Skip to main content Accessibility help
Hostname: page-component-768dbb666b-dkbpd Total loading time: 2.036 Render date: 2023-02-05T20:04:16.114Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

27 - Tremor

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Technical University of Munich
Get access



Tremor is defined as a “… rhythmical, involuntary oscillatory movement of a body part …” (Deuschl et al., 1998). These involuntary movements can easily affect the voluntary movements of reaching and grasping up to the total loss of control in patients with severe tremor disorders. The following chapter will review the clinical characteristics and pathophysiological concepts of the most frequent and pathophysiologically important tremor disorders and link the findings to the control of grasping and other hand functions.

Physiological tremor

Clinical characteristics

Any movement or isometric contraction is accompanied by the mostly invisible normal physiological tremor. The limits between normal and pathological tremors can be difficult to define. A pragmatic clinical approach is to define abnormal tremor whenever it is visible to the naked eye. The frequency of physiological tremor is usually greater than 7–8 Hz. It has recently been proposed that any tremor at lower frequencies is likely to be pathological (Elbe et al., 2005), but in cases of gradual transitions this clinical criterion can be problematic.


Theoretically tremor oscillations can emerge from two basic mechanisms. Any movable limb can be regarded as a pendulum with the capability to swing rhythmically (oscillate). These oscillations will automatically assume the resonant frequency of this limb which is dependent on its mechanical properties; the greater its weight the lower its resonant frequency, the greater the joint stiffness the higher its frequency (Elbe & Randall, 1978; Lakie et al.,1986). Any mechanical perturbation can activate such an oscillation.

Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 375 - 389
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Bergeron, M., Reader, T. A., Layrargues, G. P. & Butterworth, R. F. (1989). Monoamines and metabolites in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Neurochem Res, 14, 853–859.CrossRefGoogle ScholarPubMed
Brown, P. (2000). Cortical drives to human muscle: the Piper and related rhythms. Prog Neurobiol, 60, 97–108.CrossRefGoogle ScholarPubMed
Butterworth, R. F. (2000). Complications of cirrhosis. III. Hepatic encephalopathy. J Hepatol, 32, 171–180.CrossRefGoogle ScholarPubMed
Conn, H. O. (1993). Hepatic encephalopathy. In Schiff, B. & Schiff, E. R. (Eds.), Diseases of the Liver (pp. 1036–1060). Philadelphia, PA: Lippincott.Google Scholar
Conway, B. A., Halliday, D. M., Farmer, S. al. (1995). Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol (Lond), 489, 917–924.CrossRefGoogle ScholarPubMed
Deuschl, G., Bain, P. & Brin, M. (1998). Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee. Mov Disord, 13 (Suppl. 3), 2–23.CrossRefGoogle ScholarPubMed
Deuschl, G., Wilms, H., Krack, P., Wurker, M. & Heiss, W. D. (1999). Function of the cerebellum in Parkinsonian rest tremor and Holmes' tremor. Ann Neurol, 46, 126–128.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Deuschl, G., Wenzelburger, R., Loffler, K., Raethjen, J. & Stolze, H. (2000). Essential tremor and cerebellar dysfunction clinical and kinematic analysis of intention tremor. Brain, 123 (Pt. 8), 1568–1580.CrossRefGoogle ScholarPubMed
Elble, R. J. & Randall, J. E. (1978). Mechanistic components of normal hand tremor. Electroencephalogr Clin Neurophysiol, 44, 72–82.CrossRefGoogle ScholarPubMed
Elble, R. J., Higgins, C. & Elble, S. (2005). Electrophysiologic transition from physiologic tremor to essential tremor. Mov Disord, 20, 1038–1042.CrossRefGoogle ScholarPubMed
Findley, L. J., Gresty, M. A. & Halmagyi, G. M. (1981). Tremor, the cogwheel phenomenon and clonus in Parkinson's disease. J Neurol Neurosurg Psychiatry, 44, 534–546.CrossRefGoogle ScholarPubMed
Gross, J., Tass, P. A., Salenius, al. (2000). Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography. J Physiol, 527, 623–631.CrossRefGoogle ScholarPubMed
Haussinger, D., Laubenberger, J., vom Dahl, al. (1994). Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology, 107, 1475–1480.CrossRefGoogle ScholarPubMed
Heimer, G., Rivlin-Etzion, M., Bar-Gad, al. (2006). Dopamine replacement therapy does not restore the full spectrum of normal pallidal activity in the 1-methy-4-phenyl-1,2,3,6-tetra-hydropyridine primate model of Parkinsonism. J Neurosci, 26, 8101–8114.CrossRefGoogle ScholarPubMed
Hurtado, J. M., Gray, C. M., Tamas, L. B. & Sigvardt, K. A. (1999). Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc Natl Acad Sci USA, 96, 1674–1679.CrossRefGoogle ScholarPubMed
Hurtado, J. M., Lachaux, J. P., Beckley, D. J., Gray, C. M. & Sigvardt, K. A. (2000). Inter- and intralimb oscillator coupling in parkinsonian tremor. Mov Disord, 15, 683–691.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Joebges, E. M., Heidemann, M., Schimke, al. (2003). Bradykinesia in minimal hepatic encephalopathy is due to disturbances in movement initiation. J Hepatol, 38, 273–280.CrossRefGoogle ScholarPubMed
Kircheis, G., Wettstein, M., Timmermann, L., Schnitzler, A. & Haussinger, D. (2002). Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology, 35, 357–366.CrossRefGoogle ScholarPubMed
Lakie, M., Walsh, E. G. & Wright, G. W. (1986). Passive mechanical properties of the wrist and physiological tremor. J Neurol Neurosurg Psychiatry, 49, 669–676.CrossRefGoogle ScholarPubMed
Lang, A. E. & Lozano, A. M. (1998). Parkinson's disease. Second of two parts. N Engl J Med, 339, 1130–1143.CrossRefGoogle ScholarPubMed
Leavitt, S. & Tyler, H. R. (1964). Studies in asterixis. Arch Neurol, 10, 360–368.CrossRefGoogle ScholarPubMed
Liu, X., Ford-Dunn, H. L., Hayward, G. al. (2002). The oscillatory activity in the Parkinsonian subthalamic nucleus investigated using the macro-electrodes for deep brain stimulation. Clin Neurophysiol, 113, 1667–1672.CrossRefGoogle ScholarPubMed
Mousseau, D. D., Perney, P., Layrargues, G. P. & Butterworth, R. F. (1993). Selective loss of pallidal dopamine D2 receptor density in hepatic encephalopathy. Neurosci Lett, 162, 192–196.CrossRefGoogle ScholarPubMed
Mousseau, D. D., Baker, G. B. & Butterworth, R. F. (1997). Increased density of catalytic sites and expression of brain monoamine oxidase A in humans with hepatic encephalopathy. J Neurochem, 68, 1200–1208.CrossRefGoogle ScholarPubMed
Nolano, M., Guardascione, M. A., Amitrano, al. (1997). Cortico-spinal pathways and inhibitory mechanisms in hepatic encephalopathy. Electroencephalogr Clin Neurophysiol, 105, 72–78.CrossRefGoogle ScholarPubMed
Pollok, B., Gross, J., Dirks, M., Timmermann, L. & Schnitzler, A. (2004). The cerebral oscillatory network of voluntary tremor. J Physiol, 554, 871–878.CrossRefGoogle ScholarPubMed
Raethjen, J., Lindemann, M., Schmaljohann, al., (2000a). Multiple oscillators are causing parkinsonian and essential tremor. Mov Disord, 15, 84–94.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Raethjen, J., Pawlas, F., Lindemann, M., Wenzelburger, R. & Deuschl, G. (2000b). Determinants of physiologic tremor in a large normal population. Clin Neurophysiol, 111, 1825–1837.CrossRefGoogle Scholar
Raethjen, J., Pohle, S., Govindan, R. al. (2005). Parkinsonian action tremor: interference with object manipulation and lacking levodopa response. Exp Neurol, 194, 151–160.CrossRefGoogle ScholarPubMed
Salenius, S., Portin, K., Kajola, M., Salmelin, R. & Hari, R. (1997). Cortical control of human motoneuron firing during isometric contraction. J Neurophysiol, 77, 3401–3405.CrossRefGoogle ScholarPubMed
Schnitzler, A., Gross, J. & Timmermann, L. (2000). Synchronised oscillations of the human sensorimotor cortex. Acta Neurobiol Exp, 60, 271–287.Google ScholarPubMed
Sturman, M. M., Vaillancourt, D. E., Metman, L. V., Bakay, R. A. & Corcos, D. M. (2004). Effects of subthalamic nucleus stimulation and medication on resting and postural tremor in Parkinson's disease. Brain, 127, 2131–2143.CrossRefGoogle ScholarPubMed
Tass, P., Rosenblum, M. G., Weule, al. (1998). Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Phys Rev Lett, 81, 3291–3294.CrossRefGoogle Scholar
Timmer, J., Lauk, M., Pfleger, W. & Deuschl, G. (1998). Cross-spectral analysis of physiological tremor and muscle activity. I. Theory and application to unsynchronized electromyogram. Biol Cybern 78, 349–357.CrossRefGoogle ScholarPubMed
Timmermann, L., Gross, J., Kircheis, G., Haussinger, D. & Schnitzler, A. (2002). Cortical origin of mini-asterixis in hepatic encephalopathy. Neurology, 58, 295–298.CrossRefGoogle ScholarPubMed
Timmermann, L., Gross, J., Butz, al. (2003a). Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. Neurology, 61, 689–692.CrossRefGoogle ScholarPubMed
Timmermann, L., Gross, J., Dirks, al. (2003b). The cerebral oscillatory network of parkinsonian resting tremor. Brain, 126, 199–212.CrossRefGoogle ScholarPubMed
Timmermann, L., Butz, M., Gross, al. (2005). Neural synchronization in hepatic encephalopathy. Metab Brain Dis, 20, 337–346.CrossRefGoogle ScholarPubMed
Timmermann, L., Florin, E. & Reck, C. (2007). Pathological cerebral oscillatory activity in Parkinson's disease: a critical review on methods, data and hypotheses. Expert Rev Med Devices, 4, 651–661.CrossRefGoogle ScholarPubMed
Timmermann, L., Butz, M., Gross, al. (2008). Impaired cerebral oscillatory processing in hepatic encephalopathy. Clin Neurophysiol, 119, 265–272.CrossRefGoogle ScholarPubMed
Volkmann, J. (1998). Oscillations of the human sensorimotor system as revealed by magnetoencephalography. Mov Disord, 13, 73–76.CrossRefGoogle ScholarPubMed
Wang, S. Y., Aziz, T. Z., Stein, J. F. & Liu, X. (2005). Time-frequency analysis of transient neuromuscular events: dynamic changes in activity of the subthalamic nucleus and forearm muscles related to the intermittent resting tremor. J Neurosci Meth, 145, 151–158.CrossRefGoogle ScholarPubMed
Wenzelburger, R., Raethjen, J., Loffler, al. (2000). Kinetic tremor in a reach-to-grasp movement in Parkinson's disease. Mov Disord, 15, 1084–1094.3.0.CO;2-Y>CrossRefGoogle Scholar
Yang, S. S., Chu, N. S. & Liaw, Y. F. (1985). Somatosensory evoked potentials in hepatic encephalopathy. Gastroenterology, 89, 625–630.CrossRefGoogle ScholarPubMed
Yang, S. S., Wu, C. H., Chiang, T. R. & Chen, D. S. (1998). Somatosensory evoked potentials in subclinical portosystemic encephalopathy: a comparison with psychometric tests. Hepatology, 27, 357–361.CrossRefGoogle ScholarPubMed
Young, R. R. & Shahani, B. T. (1986). Asterixis: one type of negative myoclonus. Adv Neurol, 43, 137–156.Google ScholarPubMed
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats