Ritchie, H. (2019) The world population is changing: For the first time there are more people over 64 than children younger than 5. https://ourworldindata.org/population-aged-65-outnumber-children#licenceGoogle Scholar
Rosi, A., Cavallini, E., Bottiroli, S., Bianco, F., & Lecce, S. (2016). Promoting theory of mind in older adults: Does age play a role? Aging & Mental Health, 20(1), 2228. https://doi.org/10.1080/13607863.2015.1049118Google Scholar
Routasalo, P. E., Tilvis, R. S., Kautiainen, H., & Pitkala, K. H. (2009). Effects of psychosocial group rehabilitation on social functioning, loneliness and well‐being of lonely, older people: Randomized controlled trial. Journal of Advanced Nursing, 65(2), 297305. https://doi.org/10.1111/j.1365-2648.2008.04837.xGoogle Scholar
Satizabal, C. L., Claudia, L., Beiser, A. S., Chouraki, V., Chêne, G., Dufouil, C., & Seshadri, S. (2016). Incidence of dementia over three decades in the Framingham Heart Study. New England Journal of Medicine, 374(6), 523532. https://doi.org/10.1056/nejmoa1504327Google Scholar
Scott, A. J. (2008). Resurgent metropolis: Economy, society and urbanization in an interconnected world. International Journal of Urban and Regional Research, 32(3), 548564. https://doi.org/10.1111/j.1468-2427.2008.00795.xGoogle Scholar
Seeman, T. E., Lusignolo, T. M., Albert, M., & Berkman, L. (2001). Social relationships, social support, and patterns of cognitive aging in healthy, high-functioning older adults: MacArthur studies of successful aging. Health Psychology, 20(4), 243255. https://doi.org/10.1037/0278-6133.20.4.243Google Scholar
Sheikh, M. A. (2018). The potential protective effect of friendship on the association between childhood adversity and psychological distress in adulthood: A retrospective, preliminary, three-wave population-based study. Journal of Affective Disorders, 226, 2127. https://doi.org/10.1016/j.jad.2017.09.015Google Scholar
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurology, 11(11), 10061012. https://doi.org/10.1016/s1474-4422(12)70191-6Google Scholar
Stern, Y., Arenaza-Urquijo, E. M., Bartrés-Faz, D., Belleville, S., Cantilon, M., Chetelat, G., Ewers, M., Franzmeier, N., Kempermann, G., Kremen, W. S., Okonkwo, O., Scarmeas, N., Soldan, A., Udeh-Momoh, C., Valenzuela, M., Vemuri, P., Vuoksimaa, E., Arenaza Urquiljo, E. M., Bartrés-Faz, D., … Vuoksimaa, E. (2018). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s & Dementia, 1–7. https://doi.org/10.1016/j.jmarsys.2011.03.015Google Scholar
Stillman, C. M., Esteban-Cornejo, I., Brown, B., Bender, C. M., & Erickson, K. I. (2020). Effects of exercise on brain and cognition across age groups and health states. Trends in Neurosciences, 43(7), 533543. https://doi.org/10.1016/j.tins.2020.04.010Google Scholar
Stine-Morrow, E. A., Parisi, J. M., Morrow, D. G., & Park, D. C. (2008). The effects of an engaged lifestyle on cognitive vitality: A field experiment. Psychology of Aging, 23(4), 778786. https://doi.org/10.1037/a0014341Google Scholar
Thompson, T. W., Waskom, M. L., & Gabrieli, J. D. E. (2016). Intensive working memory training produces functional changes in large-scale frontoparietal networks. Journal of Cognitive Neuroscience, 28(4), 575588. https://doi.org/10.1162/jocn_a_00916Google Scholar
Tilvis, R. S., Pitkala, K. H., Jolkkonen, J., & Strandberg, T. E. (2000). Social networks and dementia. Lancet, 356(9223), 7778. https://doi.org/10.1016/s0140–6736(05)73414Google Scholar
UN DESA (2021). World Social Report. United Nations.Google Scholar
Valk, S. L., Bernhardt, B. C., Trautwein, F. M., Böckler, A., Kanske, P., Guizard, N., Collins, D. L., & Singer, T. (2017). Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training. Science Advances, 3(10), e1700489. https://doi.org/10.1126/sciadv.1700489Google Scholar
Van Groenou, M. I. B., & Van Tilburg, T. (2003). Network size and support in old age: Differentials by socio-economic status in childhood and adulthood. Ageing & Society, 23(5), 625645. https://doi.org/10.1017/s0144686x0300134xGoogle Scholar
Verghese, J., Lipton, R. B., Katz, M. J., Hall, C. B., Derby, C. A., Kuslansky, G., Ambrose, A. F., Sliwinski, M., & Buschke, H. (2003). Leisure activities and the risk of dementia in the elderly. New England Journal of Medicine, 348(25), 25082516. https://doi.org/10.1056/nejmoa022252Google Scholar
Walton, G. M., & Brady, S. T. (2017). The many questions of belonging. In Elliot, A. J., Dweck, C. S., & Yeager, D. S. (eds.), Handbook of Competence and Motivation: Theory and Application, 2nd ed., pp. 272293. The Guilford Press.Google Scholar
Walton, G. M., & Brady, S. T. (2020). The social-belonging intervention. In Walton, G. M. & Crum, A. J. (eds.), Handbook of Wise Interventions: How Social-Psychological Insights Can Help Solve Problems, pp. 3662. Guilford Press.Google Scholar
Walton, G. M., & Cohen, G. L. (2007). A question of belonging: Race, social fit, and achievement. Journal of Personality and Social Psychology, 92(1), 8296. https://doi.org/10.1037/0022-3514.92.1.82Google Scholar
Walton, G. M., & Cohen, G. L. (2011). A brief social-belonging intervention improves academic and health outcomes of minority students. Science, 331(6023), 14471451. https://doi.org/10.1126/science.1198364Google Scholar
Walton, G. M., Logel, C., Peach, J. M., Spencer, S. J., & Zanna, M. P. (2015). Two brief interventions to mitigate a “chilly climate” transform women’s experience, relationships, and achievement in engineering. Journal of Educational Psychology, 107(2), 468485. https://doi.org/10.1037/a0037461Google Scholar
Wang, H.-X., Karp, A., Winblad, B., & Fratiglioni, L. (2002). Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: A longitudinal study from the Kungsholmen project. American Journal of Epidemiology, 155(12), 10811087. https://doi.org/10.1093/aje/155.12.1081Google Scholar
Williams, C. L., Hirschi, Q., Sublett, K. V., Hulleman, C. S., & Wilson, T. D. (2020). A brief social belonging intervention improves academic outcomes for minoritized high school students. Motivation Science, 6(4), 423437. https://doi.org/10.1037/mot0000175Google Scholar
Wilson, R. S., Barnes, L. L., Krueger, K. R., Hoganson, G., Bienias, J. L., & Bennett, D. A. (2005). Early and late life cognitive activity and cognitive systems in old age. Journal of the International Neuropsychological Society, 11(4), 400407.Google Scholar
Wilson, R. S., Boyle, P. A., James, B. D., Leurgans, S. E., Buchman, A. S., & Bennett, D. A. (2015). Negative social interactions and risk of mild cognitive impairment in old age. Neuropsychology, 29(4), 561570. https://doi.org/10.1037/neu0000154