Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T14:23:43.070Z Has data issue: false hasContentIssue false

Part I - Historical Review of Sampling Perspectives and Major Paradigms

Published online by Cambridge University Press:  01 June 2023

Klaus Fiedler
Affiliation:
Universität Heidelberg
Peter Juslin
Affiliation:
Uppsala Universitet, Sweden
Jerker Denrell
Affiliation:
University of Warwick
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ackerman, R. (2014). The Diminishing Criterion Model for metacognitive regulation of time investment. Journal of Experimental Psychology: General, 143(3), 13491368.CrossRefGoogle ScholarPubMed
Ambady, N., & Rosenthal, R. (1993). Half a minute: Predicting teacher evaluations from thin slices of nonverbal behavior and physical attractiveness. Journal of Personality and Social Psychology, 64(3), 431.Google Scholar
Asch, S. E. (1946). Forming impressions of personality. Journal of Abnormal and Social Psychology, 41, 258290.Google Scholar
Azzi, A. E., & Jost, J. T. (1997). Votes without power: Procedural justice as mutual control in majority‐minority relations 1. Journal of Applied Social Psychology, 27(2), 124155.CrossRefGoogle Scholar
Bernoulli, J. (1713). Ars conjectandi [The art of conjecturing]. Basel, Switzerland: E. & J. R. Thurnisius.Google Scholar
Bhatia, S., & Walasek, L. (2016). Event construal and temporal distance in natural language. Cognition, 152, 18.Google Scholar
Bhui, R., & Gershman, S. J. (2018). Decision by sampling implements efficient coding of psychoeconomic functions. Psychological Review, 125(6), 985.CrossRefGoogle ScholarPubMed
Block, P., Hoffman, M., & Raabe, I. J., et al. (2020). Social network-based distancing strategies to flatten the COVID-19 curve in a post lockdown world. Nature Human Behaviour, 4, 588596.Google Scholar
Brown, G. D., Lewandowsky, S., & Huang, Z. (2022). Social sampling and expressed attitudes: Authenticity preference and social extremeness aversion lead to social norm effects and polarization. Psychological review, 129(1), 18.CrossRefGoogle Scholar
Campbell, D. T., & Kenny, D. A. (1999). A primer on regression artifacts. New York: Guilford Press.Google Scholar
Combs, B., & Slovic, P. (1979). Newspaper coverage of causes of death. Journalism Quarterly, 56(4), 837849.Google Scholar
Costello, F., & Watts, P. (2019). The rationality of illusory correlation. Psychological Review, 126(3), 437450.Google Scholar
Dawes, R. M., Faust, D., & Meehl, P. E. (1989). Clinical versus actuarial judgment. Science, 243(4899), 16681674.CrossRefGoogle ScholarPubMed
De Finetti, B. (1937). La prévision: Ses lois logiques, ses sources subjectives [Foresight: its logical laws, its subjective sources]. Annales de l’Institut Henri Poincaré, 17, 168.Google Scholar
Denrell, J. (2005). Why most people disapprove of me: experience sampling in impression formation. Psychological Review, 112(4), 951978.Google Scholar
Denrell, J., & Le Mens, G. (2007). Interdependent sampling and social influence. Psychological Review, 114(2), 398422.CrossRefGoogle ScholarPubMed
Denrell, J., & Le Mens, G. (2011). Seeking positive experiences can produce illusory correlations. Cognition, 119(3), 313324.CrossRefGoogle ScholarPubMed
Denrell, J., & Le Mens, G. (2012). Social judgments from adaptive samples. Social Judgment and Decision Making, 151–169.Google Scholar
Denrell, J., & Le Mens, G. (2013). Information sampling, conformity and collective mistaken beliefs. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 35, No. 35).Google Scholar
Denrell, J., & Le Mens, G. (2017). Information sampling, belief synchronization, and collective illusions. Management Science, 63(2), 528547.Google Scholar
Denrell, J., & March, J. G. (2001). Adaptation as information restriction: The hot stove effect. Organization Science, 12(5), 523538.Google Scholar
Edwards, W. (1965). Optimal strategies for seeking information: Models for statistics, choice reaction times, and human information processing. Journal of Mathematical Psychology, 2(2), 312329.Google Scholar
Elwin, E., Juslin, P., Olsson, H., & Enkvist, T. (2007). Constructivist coding: Learning from selective feedback. Psychological Science, 18(2), 105110.CrossRefGoogle ScholarPubMed
Evans, J., & Stanovich, K. E. (2013). Dual-process theories of higher cognition advancing the debate. Perspectives on Psychological Science 8(3), 223241.CrossRefGoogle ScholarPubMed
Fazio, R. H., Eiser, J. R., & Shook, N. J. (2004). Attitude formation through exploration: Valence asymmetries. Journal of Personality and Social Psychology, 87(3), 293311.CrossRefGoogle ScholarPubMed
Fiedler, K. (1991). The tricky nature of skewed frequency tables: An information loss account of distinctiveness-based illusory correlations. Journal of Personality and Social Psychology, 60(1), 24.Google Scholar
Fiedler, K. (2000). Illusory correlations: A simple associative algorithm provides a convergent account of seemingly divergent paradigms. Review of General Psychology, 4(1), 2558.Google Scholar
Fiedler, K. (2007). Information ecology and the explanation of social cognition and behavior. In Kruglanski, A. W. & Higgins, E. T. (Eds.), Social psychology: Handbook of basic principles, 2nd ed. (pp. 176200). New York: Guilford.Google Scholar
Fiedler, K. (2008). The ultimate sampling dilemma in experience-based decision-making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(1), 186203.Google ScholarPubMed
Fiedler, K. (2014). From intrapsychic to ecological theories in social psychology: Outlines of a functional theory approach. European Journal of Social Psychology, 44(7), 657670.CrossRefGoogle Scholar
Fiedler, K., Bluemke, M., Freytag, P., Unkelbach, C., & Koch, S. (2007). A semiotic approach to understanding the role of communication in stereotyping. In Stereotype dynamics (pp. 104125). New York: Psychology Press.Google Scholar
Fiedler, K., Jung, J., Wänke, M., Alexopoulos, T., & de Molière, L. (2015). Toward a deeper understanding of the ecological origins of distance construal. Journal of Experimental Social Psychology, 57, 7886.Google Scholar
Fiedler, K., Kemmelmeier, M., & Freytag, P. (1999). Explaining asymmetric intergroup judgments through differential aggregation: Computer simulations and some new evidence. European Review of Social Psychology, 10, 140.Google Scholar
Fiedler, K., & Kutzner, F. (2015). Information sampling and reasoning biases: Implications for research in judgment and decision-making. In Keren, G. & Wu, G. (Eds.), The Wiley Blackwell handbook of judgment and decision making. New York: Wiley.Google Scholar
Fiedler, K., McCaughey, L. & Prager, J. (2021). Heuristics and biases. In Knauff, M. & Spohn, W. (Eds.), Handbook of rationality. Cambridge, MA: MIT.Google Scholar
Fiedler, K., Renn, S.-Y., & Kareev, Y. (2010). Mood and judgments based on sequential sampling. Journal of Behavioral Decision-Making, 23(5), 483495.Google Scholar
Fiedler, K., & Wänke, M. (2009). The cognitive-ecological approach to rationality in social psychology. Social Cognition, 27(5), 699732.Google Scholar
Fiedler, K., Wöllert, F., Tauber, B., & Heß, P. (2013). Applying sampling theories to attitude learning in a virtual school class environment. Organizational Behavior and Human Decision Processes, 122(2), 222231.Google Scholar
Fiske, S. T., Cuddy, A. J., & Glick, P. (2007). Universal dimensions of social cognition: Warmth and competence. Trends in Cognitive Sciences, 11, 7783.Google Scholar
Fox, C. R., & Hadar, L. (2006). “Decisions from experience”= sampling error+ prospect theory: Reconsidering Hertwig, Barron, Weber & Erev (2004). Judgment and Decision-Making, 1(2), 159161.Google Scholar
Galesic, M., Olsson, H., & Rieskamp, J. (2018). A sampling model of social judgment. Psychological Review, 125(3), 363390.Google Scholar
Goerner, G., Fiedler, K., & Olsson, H. (2012). Rethinking cognitive biases as environmental consequences. In Todd, P. M. & Gigerenzer, G. (Eds.), Ecological rationality: Intelligence in the world. (pp. 80110). New York: Oxford University Press.Google Scholar
Golman, R., Bhatia, S., & Kane, P. B. (2020). The dual accumulator model of strategic deliberation and decision-making. Psychological Review, 127(4), 477504.Google Scholar
Hamilton, D. L., & Gifford, R. K. (1976). Illusory correlation in interpersonal perception: A cognitive basis of stereotypic judgments. Journal of Experimental Social Psychology, 12(4), 392407.CrossRefGoogle Scholar
Hartwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15(8), 534–39.Google Scholar
Hertwig, R., Hogarth, R. M., & Lejarraga, T. (2018). Experience and description: Exploring two paths to knowledge. Current Directions in Psychological Science, 27(2), 123128.Google Scholar
Hogarth, R. M. (2010). Intuition: A challenge for psychological research on decision-making. Psychological Inquiry, 21(4), 338353.Google Scholar
Hogarth, R. M., Lejarraga, T., & Soyer, E. (2015). The two settings of kind and wicked learning environments. Current Directions in Psychological Science, 24(5), 379385.Google Scholar
Hsee, C. K., & Zhang, J. (2010). General evaluability theory. Perspectives on Psychological Science, 5(4), 343355.Google Scholar
Juslin, P., & Olsson, H. (1997). Thurstonian and Brunswikian origins of uncertainty in judgment: A sampling model of confidence in sensory discrimination. Psychological Review, 104, 344366.Google Scholar
Justin, P., & Olsson, H. (2005). Capacity limitations and the detection of correlations: Comment on Kareev (2000). Psychological Review, 112(1), 256267.Google Scholar
Kareev, Y. (2000). Seven (indeed, plus or minus two) and the detection of correlations. Psychological Review, 107(2), 397402.Google Scholar
Khoury, M. J., & Ioannidis, J. P. (2014). Big data meets public health. Science, 346(6213), 10541055.Google Scholar
Konovalova, E., & Le Mens, G. (2020). An information sampling explanation for the in-group heterogeneity effect. Psychological Review, 127(1), 47.Google Scholar
Kuklinski, J. H., Quirk, P. J., Jerit, J., Schwieder, D., & Rich, R. F. (2000). Misinformation and the currency of democratic citizenship. Journal of Politics, 62(3), 790816.CrossRefGoogle Scholar
Lang, P. J., Öhman, A., & Vaitl, D. (1988). The international affective picture system [photographic slides]. Gainesville: University of Florida, Center for Research in Psychophysiology.Google Scholar
Laughlin, P. R., & Ellis, A. L. (1986). Demonstrability and social combination processes on mathematical intellective tasks. Journal of Experimental Social Psychology, 22(3), 177189.Google Scholar
Le Mens, G., & Denrell, J. (2011). Rational learning and information sampling: On the “naivety” assumption in sampling explanations of judgment biases. Psychological Review, 118(2), 379392.Google Scholar
Le Mens, G., Denrell, J., Kovács, B., & Karaman, H. (2019). Information sampling, judgment, and the environment: Application to the effect of popularity on evaluations. Topics in Cognitive Science, 11(2), 358373.Google Scholar
Linville, P. W., Fischer, G. W., & Salovey, P. (1989). Perceived distributions of the characteristics of in-group and out-group members: Empirical evidence and a computer simulation. Journal of Personality and Social Psychology, 57(2), 165188.Google Scholar
Lyons, A., & Kashima, Y. (2003). How are stereotypes maintained through communication? The influence of stereotype sharedness. Journal of Personality and Social Psychology, 85(6), 989.Google Scholar
Marr, D. (1982). Vision: A computational approach. San Francisco: Freeman.Google Scholar
McClamrock, R. (1991). Marr’s three levels: A re-evaluation. Minds and Machines, 1(2), 185196.CrossRefGoogle Scholar
Moore, D. A., & Healy, P. J. (2008). The trouble with overconfidence. Psychological Review, 115, 502517.Google Scholar
Moussaïd, M., Herzog, S. M., Kämmer, J. E., & Hertwig, R. (2017). Reach and speed of judgment propagation in the laboratory. Proceedings of the National Academy of Sciences, 114(16), 41174122.Google Scholar
Norton, M. I., Frost, J. H., & Ariely, D. (2007). Less is more: The lure of ambiguity, or why familiarity breeds contempt. Journal of Personality and Social Psychology, 92, 97105.CrossRefGoogle ScholarPubMed
Oaksford, M., & Chater, N. (1994). A rational analysis of the selection task as optimal data selection. Psychological Review, 101(4), 608631.CrossRefGoogle Scholar
Ohtsubo, Y., & Masuchi, A. (2004). Effects of status difference and group size in group decision making. Group Processes & Intergroup Relations, 7(2), 161172.CrossRefGoogle Scholar
Olivola, C. Y., & Todorov, A. (2010). Fooled by first impressions? Reexamining the diagnostic value of appearance-based inferences. Journal of Experimental Social Psychology, 46(2), 315324.Google Scholar
Parducci, A. (1965). Category judgment: A range-frequency model. Psychological Review, 72(6), 407418.Google Scholar
Peterson, C. R., & Beach, L. R. (1967). Man as an intuitive statistician. Psychological Bulletin, 68(1), 2946.CrossRefGoogle Scholar
Pleskac, T. J., & Hertwig, R. (2014). Ecologically rational choice and the structure of the environment. Journal of Experimental Psychology: General, 143(5), 20002019.Google Scholar
Powell, D., Yu, J., DeWolf, M., & Holyoak, K. J. (2017). The love of large numbers: A popularity bias in consumer choice. Psychological Science, 28(10), 14321442.Google Scholar
Prager, J., & Fiedler, K. (2021). Forming impressions from self-truncated samples of traits: Interplay of Thurstonian and Brunswikian sampling effects. Journal of Personality and Social Psychology, 121(3), 474.Google Scholar
Prager, J., Krueger, J. I., & Fiedler, K. (2018). Towards a deeper understanding of impression formation: New insights gained from a cognitive-ecological perspective. Journal of Personality and Social Psychology, 115(3), 379397.Google Scholar
Rakow, T., Demes, K. A., & Newell, B. R. (2008). Biased samples not mode of presentation: Re-examining the apparent underweighting of rare events in experience-based choice. Organizational Behavior and Human Decision Processes, 106(2), 168179.Google Scholar
Reeder, G. D., & Brewer, M. B. (1979). A schematic model of dispositional attribution in interpersonal perception. Psychological Review, 86, 6179.Google Scholar
Rothbart, M., & Park, B. (1986). On the confirmability and disconfirmability of trait concepts. Journal of Personality and Social Psychology, 50, 131142.Google Scholar
Rumelhart, D. E., & McClelland, J. L. (1985). Levels indeed! A response to Broadbent. Journal of Experimental Psychology: General, 114(2), 193197.Google Scholar
Samuels, M. L. (1991). Statistical reversion toward the mean: More universal than regression toward the mean. American Statistician, 45(4), 344346.Google Scholar
Sanborn, A. N., & Chater, N. (2016). Bayesian brains without probabilities. Trends in Cognitive Sciences, 20(12), 883893.Google Scholar
Savage, L. J. (1954). The foundations of statistics. New York: Wiley.Google Scholar
Schmittlein, D. C. (1989). Surprising inferences from unsurprising observations: Do conditional expectations really regress to the mean? American Statistician, 43(3), 176183.Google Scholar
Schulz-Hardt, S., & Mojzisch, A. (2012). How to achieve synergy in group decision making: Lessons to be learned from the hidden profile paradigm. European Review of Social Psychology, 23(1), 305343.Google Scholar
Skowronski, J. J., & Carlston, D. E. (1987). Social judgment and social memory: The role of cue diagnosticity in negativity, positivity, and extremity biases. Journal of Personality and Social Psychology, 52, 689699.CrossRefGoogle Scholar
Stewart, N., Chater, N., & Brown, G. D. (2006). Decision by sampling. Cognitive Psychology, 53, 126.Google Scholar
Thomas, M. S. C., & McClelland, J. L. (2008). Connectionist models of cognition. In Sun, R. (Ed.), The Cambridge handbook of computational psychology (pp. 2358). Cambridge University Press. https://doi.org/10.1017/CBO9780511816772.005Google Scholar
Thorndike, E. L. (1911). Animal intelligence: Experimental studies. New York: Macmillan.Google Scholar
Thorndike, E. L. (1927). The law of effect. American Journal of Psychology, 39(1/4), 212222.Google Scholar
Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34, 273286.CrossRefGoogle Scholar
Trope, Y., & Liberman, N. (2010). Construal-level theory of psychological distance. Psychological Review, 117(2), 440463.Google Scholar
Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5(2), 207232.Google Scholar
Ullrich, J., Krueger, J. I., Brod, A., & Groschupf, F. (2013). More is not less: Greater information quantity does not diminish liking. Journal of Personality and Social Psychology, 105, 909920.CrossRefGoogle Scholar
Unkelbach, C., Fiedler, K., Bayer, M., Stegmüller, M., & Danner, D. (2008). Why positive information is processed faster: The density hypothesis. Journal of Personality and Social Psychology, 95(1), 3649.Google Scholar
Van Hiel, A., & Franssen, V. (2003). Information acquisition bias during the preparation of group discussion: A comparison of prospective minority and majority members. Small Group Research, 34(5), 557574.Google Scholar
Vrij, A., & Mann, S. (2006). Criteria-based content analysis: An empirical test of its underlying processes. Psychology, Crime & Law, 12(4), 337349.Google Scholar
Walasek, L., & Stewart, N. (2015). How to make loss aversion disappear and reverse: Tests of the decision by sampling origin of loss aversion. Journal of Experimental Psychology: General, 144, 711.Google Scholar
Yaniv, I. (2004). The benefit of additional opinions. Current Directions in Psychological Science, 13(2), 7578.CrossRefGoogle Scholar

References

Achtypi, A., Ashby, N. J. S., Brown, G. D. A., Walasek, L., & Yechiam, E. (2021). The endowment effect and beliefs about the market. Decision, 8, 1635.Google Scholar
Aldrovandi, S., Brown, G. D. A., & Wood, A. M. (2015). Social norms and rank-based nudging: Changing willingness to pay for healthy food. Journal of Experimental Psychology: Applied, 21(3), 242254.Google Scholar
Aldrovandi, S., Wood, A. M., & Brown, G. D. A. (2013). Sentencing, severity, and social norms: A rank-based model of contextual influence on judgments of crimes and punishments. Acta Psychologica, 144(3), 538547.CrossRefGoogle ScholarPubMed
Aldrovandi, S., Wood, A. M., Maltby, J., & Brown, G. D. A. (2015). Students’ concern about indebtedness: A rank based social norms account. Studies in Higher Education, 40(7), 13071327.Google Scholar
Alempaki, D., Canic, E., & Mullett, T. L. et al. (2019). Reexamining how utility and weighting functions get their shapes: A quasi-adversarial collaboration providing a new interpretation. Management Science, 65(10), 48414862.Google Scholar
Alessie, R. J. M., & Kapteyn, A. (1988). Preference formation, incomes, and the distribution of welfare. The Journal of Behavioral Economics, 17(1), 7796.CrossRefGoogle Scholar
Anderson, C., Hildreth, J. A. D., & Howland, L. (2015). Is the desire for status a fundamental human motive? A review of the empirical literature. Psychological Bulletin, 141(3), 574601.Google Scholar
Arrow, K. J. (1950). A difficulty in the concept of social welfare. Journal of Political Economy, 58(4), 328346.Google Scholar
Bak, P. (1996). How nature works: The science of self-organised criticality. New York: Copernicus Press.Google Scholar
Barlow, H. B. I. E. (1961). Possible principles underlying the transformation of sensory messages. In Rosenblith, W. A. (Ed.), Sensory communication. Cambridge, MA: MIT.Google Scholar
Barron, G., & Erev, I. (2003). Small feedback-based decisions and their limited correspondence to description-based decisions. Journal of Behavioral Decision Making, 16(3), 215233.Google Scholar
Bhui, R., & Gershman, S. J. (2018). Decision by sampling implements efficient coding of psychoeconomic functions. Psychological Review, 125(6), 9851001.Google Scholar
Birnbaum, M. H. (1974). Using contextual effects to derive psychophysical scales. Perception & Psychophysics, 15(1), 8996.Google Scholar
Bordalo, P., Gennaioli, N., & Shleifer, A. (2013). Salience and consumer choice. Journal of Political Economy, 121(5), 803843.Google Scholar
Bower, G. H. (1971). Adaptation-level coding of stimuli and serial position effects. In Appley, M. H. (Ed.), Adaptation-level theory (pp. 175201). New York: Academic Press.Google Scholar
Boyce, C. J., Brown, G. D. A., & Moore, S. C. (2010). Money and happiness: Rank of income, not income, affects life satisfaction. Psychological Science, 21, 471475.Google Scholar
Brown, G. D. A., Gardner, J., Oswald, A. J., & Qian, J. (2003). Rank dependence in employees’ wellbeing. Retrieved from Paper presented at the Warwick-Brookings conference in Washington DC, June 2003.Google Scholar
Brown, G. D. A., Gardner, J., Oswald, A. J., & Qian, J. (2008). Does wage rank affect employees’ well-being? Industrial Relations, 47(3), 355389.Google Scholar
Brown, G. D. A., & Matthews, W. J. (2011). Decision by sampling and memory distinctiveness: Range effects from rank-based models of judgment and choice. Frontiers in Psychology, 2, 299.Google Scholar
Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539576.Google Scholar
Brown, G. D. A., & Walasek, L. (2018). Relative rank theory: The inaccessibility of preferences and the incommensurability of values. Unpublished manuscript.Google Scholar
Brown, G. D. A., Wood, A. M., Ogden, R. S., & Maltby, J. (2015). Do student evaluations of university reflect inaccurate beliefs or actual experience? A relative rank model. Journal of Behavioral Decision Making, 28(1), 1426.Google Scholar
Bushong, B., Rabin, M., & Schwartzstein, J. (2021). A model of relative thinking. Review of Economic Studies, 88(1), 162191.Google Scholar
Chang, R. (2002). Making comparisons count. London and New York: Routledge.Google Scholar
Chater, N., & Brown, G. D. A. (1999). Scale-invariance as a unifying psychological principle. Cognition, 69(3), B17B24.CrossRefGoogle ScholarPubMed
Clark, A. E., & Oswald, A. J. (1996). Satisfaction and comparison income. Journal of Public Economics, 61(3), 359381.Google Scholar
Cohen, D., & Teodorescu, K. (2022). On the effect of perceived patterns in decisions from sampling. Decision, 9(1), 21–42.Google Scholar
Fennell, J., & Baddeley, R. (2012). Uncertainty plus prior equals rational bias: An intuitive Bayesian probability weighting function. Psychological Review, 119(4), 878887.Google Scholar
Fiedler, K. (2000). Beware of samples! A cognitive-ecological sampling approach to judgment biases. Psychological Review, 107(4), 659676.Google Scholar
Fiedler, K., & Juslin, P. (Eds.). (2006). Information sampling and adaptive cognition. Cambridge, UK: Cambridge University Press.Google Scholar
Frank, R. H. (2010). Luxury fever: Weighing the cost of excess. Princeton: Princeton University Press.Google Scholar
Frydman, C., & Jin, L. J. (2022). Efficient coding and risky choice. Quarterly Journal of Economics, 137(1), 161213.Google Scholar
Gershoff, A. D., & Burson, K. A. (2011). Knowing where they stand: The role of inferred distributions of others in misestimates of relative standing. Journal of Consumer Research, 38, 407419.Google Scholar
Hayden, B. Y., & Niv, Y. (2021). The case against economic values in the orbitofrontal cortex (or anywhere else in the brain). Behavioral Neuroscience, 135(2), 192201.Google Scholar
Heng, J. A., Woodford, M., & Polania, R. (2020). Efficient sampling and noisy decisions. Elife, 9, e54962.Google Scholar
Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15(8), 534539.Google Scholar
Hounkpatin, H. O., Wood, A. M., & Brown, G. D. A. (2020). Comparing indices of relative deprivation using behavioural evidence Social Science & Medicine, 259, 112829.Google Scholar
Infante, G., Lecouteux, G., & Sugden, R. (2016). Preference purification and the inner rational agent: a critique of the conventional wisdom of behavioural welfare economics. Journal of Economic Methodology, 23(1), 125.CrossRefGoogle Scholar
Janiszewski, C., & Lichtenstein, D. R. (1999). A range theory account of price perception. Journal of Consumer Research, 25, 353368.Google Scholar
Juslin, P., Winman, A., & Hansson, P. (2007). The naive intuitive statistician: a naive sampling model of intuitive confidence intervals. Psychological Review, 114(3), 678703.Google Scholar
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263291.Google Scholar
Kamenica, E. (2008). Contextual inference in markets: On the informational content of product lines. American Economic Review, 98(5), 21272149.Google Scholar
Kapteyn, A., & Wansbeek, T. (1985). The individual welfare function: A review. Journal of Economic Psychology, 6, 333363.Google Scholar
Kapteyn, A., Wansbeek, T., & Buyze, J. (1978). Dynamics of preference formation. Economics Letters, 1(1), 9398.CrossRefGoogle Scholar
Kello, C. T., Brown, G. D. A., & Ferrer-i-Cancho, R. et al. (2010). Scaling laws in cognitive sciences. Trends in Cognitive Sciences, 14(5), 223232.Google Scholar
Kornienko, T. (2013). Nature’s measuring tape: A cognitive basis for adaptive utility. University of Edinburgh.Google Scholar
Köszegi, B., & Szeidl, A. (2013). A model of focusing in economic choice. Quarterly Journal of Economics, 128(1), 53104.Google Scholar
Laming, D. (1997). The measurement of sensation. Oxford: Oxford University Press.Google Scholar
Layard, R., Mayraz, G., & Nickell, S. (2008). The marginal utility of income. Journal of Public Economics, 92(8–9), 18461857.Google Scholar
Lim, R. G. (1995). A range-frequency explanation of shifting reference points in risky decision-making. Organizational Behavior and Human Decision Processes, 63(1), 620.Google Scholar
Louie, K., & Glimcher, P. W. (2019). Normalization principles in computational neuroscience. In Sherman, S. M. (Ed.), Oxford research encyclopedia of neuroscience (pp. 141). Oxford: Oxford University Press.Google Scholar
Macchia, L., Plagnol, A. C., & Powdthavee, N. (2020). Buying happiness in an unequal world: Rank of income more strongly predicts well-being in more unequal countries. Personality and Social Psychology Bulletin, 46(5), 769780.Google Scholar
Maltby, J., Wood, A. M., Vlaev, I., Taylor, M. J., & Brown, G. D. A. (2012). Contextual effects on the perceived health benefits of exercise: The Exercise Rank Hypothesis. Journal of Sport & Exercise Psychology, 34(6), 828841.Google Scholar
Mazumdar, T., Raj, S. P., & Sinha, I. (2005). Reference price research: Review and propositions. Journal of Marketing, 69(4), 84102.Google Scholar
Mellers, B. A. (1986). Fair allocations of salaries and taxes. Journal of Experimental Psychology: Human Perception and Performance, 12(1), 8091.Google Scholar
Melrose, K. L., Brown, G. D. A., & Wood, A. M. (2013). Am I abnormal? Relative rank and social norm effects in judgments of anxiety and depression symptom severity. Journal of Behavioral Decision Making, 26(2), 174184.Google Scholar
Mullett, T. L., & Tunney, R. J. (2013). Value representations by rank order in a distributed network of varying context dependency. Brain and Cognition, 82(1), 7683.Google Scholar
Murdock, B. B. (1960). The distinctiveness of stimuli. Psychological Review, 67(1), 1631.Google Scholar
Niedrich, R. W., Sharma, S., & Wedell, D. H. (2001). Reference price and price perceptions: A comparison of alternative models. Journal of Consumer Research, 28(3), 339354.Google Scholar
Noguchi, T., & Stewart, N. (2014). In the attraction, compromise, and similarity effects, alternatives are repeatedly compared in pairs on single dimensions. Cognition, 132(1), 4456.Google Scholar
Noguchi, T., & Stewart, N. (2018). Multi-alternative decision by sampling: A model of decision making constrained by process data. Psychological Review, 125(4), 512544.Google Scholar
Olivola, C. Y., & Sagara, N. (2009). Distributions of observed death tolls govern sensitivity to human fatalities. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 2215122156.Google Scholar
Pachur, T., Hertwig, R., & Rieskamp, J. (2013). Intuitive judgments of social statistics: How exhaustive does sampling need to be? Journal of Experimental Social Psychology, 49, 10591077.Google Scholar
Padoa-Schioppa, C. (2009). Range-adapting representation of economic value in the orbitofrontal cortex. Journal of Neuroscience, 29(44), 1400414014.Google Scholar
Parducci, A. (1965). Category judgment: A range-frequency model. Psychological Review, 72(6), 407418.Google Scholar
Parducci, A. (1968). The relativism of absolute judgments. Scientific American, 219(6), 8490.Google Scholar
Parducci, A. (1982). Scale values and phenomenal experience: There is no psychophysical law. In Geissler, H.-G. & Petzold, P. (Eds.), Psychophysical judgment and the process of perception (pp. 1116). Amsterdam: North Holland.Google Scholar
Parducci, A. (1992). Elaborations upon psychophysical contexts for judgment: Implications of cognitive models. In Geissler, H. G., Link, S. W., & Townsend, J. T. (Eds.), Cognition, information processing, and psychophysics: Basic issues (pp. 207223). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Parducci, A. (1995). Happiness, pleasure and judgment: The contextual theory and its applications. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Parducci, A., & Perrett, L. F. (1971). Category rating scales: Effects of relative spacing and frequency of stimulus values. Journal of Experimental Psychology, 89(2), 427452.Google Scholar
Poulton, E. C. (1979). Models for biases in judging sensory magnitude. Psychological Bulletin, 86(4), 777803.Google Scholar
Prelec, D., Wernerfelt, B., & Zettelmeyer, F. (1997). The role of inference in context effects: Inferring what you want from what is available. Journal of Consumer Research, 24(1), 118125.Google Scholar
Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior and Organization, 3, 323343.Google Scholar
Rablen, M. D. (2008). Relativity, rank and the utility of income. Economic Journal, 118(528), 801821.Google Scholar
Rangel, A., & Clithero, J. A. (2012). Value normalization in decision making: Theory and evidence. Current Opinion in Neurobiology, 22(6), 970981.Google Scholar
Rigoli, F. (2019). Reference effects on decision-making elicited by previous rewards. Cognition, 192, 104034.Google Scholar
Robson, A. J. (2001). The biological basis of economic behavior. Journal of Economic Literature, 39(1), 1133.Google Scholar
Ronayne, D., & Brown, G. D. A. (2017). Multi-attribute decision by sampling: An account of the attraction, compromise and similarity effects. Journal of Mathematical Psychology, 81, 1127.Google Scholar
Rubinstein, A., & Salant, Y. (2012). Eliciting welfare preferences from behavioural data sets. Review of Economic Studies, 79(1), 375387.Google Scholar
Rustichini, A. (2009). Neuroeconomics: What have we found, and what should we search for. Current Opinion in Neurobiology, 19(6), 672677.Google Scholar
Rustichini, A., Conen, K. E., Cai, X. Y., & Padoa-Schioppa, C. (2017). Optimal coding and neuronal adaptation in economic decisions. Nature Communications, 8.Google Scholar
Schaffner, J., Tobler, P., Hare, T., & Polania, R. (2021). Neural codes in early sensory areas maximize fitness. bioRxiv (2021.05.10.443388).Google Scholar
Schulze, C., Hertwig, R., & Pachur, T. (2021). Who you know is what you know: Modeling boundedly rational social sampling. Journal of Experimental Psychology: General, 150(2), 221241.Google Scholar
Shenoy, P., & Yu, A. J. (2013). Rational preference shifts in multi-attribute choice: What is fair? In Knauff, M., Pauen, M., Sebanz, N., & Wachsmuth, I. (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 13001305). Austin, TX: Cognitive Science Society.Google Scholar
Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237(4820), 13171323.Google Scholar
Sher, S., & McKenzie, C. R. M. (2014). Options as information: Rational reversals of evaluation and preference. Journal of Experimental Psychology: General, 143(3), 11271143.Google Scholar
Simonson, I. (2008). Will I like a ‘medium’ pillow? Another look at constructed and inherent preferences. Journal of Consumer Psychology, 18(3), 155169.Google Scholar
Singh, S. K., & Maddala, G. S. (1976). Function for size distribution of incomes. Econometrica, 44(5), 963970.Google Scholar
Soltani, A., De Martino, B., & Camerer, C. (2012). A range-normalization model of context-dependent choice: A new model and evidence. PLOS Computational Biology, 8(7), e1002607.Google Scholar
Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64(3), 153181.Google Scholar
Stevenson, B., & Wolfers, J. (2013). Subjective well-being and income: Is there any evidence of satiation? American Economic Review, 103(3), 598604.Google Scholar
Stewart, N. (2009). Decision by sampling: The role of the decision environment in risky choice. Quarterly Journal of Experimental Psychology, 62, 10411062.Google Scholar
Stewart, N., & Brown, G. D. A. (2005). Similarity and dissimilarity as evidence in perceptual categorization. Journal of Mathematical Psychology, 49, 403409.Google Scholar
Stewart, N., Brown, G. D. A., & Chater, N. (2002). Sequence effects in categorization of simple perceptual stimuli. Journal of Experimental Psychology: Learning, Memory and Cognition, 28(1), 311.Google Scholar
Stewart, N., Brown, G. D. A., & Chater, N. (2005). Absolute identification by relative judgment. Psychological Review, 112(4), 881911.Google Scholar
Stewart, N., Canic, E., & Mullett, T. L. (2019). On the futility of estimating utility functions: Why the parameters we measure are wrong, and why they do not generalize. Unpublished manuscript.Google Scholar
Stewart, N., Chater, N., & Brown, G. D. A. (2006). Decision by sampling. Cognitive Psychology, 53(1), 126.Google Scholar
Stewart, N., Reimers, S., & Harris, A. J. L. (2015). On the origin of utility, weighting, and discounting functions: How they get their shapes and how to change their shapes. Management Science, 61(3), 687705.Google Scholar
Taylor, M. J., Vlaev, I., Maltby, J., Brown, G. D. A., & Wood, A. M. (2015). Improving social norms interventions: Rank-framing increases excessive alcohol drinkers’ information-seeking. Health Psychology, 34(12), 12001203.Google Scholar
Tripp, J., & Brown, G. D. A. (2016). Being paid relatively well most of the time: Negatively skewed payments are more satisfying. Memory & Cognition, 44(6), 966973.CrossRefGoogle ScholarPubMed
Ungemach, C., Stewart, N., & Reimers, S. (2011). How incidental values from our environment affect decisions about money, risk, and delay. Psychological Science, 22, 253260.Google Scholar
Van Praag, B. M. S. (1968). Individual welfare functions and consumer behavior: A theory of rational irrationality. Amsterdam: North-Holland.Google Scholar
Van Praag, B. M. S., & Kapteyn, A. (1973). Further evidence on the individual welfare function of income: An empirical investigation in The Netherlands. European Economic Review, 4(1), 3362.Google Scholar
Volkmann, J. (1951). Scales of judgment and their implications for social psychology. In Rohrer, J. H. & Sherif, M. (Eds.), Social psychology at the crossroads (pp. 273294). New York: Harper & Row.Google Scholar
Walasek, L., & Brown, G. D. A. (2021). Incomparability and incommensurability in choice: No common currency of value? Unpublished manuscript.Google Scholar
Walasek, L., & Stewart, N. (2019). Context-dependent sensitivity to losses: Range and skew manipulations. Journal of Experimental Psychology: Learning Memory, and Cognition, 45(6), 957968.Google Scholar
Watkinson, P., Wood, A. M., Lloyd, D. M., & Brown, G. D. A. (2013). Pain ratings reflect cognitive context: A range frequency model of pain perception. Pain, 154(5), 743749.Google Scholar
Webb, R., Glimcher, P. W., & Louie, K. (2021). The normalization of consumer valuations: Context-dependent preferences from neurobiological constraints. Management Science, 67, 93125.Google Scholar
Wedell, D. H. (1991). Distinguishing among models of contextually induced preference reversals. Journal of Experimental Psychology: Learning Memory, and Cognition, 17(4), 767778.Google Scholar
Wedell, D. H. (1998). Testing models of trade-off contrast in pairwise choice. Journal of Experimental Psychology: Human Perception and Performance, 24(1), 4965.Google Scholar
Wedell, D. H., Parducci, A., & Geiselman, R. E. (1987). A formal analysis of ratings of physical attractiveness: Successive contrast and simultaneous assimilation. Journal of Experimental Social Psychology, 23(3), 230249.Google Scholar
Wedell, D. H., Santoyo, E. M., & Pettibone, J. C. (2005). The thick and the thin of it: Contextual effects in body perception. Basic and Applied Social Psychology, 27(3), 213227.Google Scholar
Wernerfelt, B. (1995). A rational reconstruction of the compromise effect: Using market data to infer utilities. Journal of Consumer Research, 21 (4), 627633.Google Scholar
Wood, A. M., Brown, G. D. A., & Maltby, J. (2012). Social norm influences on evaluations of the risks associated with alcohol consumption: Applying the rank-based decision by sampling model to health judgments. Alcohol and Alcoholism, 47(1), 5762.Google Scholar
Wood, A. M., Brown, G. D. A., Maltby, J., & Watkinson, P. (2012). How are personality judgments made? A cognitive model of reference group effects, personality scale responses, and behavioral reactions. Journal of Personality, 80, 12751311.Google Scholar
Wort, F., Walasek, L., & Brown, G. D. A. (2022). Rank-based alternatives to mean-based ensemble models of satisfaction with earnings: Comment on Putnam-Farr and Morewedge (2020). Journal of Experimental Psychology: General. 151(11), 29632967.Google Scholar
Zou, D., Brown, G. D. A., Zhao, P., & Dong, S. (2008). 概率权重函数形状的成因:二元比较任务中的发现. [The shape of the probability weighting function: Findings from binary comparison.] 营销科学学报 [Journal of Marketing Science; Tsinghua University], 56–69.Google Scholar

References

dAbdellaoui, M., L’Haridon, O., & Paraschiv, C. (2011). Experienced vs. Described uncertainty: Do we need two prospect theory specifications? Management Science, 57(10), 18791895. https://doi.org/10.1287/mnsc.1110.1368Google Scholar
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111(4), 10361060. https://doi.org/10.1037/0033-295X.111.4.1036Google Scholar
Armstrong, B., & Spaniol, J. (2017). Experienced probabilities increase understanding of diagnostic test results in younger and older adults. Medical Decision Making, 37(6), 670679. https://doi.org/10.1177/027 2989X17691954Google Scholar
Banartzi, S., & Thaler, R. H. (1995). Myopic loss aversion and the equity premium puzzle. Quarterly Journal of Economics, 110(1), 7392.Google Scholar
Barberis, Nicholas C. 2013. Thirty years of prospect theory in economics: A review and assessment. Journal of Economic Perspectives, 27(1): 173196.Google Scholar
Barron, G., & Erev, I. (2003). Small feedback-based decisions and their limited correspondence to description-based decisions. Journal of Behavioral Decision Making, 16(3), 215233. https://doi.org/10.1002/bdm.443Google Scholar
Berry, D., & Fristedt, B. (1985). Bandit problems. London: Chapman & Hall.Google Scholar
Burnetas, A. N., & Katehakis, M. N. (1997). On the finite horizon one-armed bandit problem. Stochastic Analysis and Applications, 16, 845859.Google Scholar
Bush, R. R., & Mosteller, F. (1955). Stochastic models for learning. New York: John Wiley.Google Scholar
Camilleri, A. R., & Newell, B. R. (2011). When and why rare events are underweighted: a direct comparison of the sampling, partial feedback, full feedback and description choice paradigms. Psychonomic Bulletin Review, 18(2), 377384. https://doi.org/10.3758/s13423-010-0040-2Google Scholar
Dai, J., Pachur, T., Pleskac, T. J., & Hertwig, R. (2019). What the future holds and when: A description–experience gap in intertemporal choice. Psychological Science, 30(8), 12181233. https://doi.org/10.1177/0956797619858969Google Scholar
Denrell, J. (2005). Why most people disapprove of me: Experience sampling in impression formation. Psychological Review, 112(4), 951978. https://doi.org/10.1037/0033-295X.112.4.951Google Scholar
Denrell, J. (2007). Adaptive learning and risk taking. Psychological Review, 114(1), 177187. https://doi.org/10.1037/0033-295x.114.1.177Google Scholar
Denrell, J., & March, J. G. (2001). Adaptation as information restriction: The hot stove effect. Organization Science, 12(5), 523538.Google Scholar
Dewey, J. (1903). Studies in logical theory (Vol. 11). Chicago: University of Chicago Press.Google Scholar
Dougherty, M. R. P., Gettys, C. F., & Ogden, E. E. (1999). MINERVA-DM: A memory processes model for judgments of likelihood. Psychological Review, 106(1), 180209. https://doi.org/10.1037/0033-295X.106.1.180Google Scholar
Dutt, V., Arlό-Costa, H., Helzner, J., & Gonzalez, C. (2014). The description–experience gap in risky and ambiguous gambles. Journal of Behavioral Decision Making, 27, 316327. https://doi.org/10.1002/bdm.1808Google Scholar
Erev, I., & Barron, G. (2005). On adaptation, maximization, and reinforcement learning among cognitive strategies. Psychological Review, 112(4), 912931. https://doi.org/10.1037/0033-295X.112.4.912Google Scholar
Erev, I., Ert, E., Plonsky, O., Cohen, D., & Cohen, O. (2017). From anomalies to forecasts: Toward a descriptive model of decisions under risk, under ambiguity, and from experience. Psychological Review, 124(4), 369409. https://doi.org/10.1037/rev0000062Google Scholar
Erev, I., Glozman, I., & Hertwig, R. (2008). What impacts the impact of rare events. Journal of Risk and Uncertainty, 36, 153177. https://doi.org/10.1007/s11166–008-9035-zGoogle Scholar
Fraenkel, L., Peters, E., Tyra, S., & Oelberg, D. (2016). Shared medical decision making in lung cancer screening: Experienced versus descriptive risk formats. Medical Decision Making, 36(4), 518525. https://doi.org/10.1177/0272989X15611083Google Scholar
Gigerenzer, G., Swijtink, Z., Porter, T., Daston, L., Beatty, J., & Krüger, L. (1989). The empire of chance: How probability changed science and everyday life. Cambridge, UK: Cambridge University Press.Google Scholar
Glöckner, A., Hilbig, B. E., Henninger, F., & Fiedler, S. (2016). The reversed description–experience gap: Disentangling sources of presentation format effects in risky choice. Journal of Experimental Psychology: General, 145(4), 486508. https://doi.org/10.1037/a0040103Google Scholar
Gonzalez, C., & Dutt, V. (2011). Instance-based learning: Integrating sampling and repeated decisions from experience. Psychological Review, 118(4), 523.Google Scholar
Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-based learning in dynamic decision making. Cognitive Science, 27(4), 591635.Google Scholar
Gould, S. J. (1992). Bully for Brontosaurus: Further reflections in natural history. Penguin.Google Scholar
Güney, S., & Newell, B. R. (2015). Overcoming ambiguity aversion through experience. Journal of Behavioral Decision Making, 28(2), 188199. https://doi.org/10.1002/bdm.1840Google Scholar
Hau, R., Pleskac, T. J., & Hertwig, R. (2010). Decisions from experience and statistical probabilities: Why they trigger different choices than a priori probabilities. Journal of Behavioral Decision Making, 23(1), 4868. https://doi.org/10.1002/bdm.665Google Scholar
Hau, R., Pleskac, T. J., Kiefer, J., & Hertwig, R. (2008). The description–experience gap in risky choice: The role of sample size and experienced probabilities. Journal of Behavioral Decision Making, 21(5), 493518. https://doi.org/10.1002/bdm.598Google Scholar
Hertwig, R. (2015). Decisions from experience. In Keren, G. & Wu, G. (Eds.), Blackwell’s handbook of judgment & decision making (Vol. 1, pp. 240267). Hoboken, NJ :Wiley Blackwell.Google Scholar
Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15(8), 534539. https://doi.org/10.1111/j.0956-7976.2004.00715.xGoogle Scholar
Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2006). Decisions from experience: Sampling and updating of information. Cambridge, UK: Cambridge University Press.Google Scholar
Hertwig, R., & Erev, I. (2009). The description–experience gap in risky choice. Trends in Cognitive Sciences, 13, 517523. https://doi.org/10.1016/j.tics.2009.09.004Google Scholar
Hertwig, R., & Pleskac, T. J. (2010). Decisions from experience: Why small samples? Cognition, 115, 225237.Google Scholar
Hertwig, R., & Pleskac, T. J. (2018). The construct–behavior gap and the description–experience gap: Comment on Regenwetter and Robinson (2017). Psychological Review, 125(5), 844849. https://doi.org/10.1037/rev0000121Google Scholar
Hertwig, R., Pleskac, T. J., Pachur, T., & Center for Adaptive Rationality (2019). Taming uncertainty. Cambridge, MA: MIT. https://doi.org/10.7551/mitpress/11114.001.000Google Scholar
Hertwig, R., & Wullf, D. (2022). A description–experience framework of the dynamic response to risk. Perspectives on Psychological Science, 17(3), 631651 https://doi.org/10.1177/17456916211026896Google Scholar
Hintze, A., Phillips, N., & Hertwig, R. (2015). The Janus face of Darwinian competition. Scientific Reports, 5, 13662. https://doi.org/10.1038/srep13662Google Scholar
Hotaling, J. M., Jarvstad, A., Donkin, C., & Newell, B. R. (2019). How to change the weight of rare events in decisions from experience. Psychological Science, 30(12), 17671779. https://doi.org/10.1177/0956797619884324Google Scholar
Huber, J., Payne, J. W., & Puto, C. (1982). Adding asymmetrically dominated alternatives: Violations of regularity and the similarity hypothesis. Journal of Consumer Research, 9(1), 9098.Google Scholar
Hurley, S. L. (1998). Consciousness in action. Cambridge, MA: Harvard University Press.Google Scholar
Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences, 31(1), 122. https://doi.org/10.1017/S0140525X07003123Google Scholar
Jessup, R. K., Bishara, A. J., & Busemeyer, J. R. (2008). Feedback produces divergence from prospect theory in descriptive choice. Psychological Science, 19(10), 10151022. https://doi.org/10.1111/j.1467-9280.2008.02193.xGoogle Scholar
Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence, 4, 237–285. https://doi.org/10.1613/jair.301Google Scholar
Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus & Giroux.Google Scholar
Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39(4), 341350.Google Scholar
Kellen, D., Pachur, T., & Hertwig, R. (2016). How (in) variant are subjective representations of described and experienced risk and rewards? Cognition, 157, 126138. https://doi.org/10.1016/j.cognition.2016.08.020Google Scholar
Lejarraga, T., & Gonzales, C. (2011). Effects of feedback and complexity on repeated decisions from description. Organizational Behavior & Human Decision Processes, 116, 286295. https://doi.org/10.1016/j .obhdp.2011.05.001Google Scholar
Lejarraga, T., & Hertwig, R. (2021). How experimental methods shaped views on human competence and rationality. Psychological Bulletin, 147(6), 535564. https://doi.org/10.1037/bul0000324Google Scholar
Lejarraga, T., Pachur, T., Frey, R., & Hertwig, R. (2016). Decisions from experience: From monetary to medical gambles. Journal of Behavioral Decision Making, 29(1), 6777. https://doi.org/10.1002/bdm.1877Google Scholar
Lejarraga, T., Woike, J. K., & Hertwig, R. (2016). Description and experience: How experimental investors learn about booms and busts affects their financial risk taking. Cognition, 157, 365383. https://doi.org/10.1016/j.cognition.2016.10.001Google Scholar
Lejarraga, T., Woike, J. K., & Hertwig, R. (2019). Experiences and descriptions of financial uncertainty: Are they equivalent? In Hertwig, Ralph, Pleskac, Timothy J. & Pachur, Thorsten (Eds.), Taming uncertainty, 191205. Cambridge, MA: MIT. https://doi.org/10.7551/mitpress/ 11114.003.0015Google Scholar
Locke, J. (1959/1690). An essay concerning human understanding. New York: Dover.Google Scholar
Lotto, R. B., & Purves, D. (2000). An empirical explanation of color contrast. Proceedings of the National Academy of Sciences USA, 97(23), 1283412839. https://doi.org/10.1073/pnas.210369597Google Scholar
Ludvig, E. A., Madan, C. R., & Spetch, M. L. (2014). Extreme outcomes sway risky decisions from experience. Journal of Behavioral Decision Making, 27(2), 146156. https://doi.org/10.1002/bdm.1792Google Scholar
Ludvig, E. A., & Spetch, M. L. (2011). Of black swans and tossed coins: Is the description–experience gap in risky choice limited to rare events? PLoS ONE, 6(6), e20262. https://doi.org/10.1371/journal.pone.0020262Google Scholar
Malmendier, U., & Nagel, S. (2011). Depression babies: Do macroeconomic experiences affect risk-taking? Quarterly Journal of Economics, 126, 373416. https://doi.org/10.1093/qje/qjq004Google Scholar
Markant, D., Pleskac, T. J., Diederich, A., Pachur, T., & Hertwig, R. (2015). Modeling choice and search in decisions from experience: A sequential sampling approach. In Dale, R., Jennings, C., Maglio, P., Matlock, T., Noell, D., Warlaumont, A. et al. (Eds.), Proceedings of the 37th annual conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.Google Scholar
March, J. G. (1996). Learning to be risk averse. Psychological Review, 103(2), 309319. doi:10.1037/0033-295X.103.2.309Google Scholar
Martin, J. M., Gonzalez, C., Juvina, I., & Lebiere, C. (2014). A description–experience gap in social interactions: Information about interdependence and its effects on cooperation. Journal of Behavioral Decision Making, 27, 349362. https://doi.org/10.1002/bdm.1810Google Scholar
Mata, R., Josef, A. K., Samanez-Larkin, G. R., & Hertwig, R. (2011). Age differences in risky choice: A meta-analysis. Annals of the New York Academy of Sciences, 1235, 1829. https://doi.org/10.1111/j.1749-6632.2011.06200.xCrossRefGoogle ScholarPubMed
Müller-Lyer, F. C. (1889). Optische Urteilstäuschungen. Archiv für Physiologie, Supp, 263370.Google Scholar
Nelson, J. D., McKenzie, C. R. M., Cottrell, G. W., & Sejnowski, T. J. (2010). Experience matters: Information acquisition optimizes probability gain. Psychological Science, 21(7), 960969. https://doi.org/10.1177/0956797610372637Google Scholar
Pachur, T., Schulte-Mecklenbeck, M., Murphy, R. O., & Hertwig, R. (2018). Prospect theory reflects selective allocation of attention. Journal of Experimental Psychology: General, 147(2), 147.Google Scholar
Peterson, C. R., & Beach, L. R. (1967). Man as an intuitive statistician. Psychological Bulletin, 68(1), 2946. https://doi.org/10.1037/h0024722Google Scholar
Phillips, N. D., Hertwig, R., Kareev, Y., & Avrahami, J. (2014). Rivals in the dark: how competition influences search in decisions under uncertainty. Cognition, 133(1), 104119. https://doi.org/10.1016/j.cognition.2014.06.006Google Scholar
Pleskac, T. J. (2008). Decision making and learning while taking sequential risks. Journal of Experimental Psychology: Learning Memory and Cognition, 34(1), 167185. https://doi.org/10.1037/0278-7393.34.1.167Google Scholar
Pleskac, T. J. (2015). Learning models in decision making. In Keren, G. & Wu, G. (Eds.), Blackwell’s handbook of judgment & decision making, 629657. Chichester, UK: Wiley Blackwell.Google Scholar
Pleskac, T. J., Diederich, A., & Wallsten, T. (2015). Models of decision making under risk and uncertainty. In Busemeyer, J., Wang, J., Townsend, J., & Eidels, A. (Eds.), The Oxford handbook of computational and mathematical psychology (pp. 209231). Oxford: Oxford University Press.Google Scholar
Pleskac, T. J., Yu, S., Hopwood, C., & Liu, T. (2019). Mechanisms of deliberation during preferential choice: Perspectives from computational modeling and individual differences. Decision, 6(1), 77107. https://doi.org/10.1037/dec0000092Google Scholar
Plonsky, O., Teodorescu, K., & Erev, I. (2015). Reliance on small samples, the wavy recency effect, and similarity-based learning. Psychological Review, 122(4), 621647. https://doi.org/10.1037/a0039413Google Scholar
Regenwetter, M., & Robinson, M. M. (2017). The construct–behavior gap in behavioral decision research: A challenge beyond replicability. Psychological Review, 124(5), 533550. https://doi.org/10.1037/rev0000067Google Scholar
Rehder, B., & Waldmann, M. R. (2017). Failures of explaining away and screening off in described versus experienced causal learning scenarios. Memory & Cognition, 45(2), 245260. https://doi.org/10.3758/s13421– 016-0662-3Google Scholar
Schulze, C., & Hertwig, R. (2021). A description–experience gap in statistical intuitions: Of smart babies, risk-savvy chimps, intuitive statisticians, and stupid grown-ups. Cognition, 210, https://doi.org/10.1016/j.cognition.2020.104580Google Scholar
Simonson, I., & Tversky, A. (1992). Choice in context: Tradeoff contrast and extremeness aversion. Journal of Marketing Research, 29(3), 281295.Google Scholar
Skinner, B. F. (1953). Science and human behavior. New York, NY: Macmillan.Google Scholar
Slovic, P., Fischhoff, B., & Lichtenstein, S. (1976). Cognitive processes and societal risk taking. In Carol, J. S. & Payne, J. W. (Eds.), Cognition and social behavior, 736. Potomac, MA: Erlbaum.Google Scholar
Spektor, M., Gluth, S., Fontanesi, L., & Rieskamp, J. (2019). How similarity between choice options affects decisions from experience: The accentuation-of-differences model. Psychological Review, 126, 5288. https://doi.org/10.1037/rev0000122Google Scholar
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT.Google Scholar
Thorndike, E. L. (1927). The law of effect. American Journal of Psychology, 39(1/4), 212222.Google Scholar
Tylén, K., Fusaroli, R., Rojo, S., Heimann, K., Fay, N., Johannsen, N. N. et al. (2020). The evolution of early symbolic behavior in Homo sapiens. Proceedings of the National Academy of Sciences, 117(9), 45784584.Google Scholar
Trueblood, J. S. (2012). Multialternative context effects obtained using an inference task. Psychonomic Bulletin and Review, 19(5), 962968. https://doi.org/10.3758/s13423-012-0288-9Google Scholar
Trueblood, J. S., Brown, S. D., Heathcote, A., & Busemeyer, J. R. (2013). Not just for consumers: Context effects are fundamental to decision making. Psychological Science, 24(6), 901908. https://doi.org/10.1177/0956797612464241Google Scholar
Tsetsos, K., Chater, N., & Usher, M. (2012). Salience driven value integration explains decision biases and preference reversal. Proceedings of the National Academy of Sciences, 109(24), 96599664.Google Scholar
Tversky, A., & Fox, C. R. (1995). Weighing risk and uncertainty. Psychological Review, 102(2), 269283. https://doi.org/10.1037//0033-295X.102.2.269Google Scholar
Tversky, A., & Kahneman, D. (1971). Belief in law of small numbers. Psychological Bulletin, 76(2), 105110. https://doi.org/10.1037/h0031322Google Scholar
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 11241131. https://doi.org/10.1126/science.185.4157.1124Google Scholar
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297323. https://doi.org/10.1007/BF00122574Google Scholar
Tversky, A., & Simonson, I. (1993). Context-dependent preferences. Management Science, 39(10), 11791189.Google Scholar
Ungemach, C., Chater, N., & Stewart, N. (2009). Are probabilities overweighted or underweighted when rare outcomes are experienced (rarely)? Psychological Science, 20(4), 473479. https://doi.org/10.1111/j.1467-9280.2009.02319.xGoogle Scholar
Van den Bos, W., & Hertwig, R. (2017). Adolescents display distinctive tolerance to ambiguity and to uncertainty during risky decision making. Scientific Reports, 7, 40962. https://doi.org/10.1038/srep40962Google Scholar
Van den Bos, W., Laube, C., & Hertwig, R. (2019). How the adaptive adolescent mind navigates uncertainty. In Hertwig, Ralph, Pleskac, Timothy J. & Pachur, Thorsten (Eds.), Taming uncertainty, 305324. Cambridge, MA: MIT. https://doi.org/10.7551/mitpress/11114.003.0023Google Scholar
Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B. (2014). One and done? Optimal decisions from very few samples. Cognitive Science, 38(4), 599637. https://doi.org/10.1111/cogs.12101Google Scholar
Wakker, P. (2010). Prospect theory for risk and ambiguity. Cambridge: Cambridge University Press.Google Scholar
Weber, E., & Kirsner, B. (1997). Reasons for rank-dependent utility evaluation. Journal of Risk and Uncertainty, 14(1), 4161.Google Scholar
Weber, E. U., Shafir, S., & Blais, A. R. (2004). Predicting risk sensitivity in humans and lower animals: Risk as variance or coefficient of variation. Psychological Review, 111(2), 430445.Google Scholar
Wegier, P., & Shaffer, V. A. (2017). Aiding risk information learning through simulated experience (ARISE): Using simulated outcomes to improve understanding of conditional probabilities in prenatal Down syndrome screening. Patient Education and Counseling, 100(10), 18821889. https://doi.org/10.1016/j.pec.2017.04.016Google Scholar
Wulff, D. U., Hills, T. T., & Hertwig, R. (2015). Online product reviews and the description–experience gap. Journal of Behavioral Decision Making, 28(3), 214223. https://doi.org/10.1002/bdm.1841Google Scholar
Wulff, D., Markant, D., Pleskac, T. J., & Hertwig, R. (2019). Adaptive exploration: What you see is up to you. In Hertwig, Ralph, Pleskac, Timothy J. & Pachur, Thorsten (Eds.), Taming uncertainty, 131152. Cambridge, MA: MIT. https://doi.org/10.7551/mitpress/11114.003.0012Google Scholar
Wulff, D. U., Mergenthaler-Canseco, M., & Hertwig, R. (2018). A meta-analytic review of two modes of learning and the description–experience gap. Psychological Bulletin, 144(2), 140176. https://doi.org/10.1037/bul0000115Google Scholar
Yechiam, E., & Busemeyer, J. (2006). The effect of foregone payoffs on underweighting small probability events. Journal of Behavioral Decision Making, 19, 116.Google Scholar
Zeigenfuse, M. D., Pleskac, T. J., & Liu, T. (2014). Rapid decisions from experience. Cognition, 131(2), 181194. https://doi.org/10.1016/j.cognition.2013.12.012Google Scholar
Zhang, H., & Houpt, J. W. (2020). Exaggerated prevalence effect with the explicit prevalence information: The description–experience gap in visual search. Attention, Perception & Psychophysics, 82(7), 33403356. https://doi.org/10.3758/s13414–020-02045-8Google Scholar

References

Barron, G., & Erev, I. (2003). Small feedback-based decisions and their limited correspondence to description-based decisions. Journal of Behavioral Decision Making, 16(3), 215233. doi: 10.1002/bdm.443Google Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1–3), 715. doi: 10.1016/0010-0277(94)90018-3Google Scholar
Benartzi, S., & Thaler, R. H. (1995). Myopic loss aversion and the equity premium puzzle. Quarterly Journal of Economics, 110(1), 7392. doi: 10.2307/2118511Google Scholar
Denrell, J. (2005). Why most people disapprove of me: Experience sampling in impression formation. Psychological Review, 112(4), 951978.Google Scholar
Denrell, J. (2007). Adaptive learning and risk taking. Psychological Review, 114(1), 398422. doi: 10.1037/0033-295X.114.1.177Google Scholar
Denrell, J. (2020). Adaptive sampling policies imply biased beliefs: A generalization of the hot stove effect. In S. Denison., M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd annual conference of the cognitive science society (pp. 1809–1815).Google Scholar
Denrell, J., & March, J. G. (2001). Adaptation as information restriction: The hot stove effect. Organization Science, 12(5), 523538.Google Scholar
Denrell, J., Sanborn, A., & Spicer, J. (2021). Learning from feedback: Exemplar versus rule-based algorithms. Working Paper.Google Scholar
Dittmar, A., & Duchin, R. (2016). Looking in the rearview mirror: The effect of managers’ professional experience on corporate financial policy. Review of Financial Studies, 29(3), 565602. doi: 10.1093/rfs/hhv051Google Scholar
Elwin, E., Juslin, P., Olsson, H., & Enkvist, T. (2007). Constructivist coding: Learning from selective feedback. Psychological Science, 18(2), 105110. doi: 10.1111/j.1467-9280.2007.01856.xGoogle Scholar
Fazio, R. H., Eiser, J. R., & Shook, N. J. (2004). Attitude formation through exploration: Valence asymmetries. Journal of Personality and Social Psychology, 87(3), 293311.Google Scholar
Fetchenhauer, D., & Dunning, D. (2010). Why so cynical? Asymmetric feedback underlies misguided skepticism regarding the trustworthiness of others. Psychological Science, 21(2), 189193. doi: 10.1177/0956797609358586Google Scholar
Gilovich, T. (1991). How we know what isn’t so: The fallibility of human reason in everyday life. New York: Simon & Schuster.Google Scholar
Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15(8), 534539. doi: 10.1111/j.0956-7976.2004.00715.xGoogle Scholar
Ilan, T., Katsnelson, E., Motro, U., Feldman, M. W., & Lotem, A. (2013). The role of beginner’s luck in learning to prefer risky patches by socially foraging house sparrows. Behavioral Ecology, 24(6), 13981406. doi: 10.1093/beheco/art079Google Scholar
Kim, Y. (2020). Customer retention under imperfect information. Working Paper. doi: 10.2139/ssrn.3709043.Google Scholar
Larcom, S., Rauch, F., & Willems, T. (2017). The benefits of forced experimentation: Striking evidence from the London underground network. Quarterly Journal of Economics, 132(4), 20192055. doi: 10.1093/qje/qjx020Google Scholar
Larrick, R. P., & Wu, G. (2007). Claiming a large slice of a small pie: Asymmetric disconfirmation in negotiation. Journal of Personality and Social Psychology, 93(2), 212233. doi: 10.1037/0022-3514.93.2.212Google Scholar
Le Mens, G., & Denrell, J. (2011). Rational learning and information sampling: On the “naivety” assumption in sampling explanations of judgment biases. Psychological Review, 118(2), 379392. doi: 10.1037/a0023010Google Scholar
Le Mens, G., Kovács, B., Avrahami, J., & Kareev, Y. (2018). How endogenous crowd formation undermines the wisdom of the crowd in online ratings. Psychological Science, 29(9), 14751490. doi: 10.1177/0956797618775080Google Scholar
March, J. G. (1996). Learning to be risk averse. Psychological Review, 103(2), 309319.Google Scholar
Plonsky, O., & Erev, I. (2017). Learning in settings with partial feedback and the wavy recency effect of rare events. Cognitive Psychology, 93, 1843. doi: 10.1016/j.cogpsych.2017.01.002Google Scholar
Plonsky, O., Teodorescu, K., & Erev, I. (2015). Reliance on small samples, the wavy recency effect, and similarity-based learning. Psychological Review, 122(4), 621647. doi: 10.1037/a0039413Google Scholar
Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237(4820), 13171323.Google Scholar
Shteingart, H., Neiman, T., & Loewenstein, Y. (2013). The role of first impression in operant learning. Journal of Experimental Psychology: General, 142(2), 476488. doi: 10.1037/a0029550Google Scholar
Teodorescu, K., & Erev, I. (2014). On the decision to explore new alternatives: The coexistence of under- and over-exploration. Journal of Behavioral Decision Making, 27(2), 109123. Retrieved from https://onlinelibrary.wiley.com/doi/10.1002/bdm.1785 doi: 10.1002/bdm.1785Google Scholar
Thaler, R. H., Tversky, A., Kahneman, D., & Schwartz, A. (1997). The effect of myopia and loss aversion on risk taking: An experimental test. Quarterly Journal of Economics, 112(2), 647661. doi: 10.1162/003355397555226Google Scholar
Twain, M. (1897). Following the equator: A journey around the world. Hartford, CT: American Publishing Co.Google Scholar
Weiss-Cohen, L., Konstantinidis, E., & Harvey, N. (2021). Timing of descriptions shapes experience-based risky choice. Journal of Behavioral Decision Making, 34(1), 6684. doi: 10.1002/bdm.2197Google Scholar
Woiczyk, T. K. A., Lauenstein, F., & Le Mens, G. (2021). The hot kitchen effect: Categories, generalization, and exploration. Working Paper.Google Scholar
Wright, R. J., Rakow, T., & Russo, R. (2017). Go for broke: The role of somatic states when asked to lose in the Iowa Gambling Task. Biological Psychology, 123, 286293. doi: 10.1016/j.biopsycho.2016.10.014Google Scholar
Yechiam, E., & Busemeyer, J. R. (2006). The effect of foregone payoffs on underweighting small probability events. Journal of Behavioral Decision Making , 19(1), 116. doi: 10.1002/bdm.509Google Scholar
Yechiam, E., & Yakobi, O. (2018). Loss attention and the Equity Premium Puzzle: An examination of the myopic loss aversion hypothesis. Working Paper.Google Scholar
Zion, U. B., Erev, I., Haruvy, E., & Shavit, T. (2010). Adaptive behavior leads to under-diversification. Journal of Economic Psychology, 31(6), 985995. doi: 10.1016/j.joep.2010.08.007Google Scholar