Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-7mfl8 Total loading time: 2.206 Render date: 2021-12-03T15:37:30.831Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Part I - Marsh Function

Published online by Cambridge University Press:  19 June 2021

Duncan M. FitzGerald
Affiliation:
Boston University
Zoe J. Hughes
Affiliation:
Boston University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Salt Marshes
Function, Dynamics, and Stresses
, pp. 7 - 154
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Allen, J. R. L. 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19: 11551231.CrossRefGoogle Scholar
Aman, J., and Grimes, K. W. 2016. Measuring impacts on invasive European Green Crabs on Maine Salt Marshes: a novel approach: Report to the Maine Outdoor Heritage Fund.Google Scholar
Argow, B. A., and FitzGerald, D. M. 2006. Winter processes on northern salt marshes: evaluating the impact of in-situ peat compaction due to ice loading, Wells, ME. Estuarine, Coastal and Shelf Science, 69: 360369.CrossRefGoogle Scholar
Argow, B. A., Hughes, Z. J., and FitzGerald, D. M. 2011. Ice raft formation, sediment load, and theoretical potential for ice-rafted sediment influx on northern coastal wetlands. Continental Shelf Research, 31: 12941395.CrossRefGoogle Scholar
Barras, J., Beville, S., Britsch, D., Hartley, S., Hawes, S., Johnston, J., Reed, D., Roy, K., Sapkota, S., and Suhaayda, J. 2004. Historical and projected coastal Louisiana land changes: 1978–2050: U.S. Geological Survey Open-File Report OFR 03-334.CrossRefGoogle Scholar
Belknap, D. F. 1999. Sea-level rise and Gulf of Maine salt marshes. Gulf of Maine NEWS, Regional Association for Research on the Gulf of Maine, Spring, 1999: 1, 810.Google Scholar
Belknap, D. F. 2003. Salt marshes. In: Middleton, G., ed., Encyclopedia of Sediments and Sedimentary Rocks. Kluwer Academic Publishers, Dordrecht, pp. 586588.Google Scholar
Belknap, D. F., Andersen, B. G., Anderson, R. S., Anderson, W. A., Borns, H. W. Jr., Jacobson, G. Jr., et al. 1987. Late Quaternary sea-level changes in Maine. In: Nummedal, D., Pilkey, O. H. Jr. and Howard, J. D., eds., Sea-Level Fluctuation and Coastal Evolution, Society of Economic Paleontologists and Mineralogists Special Publication, No. 41, pp. 7185.CrossRefGoogle Scholar
Belknap, D. F., Gontz, A. M., and Kelley, J. T. 2005. Paleodeltas and preservation potential on a paraglacial coast – evolution of eastern Penobscot Bay, Maine. Chapter 16. In: FitzGerald, D. M. and Knight, J., eds., High Resolution Morphodynamics and Sedimentary Evolution of Estuaries. Springer, Dordrecht, pp. 335360.CrossRefGoogle Scholar
Belknap, D. F., Kelley, J. T., FitzGerald, D. M., and Buynevich, I. 2004. Quaternary Sea-level Changes and Coastal Evolution in Eastern and Central Coastal Maine, Field Trip Guidebook, International Geological Correlation Program #495, Quaternary Land-Ocean Interactions: Driving Mechanisms and Coastal Responses, Conference and Field Trip, Bar Harbor, ME, October 14–17, 2004, Dept. Earth Sciences, UniMaine, Orono.Google Scholar
Belknap, D. F., Kelley, J. T., and Gontz, A. M. 2002. Evolution of the glaciated shelf and coastline of the northern Gulf of Maine, USA. Journal of Coastal Research Special Issue, 36: 3755.Google Scholar
Belknap, D. F., and Kraft, J. C. 1977. Holocene relative sea-level changes and coastal stratigraphic units on the northwest flank of the Baltimore Canyon Trough geosyncline. Journal of Sedimentary Petrology, 47: 610629.Google Scholar
Belknap, D. F., and Kraft, J. C. 1981. Preservation potential of transgressive coastal lithosomes on the U.S. Atlantic Shelf. Marine Geology, 42: 429442.CrossRefGoogle Scholar
Belknap, D. F., and Kraft, J. C. 1985. Influence of antecedent geology on stratigraphic preservation potential and evolution of Delaware's barrier systems. Marine Geology, 63: 235262.CrossRefGoogle Scholar
Belknap, D. F., Kraft, J. C., and Dunn, R. K. 1994. Transgressive valley-fill lithosomes: Delaware and Maine: In: Boyd, R., Zaitlin, B. A. and Dalrymple, R., eds., Incised Valley Fill Systems, SEPM Special Pub. 51: 303320.Google Scholar
Belknap, D. F., and Wilson, K. R. 2014. Invasive green crab impacts on salt marshes in Maine – sudden increase in erosion potential. Geological Society of America Abstracts with Programs, 46, no. 1, Abstract 55-9: 104.Google Scholar
Belknap, D. F., and Wilson, K. R. 2015. Effects of invasive Green Crabs on salt marshes in Maine. Geological Society of America Abstracts with Programs, 47, no. 1, Abstract 65-8: 127128.Google Scholar
Bertness, M. D. 1992. The ecology of a New England salt marsh. American Scientist, 80: 260268.Google Scholar
Bertness, M. D. 2007. Atlantic Shorelines: Natural History and Ecology. Princeton University Press.Google Scholar
Bertness, M. D., and Ellison, A. M. 1987. Determinants of pattern in a New England salt marsh plant community. Ecological Monographs, 57: 129147.CrossRefGoogle Scholar
Bloom, A. L. 1964. Peat accumulation and compaction in a Connecticut coastal marsh. Journal of Sedimentary Petrology, 34: 599603.Google Scholar
Boumans, R. M., and Day, J. W. Jr. 1993. High precision measurement of surface elevation in shallow coastal areas using a sediment-erosion table. Estuaries, 16: 375380.CrossRefGoogle Scholar
Boyd, B., and Sommerfield, C. K. 2017. Detection of fallout 241Am in U.S. Atlantic salt marsh soils. Estuarine, Coastal and Shelf Science, 196: 373378.CrossRefGoogle Scholar
Cahoon, D. R., Lynch, J. C., and Powell, A. N. 1996. Marsh vertical accretion in a Southern California estuary U.S.A. Estuarine, Coastal and Shelf Science, 43: 1932.CrossRefGoogle Scholar
Cahoon, D. R., and Reed, D. J. 1995. Relationships among marsh surface topography, hydroperiod, and soil accretion in a deteriorating Louisiana salt marsh. Journal of Coastal Research, 11: 357369.Google Scholar
Cahoon, D. R., Reed, D. J., and Day, J. W. Jr.. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology, 128: 19.CrossRefGoogle Scholar
Cahoon, D. R., and Turner, R. E. 1989. Accretion and canal impacts in a rapidly subsiding wetland II. Feldspar marker horizon technique. Estuaries, 12: 260268.CrossRefGoogle Scholar
Chapman, V. J. 1960. Salt Marshes and Salt Deserts of the World, Interscience Publishes, Inc, New York.Google Scholar
Chmura, G. L., Anisfled, S. C., Cahoon, D. R., and Lynch, J. C. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17: 11111133.CrossRefGoogle Scholar
Chmura, G. L., Helmer, L. L., Beecher, C. B., and Sunderland, E. M. 2001. Historical rates of salt marsh accretion on the outer Bay of Fundy. Canadian Journal of Earth Sciences, 38: 10811092.CrossRefGoogle Scholar
Clark, J. S. 1986. Late-Holocene vegetation and coastal processes at a Long Island tidal marsh. Journal of Ecology, 74: 561578.CrossRefGoogle Scholar
Curray, J. R. 1964. Transgressions and regressions. In: Miller, R. L., ed., Papers in Marine Geology, MacMillan, New York, pp. 175203.Google Scholar
Daly, J. F., Belknap, D. F., Kelley, J. T., and Bell, T. 2007. Late Holocene sea-level change around Newfoundland. Canadian Journal of Earth Sciences, 44: 14531465.CrossRefGoogle Scholar
Darby, F. A., and Turner, R. E.. 2008. Effects of eutrophication to salt marsh roots, rhizomes, and soils. Marine Ecology Progress Series, 363: 6370.CrossRefGoogle Scholar
Davidson-Arnott, R. G. D., van Proosdij, D. V. Ollerhead, J., and Schostak, L. 2002. Hydrodynamics and sedimentation in salt marshes: examples from a macrotidal marsh, Bay of Fundy. Geomorphology, 48: 209231.CrossRefGoogle Scholar
Day, J. D., Britsch, L. D., Hawes, S., Shaffer, G. P., Reed, D. J., and Cahoon, D. 2000. Pattern and process of land loss in the Mississippi Delta: a spatial and temporal analysis of wetland habitat change. Estuaries, 23: 425438.CrossRefGoogle Scholar
Day, J. D., Boesch, D. F., Clairain, E. J., Kemp, G. P., Laska, S. B., Mitsch, W. J., Orth, K., et al. 2007. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science, 315: 16791684.CrossRefGoogle ScholarPubMed
DeLaune, R. D., Baumann, R. H., and Gosselink, J. G. 1983. Relationships among vertical accretion, coastal submergence and erosion in a Louisiana Gulf Coast marsh. Journal of Sedimentary Petrology, 53: 147157.Google Scholar
DeLaune, R. D., Nyman, J. A., and Patrick, W. H. Jr. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research, 10: 10211030.Google Scholar
DeLaune, R. D., Whitcomb, J. H., Patrick, W. H. Jr., Pardue, J. H., and Pezeshki, S. R. 1989. Accretion and canal impacts in a rapidly subsiding wetland I. 137Cs and 210Pb techniques. Estuaries, 12: 247259.CrossRefGoogle Scholar
Dionne, M., Short, F. T., and Burdick, D. M. 1999. Fish utilization of restored, created, and reference salt-marsh habitat in the Gulf of Maine. American Fisheries Society Symposium, 22: 84404.Google Scholar
Donnelly, J. P., Bryant, S. S., Butler, J., Dowling, J., Fan, L., Hausmann, N., Newby, P., Shuman, B., Stern, J., and Webb, T. III. 2001. 700 yr sedimentary record of intense hurricane landfalls in southern New England. Geological Society of America Bulletin, 113: 714727.2.0.CO;2>CrossRefGoogle Scholar
Engelhart, S. E., and Horton, B. P. 2012. Holocene sea level database for the Atlantic coast of the United States. Quaternary Science Reviews, 54: 1225.CrossRefGoogle Scholar
Engelhart, S. E., Horton, B. P., and Kemp, A. C. 2011. Holocene sea levels along the United States’ Atlantic coast. Oceanography, 24: 7079.CrossRefGoogle Scholar
FitzGerald, D. M., Buynevich, I., and Argow, B. 2006. Model of tidal inlet and barrier island dynamics in a regime of accelerated sea-level rise. Journal of Coastal Research, Special Issue, 39: 789795.Google Scholar
FitzGerald, D. M., Fenster, M. S., Argow, B. A., and Buynevich, I. V. 2008. Coastal impacts due to sea-level rise. Annual Review of Earth and Planetary Sciences, 36, 601647.CrossRefGoogle Scholar
French, J. R., and Stoddart, D. R. 1992, Hydrodynamics of salt marsh creek systems: implications for marsh morphological development and material exchange. Earth Surface Processes and Landforms, 17: 235252.CrossRefGoogle Scholar
Frey, R. W., and Basan, P. B. 1985. Coastal salt marshes. In: Davis, R. A. Jr., ed., Coastal Sedimentary Environments, Springer-Verlag, New York, pp. 225301.CrossRefGoogle Scholar
Frey, R. W., and Howard, J. D. 1969. A profile of biogenic sedimentary structures in a Holocene barrier island-salt marsh complex, Georgia. Transactions of the Gulf Coast Association Geological Society, 19: 427444.Google Scholar
Gedan, K. B., and Silliman, B. R. 2009. Patterns of salt marsh loss within coastal regions of North America. In: Silliman, B., Grosholz, E., and Bertness, M.D., eds., Human Impacts on Salt Marshes: A Global Perspective, University of California Press, Los Angeles, CA, pp. 253265.Google Scholar
Gehrels, W. R. 1994. Determining relative sea-level change from salt-marsh foraminifera and plant zones on the coast of Maine, USA. Journal of Coastal Research, 10: 9901009.Google Scholar
Gehrels, W. R. 2000. Using foraminiferal transfer functions to produce high-resolution sea-level records from salt-marsh deposits, Maine, USA. The Holocene, 10: 367376.CrossRefGoogle Scholar
Gehrels, W. R., Belknap, D. F., and Kelley, J. T., 1996. Integrated high-precision analyses of Holocene relative sea-level changes: lessons from the coast of Maine. Geological Society of America Bulletin, 108: 10731088.2.3.CO;2>CrossRefGoogle Scholar
Gehrels, W. R., Kirby, J. R., Prokoph, A., Newnham, R. W., Achterberg, E. P., Evans, H., Black, S., and Scott, D. B. 2005. Onset of rapid sea-level rise in the western Atlantic Ocean. Quaternary Science Reviews, 24: 20832100.CrossRefGoogle Scholar
Gehrels, W. R., Milne, G. A., Kirby, J. R., Patterson, R. T., and Belknap, D. F. 2004. Late Holocene sea-level changes and isostatic crustal movements in Atlantic Canada. Quaternary International, Special Issue – International Geological Correlation Program, Project 437 “Late Quaternary Highstands,” Barbados, 120: 7989.Google Scholar
Gehrels, W. R., and van de Plassche, O. 1991. Origin of the paleovalley system underlying Hammock River Marsh, Clinton, Connecticut. Journal of Coastal Research, Special Issue, 11: 7383.Google Scholar
Goodman, J. E., Wood, M. E., and Gehrels, W. R. 2007. A 17-yr record of sediment accumulation in the salt marshes of Maine (USA). Marine Geology, 242: 109121.CrossRefGoogle Scholar
Harrison, E. Z., and Bloom, A. L. 1977. Sedimentation rates on tidal salt marshes in Connecticut. Journal of Sedimentary Petrology, 47: 14841490.Google Scholar
Hartig, E. K., Gornitz, V., Kolker, A., Mushacke, F., and Fallon, D. 2002. Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands, 22: 7189.CrossRefGoogle Scholar
Hayes, M. O., and Kana, T. W. 1976. Terrigenous clastic depositional environments, Technical Report No. 11-CRD Coastal Research Division, Department of Geology, University of South Carolina, Columbia.Google Scholar
Hine, A. C., Belknap, D. F., Hutton, J. G., Osking, E. B., and Evans, M. W. 1988. Recent geologic history and modern sedimentary processes along an incipient, low-energy, epicontinental-sea coastline: northwest Florida. Journal of Sedimentary Petrology, 58: 567579.Google Scholar
Hladik, C., and Alber, M. 2012. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sensing of Environment, 121: 224235.CrossRefGoogle Scholar
Horton, B. P., Edwards, R. J., and Lloyd, J. M. 1999. Foraminiferal-based transfer function: implications for sea-level studies. Journal of Foraminiferal Research, 29, 117129.CrossRefGoogle Scholar
Hussey, A. M. II. 1959. Age of intertidal tree stumps at Wells Beach and Kennebunk Beach, Maine. Journal of Sedimentary Petrology, 29: 464465.CrossRefGoogle Scholar
Jacobson, H. A. 1988. Historical development of the saltmarsh at Wells, Maine. Earth Surface Processes and Landforms, 13: 475486.CrossRefGoogle Scholar
Katz, L. C. 1980. Effects of burrowing by the fiddler crab Uca pugnax (Smith). Estuarine and Coastal Marine Science, 11: 233237.CrossRefGoogle Scholar
Kaye, C. A., and Barghoorn, E. S. 1964. Late Quaternary sea-level change and crustal rise at Boston, Massachusetts, with notes on the autocompaction of peat. Geological Society of America Bulletin, 75: 6368.CrossRefGoogle Scholar
Kearney, M. S., Grace, R. E., and Stevenson, J. C. 1988. Marsh loss in Nanticoke Estuary, Chesapeake Bay. Geographical Review, 78: 205220.CrossRefGoogle Scholar
Kearney, M. S., Rogers, A. S., Townshend, J. R. G., Rizzo, E., Stutzer, D., Stevenson, J. C., and Sundborg, K., 2002. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos, 83: 173, 177–178.CrossRefGoogle Scholar
Kearney, M. S., and Stevenson, J. C. 1991. Island land loss and marsh vertical accretion rate evidence for historical sea-level changes in Chesapeake Bay. Journal of Coastal Research, 7: 403415.Google Scholar
Kelley, J. T., Almquist-Jacobson, H., Jacobson, G. H. Jr., Gehrels, W. R., and Schneider, Z. 1992. The geologic and vegetative development of tidal marshes at Wells, Maine, USA. Research Report to the Wells National Estuarine Research Reserve and the National Oceanic and Atmospheric Administration.Google Scholar
Kelley, J. T., Belknap, D. F., and Claesson, S. 2010. Drowned coastal deposits with associated archaeological remains from a sea-level “slowstand,” Northwestern Gulf of Maine, USA. Geology, 38: 695698CrossRefGoogle Scholar
Kelley, J. T., Belknap, D. F., Kelley, A. R., and Claesson, S. H. 2013. A model for drowned terrestrial habitats with associated archeological remains in the northwestern Gulf of Maine, USA. Marine Geology, 338: 116.CrossRefGoogle Scholar
Kelley, J. T., Belknap, D. F., Jacobson, G. L. Jr., and Jacobson, H. A. 1988. The morphology and origin of salt marshes along the glaciated coastline of Maine, USA. Journal of Coastal Research, 4: 649665.Google Scholar
Kelley, J. T., and Hay, B. W. B. 1986. Bunganuc Bluffs, Day 3, Stop 6. In: Kelley, J. T. and Kelley, A. R., eds. Coastal Processes and Quaternary Stratigraphy Northern and Central Coastal Maine, Society of Economic Paleontologists and Mineralogists Eastern Section Field Trip Guidebook, pp. 66–74.Google Scholar
Kennish, M. J. 2001. Salt marsh systems in the U.S.: a review of anthropogenic impacts. Journal of Coastal Research, 17: 731748.Google Scholar
Kirwan, M. L., Murray, A. B., Donnelly, J. P., and Corbett, D. R. 2011. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates. Geology, 39: 507510.CrossRefGoogle Scholar
Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R., and Fagherazzi, S. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change, 6: 253260.CrossRefGoogle Scholar
Kraft, J. C. 1971. Sedimentary facies patterns and geologic history of a Holocene marine transgression. Geological Society of America Bulletin, 82: 21312158.CrossRefGoogle Scholar
Kraft, J. C., Allen, E. A., Belknap, D. F., John, C. J., and Maurmeyer, E. M. 1976. Delaware's Changing Shorelines. Technical Report #1, Delaware Coastal Zone Management Program, Dover.Google Scholar
Kraft, J. C., Allen, E. A., Belknap, D. F., John, C. J. and Maurmeyer, E. M. 1979. Processes and morphologic evolution of an estuarine and coastal barrier system, In: Leatherman, S. P., ed., Barrier Islands, Academic Press, New York, pp. 149183.Google Scholar
Leatherman, S. P. 1979. Migration of Assateague Island, Maryland, by inlet and overwash processes. Geology, 7: 104107.2.0.CO;2>CrossRefGoogle Scholar
Leonard, L. A., and Luther, M. E. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography, 40: 14741484.CrossRefGoogle Scholar
Letzsch, S. W., and Frey, R. W. 1980. Deposition and erosion in a Holocene salt marsh, Sapelo Island, Georgia. Journal of Sedimentary Petrology, 50: 529542.Google Scholar
Meredith, W. H., Saveikis, D. E., and Stachecki, C. J. 1985. Guidelines for “Open Marsh Water Management” in Delaware’s salt marshes – objectives, system designs, and installation. Wetlands, 5: 119133.CrossRefGoogle Scholar
Moller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B., Wolters, G., et al. Wave attenuation over coastal salt marshes under storm surge conditions. 2014. Nature Geoscience, 7: 727731.CrossRefGoogle Scholar
Morris, J. T., Porter, D., Neet, M., Noble, P. A., Schmidt, L., Lapine, L. A., and Jensen, J. R. 2005. Integrating LIDAR elevation data, multispectral imagery and neural network modeling for marsh characterization. International Journal of Remote Sensing, 26: 52215234.CrossRefGoogle Scholar
Mudd, S. M. 2011. The life and death of salt marshes in response to anthropogenic disturbance of sediment supply. Geology, 39: 511512.CrossRefGoogle Scholar
Mudge, B. F. 1858. The salt marsh formations of Lynn. Proceedings of Essex Institute, 2: 117119.Google Scholar
National Park Service – Cape Cod National Seashore, 2017. Crab-driven vegetation losses: www.nps.gov/caco/learn/nature/crab-driven-vegetation-losses.htmGoogle Scholar
Neuendorf, K. K. E, Mehl, J. P. Jr., and Jackson, J. A. 2005. Glossary of Geology 5th Edn., American Geological Institute, Alexandria, VA.Google Scholar
Niering, W. A., and Warren, R. S. 1980. Vegetation patterns and processes in New England salt marshes. Bioscience, 30: 301307.CrossRefGoogle Scholar
Nikitina, D. L., Kemp, A. C., Horton, B. P., Vane, C. H., van de Plassche, O., and Engelhardt, S. E. 2014. Storm erosion during the past 2000 years along the north shore of Delaware Bay, USA. Geomorphology, 208: 160172.CrossRefGoogle Scholar
Orson, R., Panageotou, W., Leatherman, S. P. 1985. Response of tidal salt marshes of the U.S. Atlantic and Gulf coasts to rising sea levels. Journal of Coastal Research, 1: 29–7.Google Scholar
Orson, R. A., Warren, R. S., and Niering, W. A. 1987. Development of a tidal marsh in a New England river valley. Estuaries, 10: 2027.CrossRefGoogle Scholar
Orson, R. A., Warren, R. S., Niering, W. A., and Van Patten, P., eds. 1998. Research in New England Marsh-Estuarine Ecosystems, Directions and Priorities into the Next Millennium: Summary of a Sea Grant Workshop, May 15–17, 1997, 61 pp., Connecticut College, New London, CT. Connecticut Sea Grant College Program, Groton, CT: 5-11.Google Scholar
Parkinson, R. W., Craft, C., DeLaune, R. D., Donoghue, J. F., Kearney, M., Meeder, J. F., Morris, J., and Turner, R. E. 2017. Marsh vulnerability to sea-level rise. Nature Climate Change, 7: 756.CrossRefGoogle Scholar
Rampino, M. R., and Sanders, J. E. 1980. Holocene transgression in south-central Long Island, New York. Journal of Sedimentary Petrology, 50: 10631080.Google Scholar
Redfield, A. C. 1965. Ontogeny of a salt marsh estuary. Science, 147: 5055.CrossRefGoogle ScholarPubMed
Redfield, A. C. 1972. Development of a New England salt marsh. Ecological Monographs, 42: 201237.CrossRefGoogle Scholar
Redfield, A. C., and Rubin, M. 1962. The age of salt marsh peat and its relation to recent changes in sea level at Barnstable, Massachusetts. Proceedings of the National Academy of Sciences, 48: 17281735.CrossRefGoogle ScholarPubMed
Reed, D. J. 1989. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebone Bay, Louisiana: the role of winter storms. Estuaries, 12: 222227.CrossRefGoogle Scholar
Reed, D. J. 1990. The impact of sea-level rise on coastal salt marshes. Progress in Physical Geography, 14: 465481.CrossRefGoogle Scholar
Reed, D. J. 1995. The response of coastal marshes to sea-level rise: survival or submergence? Earth Surface Processes and Landforms, 20: 3948.CrossRefGoogle Scholar
Reed, D. J. 2002. Sea-level rise and coastal marsh sustainability: geological and ecological factors in the Mississippi delta. Geomorphology, 48: 233243.CrossRefGoogle Scholar
Roberts, M. F. 1979. The Tidemarsh Guide, E. P. Dutton, New York.Google ScholarPubMed
Rogers, K., and Woodroffe, C. D. 2014. Tidal flats and salt marshes. In: Masselink, G., and Gehrels, R., eds., Global Environments and Global Change, John Wiley and Sons, Ltd., Chichester, UK, pp. 227250.Google Scholar
Roman, C. T., Peck, J. A., Allen, J. R., King, J. W., and Appleby, P. G. 1997. Accretion of a New England (U.S.A.) salt marsh in response to inlet migration, storms and sea-level rise. Estuarine, Coastal and Shelf Science, 45: 717727.CrossRefGoogle Scholar
SDNHM (San Diego Natural History Museum). 2006. www.sdplantatlas.org/NameChanges.aspx, Genus Scirpus is now Schoenoplectus.Google Scholar
Schwimmer, R. A. 2001. Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, USA. Journal of Coastal Research, 17: 672683.Google Scholar
Scott, D. B., and Greenberg, D. A. 1983. Relative sea-level rise and tidal development in the Fundy tidal system. Canadian Journal of Earth Sciences, 20: 15541564.CrossRefGoogle Scholar
Scott, D. B., and Medioli, F. S. 1978. Vertical zonations of marsh foraminifera as accurate indicators of former sea levels. Nature, 272: 528531.CrossRefGoogle Scholar
Sepanik, J. M., and McBride, R. A. 2015. Increasing rate of salt-marsh loss in a barrier-island system: Parramore and Cedar Islands, Virginia, from 1957 to 2012, Section 1.6: pp. 392–401 of: McBride, R. A. Fenster, M. S., Seminack, C. T., Richardson, T. M., Sepanik, J. M., Hanley, J. T., Bundick, J. A. and Tedder, E., Holocene barrier-island geology and morphodynamics of the Maryland and Virginia open-ocean coasts: Fenwick, Assateague, Chincoteague, Wallops, Cedar and Parramore Islands, in Brezinski, D. K., Halka, J. P., and Ortt, R. A., Jr., eds., Tripping from the Fall Line: Field Excursions for the GSA Annual Meeting, Baltimore, 2015: Geological Society of America Field Guide 40, Boulder, CO: 309–424.Google Scholar
Shaler, N. S. 1885. Preliminary report on sea-coast swamps of the Eastern United States: U.S. Geological Survey 6th Annual Report, 1885: pp. 353–398.Google Scholar
Shepard, F. P., 1960, Gulf coast barriers. In: Shepard, F. P., Phleger, F. B., and von Andel, T. H., eds., Recent Sediments, Northwest Gulf of Mexico, American Association of Petroleum Geologists, Tulsa, Oklahoma, pp. 5681.CrossRefGoogle Scholar
Silliman, B. R., Grosholz, E. D., and Bertness, M. D., (eds.). 2009. Human Impacts on Salt Marshes: a global perspective. University of California Press, Berkeley, CA.Google Scholar
Silliman, B. R., Van der Kopple, J., Bertness, M. D., Stanton, I. E., and Mendelssohn, I. A. 2005. Drought, snails, and large-scale dieoff of southern U.S. salt marshes: Ecology, 310: 18031806.Google Scholar
Smith, D. C., and Bridges, A. E., 1982. Salt marsh dikes (dykes) as a factor in eastern Maine agriculture. Maine Historical Society Quarterly, 21: 219226.Google Scholar
Smith, D. C., Konrad, V., Koularis, H., Borns, H. W. Jr., and Hawes, E. 1989. Salt marshes as a factor in the agriculture of northeastern North America. Agricultural History, 63: 270294.Google Scholar
Snow, J. O. 1980. Secrets of a Salt Marsh. Guy Gannett Pub. Co, Portland, ME.Google Scholar
Stea, R. R., Fader, G. B. J., Scott, D. B., and Wu, P. 2001. Glaciation and relative sea-level change in Maritime Canada. In: Weddle, T. K., and Retelle, M. J., eds., Deglacial History and Relative Sea-Level Changes Northern New England and Adjacent Canada, Geological Society of America Special Paper 351: 3549.Google Scholar
Stevenson, J. C., Ward, L. G., and Kearney, M. S. 1986. Vertical accretion in marshes with varying rates of sea level rise. In: Wolfe, D. A., ed., Estuarine Variability, Academic Press, New York, pp. 241259.CrossRefGoogle Scholar
Stumpf, R. P. 1983. The process of sedimentation on the surface of a salt marsh. Estuarine, Coastal and Shelf Science, 17: 495508.CrossRefGoogle Scholar
Swift, D. J. P. 1968. Coastal erosion and transgressive stratigraphy. Journal of Geology, 77: 444456.CrossRefGoogle Scholar
Swift, D. J. P. 1975. Barrier island genesis: evidence from the central Atlantic shelf, eastern U.S.A. Sedimentary Geology, 14: 143.CrossRefGoogle Scholar
Swisher, M. L. 1982. The rates and causes of shore erosion around a coastal lagoon, Rehoboth Bay, Delaware: M.S. thesis, Dept. Geology, University of Delaware, Newark.Google Scholar
Syvitski, J. P. M., and Saito, Y. 2007. Morphodynamics of deltas under the influence of humans. Global and Planetary Change, 57: 261282.CrossRefGoogle Scholar
Tiner, R. W. 2009. Field Guide to Tidal Wetland Plants of the Northeastern United States and Neighboring Canada. University of Massachusetts Press, Amherst, MA.CrossRefGoogle Scholar
Turner, R. E., Baustain, J. J., Swenson, E. M., and Spicer, J. S. 2006. Wetland sedimentation from Hurricanes Katrina and Rita. Science, 314: 449452.CrossRefGoogle ScholarPubMed
Turner, R. E., Howes, B. L., Teal, J. M., Milan, C. S., Swenson, E. M., and Goehringer-Toner, D. 2009. Salt marshes and eutrophication: an unsustainable outcome. Limnology and Oceanography, 54: 16341642.CrossRefGoogle Scholar
van de Plascche, O. 1986. Sea-level Research: a Manual for the Collection and Evaluation of Data. Geo Books, Norwich, England.CrossRefGoogle Scholar
van de Plassche, O. 1991. Late Holocene sea-level fluctuations on the shore of Connecticut inferred from transgressive and regressive overlap boundaries in salt-marsh deposits: Origin of the paleovalley system underlying Hammock River Marsh, Clinton, Connecticut. Journal of Coastal Research, Special Issue 11: 159179.Google Scholar
Wang, C., Meneti, M., Stoll, M.-P., Feola, A., Belluco, E., and Marani, M. 2009. Separation of ground and low vegetations signatures in LiDAR measurements of salt-marsh environments. IEEE Transactions on Geoscience and Remote Sensing, 47: 20142023.CrossRefGoogle Scholar
Ward, L. G., Zaprowski, B. J., Trainer, K. D., and Davis, P. T. 2008. Stratigraphy, pollen history and geochronology of tidal marshes in a Gulf of Maine estuarine system: climatic and relative sea level impacts. Marine Geology, 256: 117.CrossRefGoogle Scholar
Wilson, K. R., Kelley, J. T., Croitoru, A., Dionne, M., Belknap, D. F., and Steneck, R. S. 2009. Stratigraphic and ecophysical characterizations of salt pools: dynamic features of the Webhannet Estuary salt marsh, Wells, Maine, USA. Estuaries and Coasts, 32: 855870.CrossRefGoogle Scholar
Wilson, K. R., Kelley, J. T., Tanner, B. R., and Belknap, D. F. 2010. Probing the origins and stratigraphic signature of salt pools from north-temperate marshes in Maine, U.S.A. Journal of Coastal Research, 26: 10071026.CrossRefGoogle Scholar
Wood, M. E., Kelley, J. T., and Belknap, D. F. 1989. Pattern of sediment accumulation in the tidal marshes of Maine. Estuaries, 12: 237246.CrossRefGoogle Scholar
Woodwell, G. M., Rich, P. H., and Hall, C. A. S. 1973. Carbon in estuaries. In: Woodwell, G. M., and Pecan, E., eds., Carbon and the Biosphere, U.S. Atomic Energy Commission, Springfield, VA, USA, pp. 221–240.Google Scholar
Yelverton, G. F., and Hackney, C. T. 1986. Flux of dissolved organic carbon and pore water through the substrate of a Spartina alterniflora marsh in North Carolina. Estuarine, Coastal, and Shelf Science, 22: 255267.CrossRefGoogle Scholar
Adam, P. 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge; New York.CrossRefGoogle Scholar
Adam, P. 2002. Saltmarshes in a time of change. Environmental Conservation, 29: 3961.CrossRefGoogle Scholar
Adams, D. A. 1963. Factors influencing vascular plant zonation in North Carolina Salt Marshes. Ecology, 44: 445456.CrossRefGoogle Scholar
Airoldi, L., and Beck, M. W. 2007. Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology: An Annual Review, 45: 345405.Google Scholar
Allen, G. P., and Posamentier, H. W. 1993. Sequence stratigraphy and facies model of an incised valley fill; the Gironde Estuary, France. Journal of Sedimentary Research, 63: 378391.Google Scholar
Allen, J., and Rae, J. 1987. Late Flandrian shoreline oscillations in the Severn Estuary: a geomorphological and stratigraphical reconnaissance. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 315: 185230.Google Scholar
Allen, J. R. L. 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19: 11551231.CrossRefGoogle Scholar
Allen, J. R. L., and Haslett, S. K. 2012. Salt-marsh evolution at Northwick and Aust warths, Severn Estuary, UK: a case of constrained autocyclicity. Atlantic Geology, 50: 117.Google Scholar
Altieri, A. H., Bertness, M. D., Coverdale, T. C., Herrmann, N. C., and Angelini, C. 2012. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology, 93: 14021410.CrossRefGoogle ScholarPubMed
Amos, C. L., Feeney, T., Sutherland, T. F., and Luternauer, J. L. 1997. The stability of fine-grained sediments from the Fraser River Delta. Estuarine, Coastal and Shelf Science, 45: 507524.CrossRefGoogle Scholar
Anderson, J. B., Wallace, D. J., Simms, A. R., Rodriguez, A. B., Weight, R. W. R., and Taha, Z. P. 2016. Recycling sediments between source and sink during a eustatic cycle: Systems of late Quaternary northwestern Gulf of Mexico Basin. Earth-Science Reviews, 153: 111138.CrossRefGoogle Scholar
Bahattacharya, J. P. 2006. Deltas. In: Facies Models Revisited. Eds Posamentier, H. W. and Walker, R. G.., Society for Sedimentary Geology, Tulsa, pp. 237292.CrossRefGoogle Scholar
Baily, B., and Pearson, A. W. 2007. Change detection mapping and analysis of salt marsh areas of Central Southern England from Hurst Castle Spit to Pagham Harbour. Journal of Coastal Research, 23: 15491564.CrossRefGoogle Scholar
Bakker, J., Esselink, P., Dijkema, K., Van Duin, W., and De Jong, D. 2002. Restoration of salt marshes in the Netherlands. Hydrobiologia, 478: 2951.CrossRefGoogle Scholar
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs, 81: 169193.CrossRefGoogle Scholar
Belknap, D. F., and Kraft, J. C. 1985. Influence of antecedent geology on stratigraphic preservation potential and evolution of Delaware’s barrier systems. Marine Geology, 63: 235262.CrossRefGoogle Scholar
Belknap, D. F., Kraft, J. C., and Dunn, R. K. 1994. Transgressive valley-fill lithosomes: Delaware and Maine. In: Incised-Valley Systems: Origin and Sedimentary Sequences. Eds Dalrymple, R. W., Boyd, R. and Zaitlin, B. A.., SEPM, Special Publication 51, SEPM, Tulsa, pp. 303320.Google Scholar
Bertness, M. D., Ewanchuk, P. J., and Silliman, B. R. 2002. Anthropogenic modification of New England salt marsh landscapes. Proceedings of the National Academy of Sciences of the USA, 99: 13951398.CrossRefGoogle ScholarPubMed
Blum, M. D., and Roberts, H. H. 2009. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience, 2: 488491.CrossRefGoogle Scholar
Boldt, K. V., Lane, P., Woodruff, J. D., and Donnelly, J. P. 2010. Calibrating a sedimentary record of overwash from Southeastern New England using modeled historic hurricane surges. Marine Geology, 275: 127139.CrossRefGoogle Scholar
Bouma, T. J., van Belzen, J., Balke, T., van Dalen, J., Klaassen, P., Hartog, A. M., Callaghan, D. P., et al. 2016. Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics. Limnology and Oceanography, 61: 22612275.CrossRefGoogle Scholar
Broome, S. W., Seneca, E. D., and Woodhouse, W. W. 1988. Tidal salt marsh restoration. Aquatic Botany, 32: 122.CrossRefGoogle Scholar
Bruno, J. F. 2000. Facilitation of cobble beach plant communities through habitat modification by Spartina alterniflora. Ecology, 81: 11791192.CrossRefGoogle Scholar
Cahoon, D. R., White, D. A., and Lynch, J. C. 2011. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta. Geomorphology, 131: 5768.CrossRefGoogle Scholar
Canuel, E. A., Lerberg, E. J., Dickhut, R. M., Kuehl, S. A., Bianchi, T. S., and Wakeham, S. G. 2009. Changes in sediment and organic carbon accumulation in a highly-disturbed ecosystem: the Sacramento-San Joaquin River Delta California, USA. Marine Pollution Bulletin, 59: 154–63.CrossRefGoogle Scholar
Chapman, V. J. 1960. Salt Marshes and Salt Deserts of the World. L. Hill, London.Google Scholar
Chung, C. H., Zhuo, R. Z., and Xu, G. W. 2004. Creation of Spartina plantations for reclaiming Dongtai, China, tidal flats and offshore sands. Ecological Engineering, 23: 135150.CrossRefGoogle Scholar
Craft, C. 2000. Co-development of wetland soils and benthic invertebrate communities following salt marsh creation. Wetlands Ecology and Management, 8: 197207.CrossRefGoogle Scholar
Craft, C., Broome, S., and Campbell, C. 2002. Fifteen years of vegetation and soil development after brackish-water marsh creation. Restoration Ecology, 10: 248258.CrossRefGoogle Scholar
Crain, C. M., Silliman, B. R., Bertness, S. L., and Bertness, M. D. 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology, 85: 25392549.CrossRefGoogle Scholar
Currin, C. A., Delano, P. C., and Valdes-Weaver, L. M. 2008. Utilization of a citizen monitoring protocol to assess the structure and function of natural and stabilized fringing salt marshes in North Carolina. Wetlands Ecology Management, 16: 97118.CrossRefGoogle Scholar
Dalrymple, R. W., Zaitlin, B. A., and Boyd, R. 1992. Estuarine facies models: conceptual basis and stratigraphic implications. Journal of Sedimentary Petrology, 62: 11301146.CrossRefGoogle Scholar
Davis, C. A. 1910. Salt marsh formation near Boston and its geological significance. Economic Geology, 5: 623639.CrossRefGoogle Scholar
Davis, R. A., and Clifton, H. E. 1987. Sea-level change and the preservation potential of wave-dominated and tide-dominated coastal sequences. In: Sea-level Fluctuation and Coastal Evolution. Eds Nummedal, D., Pilkey, O. H. Jr., and Howard, J. D.., Special Publications of SEPM 41, Tulsa, pp. 167178.CrossRefGoogle Scholar
Day, J. W., Boesch, D. F., Clairain, E. J., Kemp, G. P., Laska, S. B., Mitsch, W. J., Orth, K., et al. 2007. Restoration of the Mississippi delta: lessons from Hurricanes Katrina and Rita. Science, 315: 16791684.CrossRefGoogle ScholarPubMed
de Groot, A. V., Veeneklaas, R. M., and Bakker, J. P. 2011. Sand in the salt marsh: Contribution of high-energy conditions to salt-marsh accretion. Marine Geology, 282: 240254.CrossRefGoogle Scholar
Dijkema, K. S. 1997. Impact prognosis for salt marshes from subsidence by gas extraction in the Wadden Sea. Journal of Coastal Research, 13: 12941304.Google Scholar
Donnelly, J. P., Roll, S., Wengren, M., Butler, J., Lederer, R., and Webb, I. I. I. T. 2001. Sedimentary evidence of intense hurricane strikes from New Jersey. Geology, 29: 615618.2.0.CO;2>CrossRefGoogle Scholar
Engelhart, S. E., Horton, B. P., and Kemp, A. C. 2011. Holocene sea level changes along the United States’ Atlantic Coast. Oceanography, 24: 7079.CrossRefGoogle Scholar
Engels, J. G., and Jensen, K. 2010. Role of biotic interactions and physical factors in determining the distribution of marsh species along an estuarine salinity gradient. Oikos, 119: 679685.CrossRefGoogle Scholar
Engels, J. G., Rink, F., and Jensen, K. 2011. Stress tolerance and biotic interactions determine plant zonation patterns in estuarine marshes during seedling emergence and early establishment. Journal of Ecology, 99: 277287.CrossRefGoogle Scholar
Fagherazzi, S. 2013. The ephemeral life of a salt marsh. Geology, 41: 943944.CrossRefGoogle Scholar
Fagherazzi, S., Carniello, L., D’Alpaos, L., and Defina, A. 2006. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proceedings of the National Academy of Sciences of the USA, 103: 83378341.CrossRefGoogle ScholarPubMed
Fagherazzi, S., Kirwan, M. L., Mudd, S. M., Guntenspergen, G. R., Temmerman, S., D’Alpaos, A., van de Koppel, , et al. 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics, 50: RG1002.CrossRefGoogle Scholar
Feagin, R. A., Martinez, M. L., Mendoza-Gonzalez, G., and Costanza, R. 2010. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. Ecology and Society, 15(4): 14.CrossRefGoogle Scholar
Fisher, J. J. 1962. Geomorphic Expression of Former Inlets along the Outer Banks of North Carolina, University of North Carolina at Chapel Hill.Google Scholar
Flowers, T. J., and Colmer, T. D. 2008. Salinity tolerance in halophytes. New Phytologist, 179: 945963.CrossRefGoogle ScholarPubMed
Ford, M. A., Cahoon, D. R., and Lynch, J. C. 1999. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecological Engineering, 12: 189205.CrossRefGoogle Scholar
Galloway, W. E. 1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In: Deltas Models for Exploration, Ed Broussard, M. L.., Houston Geological Society, Houston, pp. 8798.Google Scholar
Gardner, L. R., and Porter, D. E. 2001. Stratigraphy and geologic history of a southeastern salt marsh basin, North Inlet, South Carolina, USA. Wetlands Ecology and Management, 9: 371385.CrossRefGoogle Scholar
Gedan, K. B., Silliman, B. R., and Bertness, M. D. 2009. Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science, 1: 117141.CrossRefGoogle ScholarPubMed
Gehrels, R. W., Belknap, D. F., and Kelley, J. T. 1996. Integrated high-precision analyses of Holocene relative sea-level changes: lessons from the coast of Maine. GSA Bulletin, 108: 10731088.2.3.CO;2>CrossRefGoogle Scholar
Godfrey, P. J., and Godfrey, M. M. 1974. The role of overwash and inlet dynamics in the formation of salt marshes on North Carolina barrier islands. In: Ecology of Halophytes. Eds Reimold, R. J. and Queen, W. H.., Academic Press, Inc., New York, pp. 407427.CrossRefGoogle Scholar
Graham, S. A., and Mendelssohn, I. A. 2013. Functional assessment of differential sediment slurry applications in a deteriorating brackish marsh. Ecological Engineering, 51: 264274.CrossRefGoogle Scholar
Gunnell, J. R., Rodriguez, A. B., and McKee, B. A. 2013. How a marsh is built from the bottom up. Geology, 41: 859862.CrossRefGoogle Scholar
Jalowska, A. M., McKee, B. A., Laceby, J. P., and Rodriguez, A. B. 2017. Tracing the sources, fate, and recycling of fine sediments across a river-delta interface. Catena, 154: 95106.CrossRefGoogle Scholar
Jalowska, A. M., Rodriguez, A. B., and McKee, B. A. 2015. Responses of the Roanoke Bayhead Delta to variations in sea level rise and sediment supply during the Holocene and Anthropocene. Anthropocene, 9: 4155.CrossRefGoogle Scholar
James, L. A. 2013. Legacy sediment: definitions and processes of episodically produced anthropogenic sediment. Anthropocene, 2: 1626.CrossRefGoogle Scholar
Jervey, M. T. 1988. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In: Sea-Level Changes: An Integrated Approach. Eds Wilgus, C. K., Hastings, B. S., Ross, C. A., Posamentier, H. W., Van Wagoner, J. C., and Kendall, C. G. S. C.. Special Publication 42, SEPM, Tulsa, pp. 4769.CrossRefGoogle Scholar
Johnson, D. W. 1919. Shore Processes and Shoreline Development. John Wiley & Sons, Incorporated, Boston.Google Scholar
Kelley, J. T., Belknap, D. F., Jacobson, G. L., and Heather, A. J. 1988. The morphology and origin of salt marshes along the glaciated coastline of Maine, USA. Journal of Coastal Research, 4: 649666.Google Scholar
Kemp, A. C., Horton, B. P., Corbett, D. R., Culver, S. J., Edwards, R. J., and van de Plassche, O. 2017. The relative utility of foraminifera and diatoms for reconstructing late Holocene sea-level change in North Carolina, USA. Quaternary Research, 71: 921.CrossRefGoogle Scholar
Kennish, M. J. 2001. Coastal salt marsh systems in the U.S.: A review of anthropogenic impacts. Journal of Coastal Research, 17: 731748.Google Scholar
Kirwan, M. L., Guntenspergen, G. R., D’Alpaos, A., Morris, J. T., Mudd, S. M., and Temmerman, S. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters, 37: L23401.CrossRefGoogle Scholar
Kirwan, M. L., and Megonigal, J. P. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504: 53.CrossRefGoogle ScholarPubMed
Kirwan, M. L., Walters, D. C., Reay, W. G., and Carr, J. A. 2016. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophysical Research Letters, 43: 43664373.CrossRefGoogle Scholar
Komatsubara, J., Fujiwara, O., Takada, K., Sawai, Y., Aung, T. T., and Kamataki, T. 2008. Historical tsunamis and storms recorded in a coastal lowland, Shizuoka Prefecture, along the Pacific Coast of Japan. Sedimentology, 55: 17031716.CrossRefGoogle Scholar
Kraft, J. C. 1971. Sedimentary facies patterns and geologic history of a Holocene marine transgression. Geological Society of America Bulletin, 82: 21312158.CrossRefGoogle Scholar
Kraft, J. C., Yi, H. L., and Khalequzzaman, M. 1992. Geologic and human factors in the decline of the tidal salt marsh lithosome: the Delaware estuary and Atlantic coastal zone. Sedimentary Geology, 80: 233246.CrossRefGoogle Scholar
Leonardi, N., and Fagherazzi, S. 2015. Local variability in erosional resistance affects large scale morphodynamic response of salt marshes to wind waves and extreme events. Geophysical Research Letters, 42: 58725879.CrossRefGoogle Scholar
Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., et al. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312: 18061809.CrossRefGoogle ScholarPubMed
Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L., and Rinaldo, A. 2010. The importance of being coupled: stable states and catastrophic shifts in tidal biomorphodynamics. Journal of Geophysical Research: Earth Surface, 115: F04004, doi:10.1029/2009JF001600.CrossRefGoogle Scholar
Mariotti, G., and Fagherazzi, S. 2013. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proceedings of the National Academy of Sciences of the USA, 110: 53535356.CrossRefGoogle ScholarPubMed
Mattheus, C. R., Rodriguez, A. B., and McKee, B. A. 2009. Direct connectivity between upstream and downstream promotes rapid response of lower coastal-plain rivers to land-use change. Geophysical Research Letters, 36: L20401, doi:10.1029/2009GL039995.CrossRefGoogle Scholar
McKee, L. J., Ganju, N. K., and Schoellhamer, D. H. 2006. Estimates of suspended sediment entering San Francisco Bay from the Sacramento and San Joaquin Delta, San Francisco Bay, California. Journal of Hydrology, 323: 335352.CrossRefGoogle Scholar
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., et al. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9: 552560.CrossRefGoogle Scholar
Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B. K., Wolters, G., et al. 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience, 7: 727731.CrossRefGoogle Scholar
Morales, J. A. 1997. Evolution and facies architecture of the mesotidal Guadiana River delta S.W. Spain-Portugal. Marine Geology, 138: 127148.CrossRefGoogle Scholar
Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B., and Cahoon, D. R. 2002. Responses of coastal wetlands to rising sea level. Ecology, 83: 28692877.CrossRefGoogle Scholar
Morton, R. A., Gelfenbaum, G., and Jaffe, B. E. 2007. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sedimentary Geology, 200: 184207.CrossRefGoogle Scholar
Mudd, S. M., D’Alpaos, A., and Morris, J. T. 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research, 115: F03029, doi:10.1029/2009JF001566.CrossRefGoogle Scholar
Neumeier, U., and Amos, C. L. 2006. The influence of vegetation on turbulence and flow velocities in European salt-marshes. Sedimentology, 53: 259277.CrossRefGoogle Scholar
Neumeier, U., and Ciavola, P. 2004. Flow resistance and associated sedimentary processes in a Spartina maritima salt-marsh. Journal of Coastal Research, 20: 435447.CrossRefGoogle Scholar
Nichols, M. M. 1989. Sediment accumulation rates and relative sea-level rise in lagoons. Marine Geology, 88: 201219.CrossRefGoogle Scholar
Odum, W. E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics, 19: 147176.CrossRefGoogle Scholar
Olariu, C., and Bhattacharya, J. P. 2006. Terminal distributary channels and delta front architecture of river-dominated delta systems. Journal of Sedimentary Research, 76: 212233.CrossRefGoogle Scholar
Olliver, E. A., and Edmonds, D. A. 2017. Defining the ecogeomorphic succession of land building for freshwater, intertidal wetlands in Wax Lake Delta, Louisiana. Estuarine, Coastal and Shelf Science, 196: 4557.CrossRefGoogle Scholar
Ouyang, X., and Lee, S. Y. 2014. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences, 11: 50575071.CrossRefGoogle Scholar
Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C., et al. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One, 7: e43542.CrossRefGoogle ScholarPubMed
Penland, S., Boyd, R., and Suter, J. R. 1988. Transgressive depositional systems of the Mississippi Delta plain; a model for barrier shoreline and shelf sand development. Journal of Sedimentary Research, 58: 932949.Google Scholar
Peterson, G. W., and Turner, R. E. 1994. The value of salt marsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh. Estuaries 17: 235262.CrossRefGoogle Scholar
Pethick, J. S. 1981. Long-term accretion rates on tidal salt marshes. Journal of Sedimentary Research, 51: 571577.CrossRefGoogle Scholar
Phleger, C. F. 1971. Effect of salinity on growth of a salt marsh grass. Ecology, 52: 908911.CrossRefGoogle Scholar
Raabe, E. A., and Stumpf, R. P. 2015. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuaries and Coasts, 39: 145157.CrossRefGoogle Scholar
Redfield, A. C. 1965. Ontogeny of a salt marsh estuary. Science, 147: 5055.CrossRefGoogle ScholarPubMed
Reed, D. J. 2002. Sea-level rise and coastal marsh sustainability: geological and ecological factors in the Mississippi delta plain. Geomorphology, 48: 233243.CrossRefGoogle Scholar
Ridge, J. T., Rodriguez, A. B., and Fodrie, F. J. 2017. Salt marsh and fringing oyster reef transgression in a shallow temperate estuary: implications for restoration, conservation and blue carbon. Estuaries and Coasts, 40: 10131027.CrossRefGoogle Scholar
Roberts, H. H. 1997. Dynamic changes of the Holocene Mississippi River Delta Plain: the delta cycle. Journal of Coastal Research, 13: 605627.Google Scholar
Rodriguez, A. B., Anderson, J. B., Banfield, L. B., Taviani, M., Abdulah, K., and Snow, J. N. 2000. Identification of a −15m middle Wisconsin shoreline on the Texas inner continental shelf. Palaeogeography, Palaeoclimatology, Palaeoecology, 158: 2543.CrossRefGoogle Scholar
Rodriguez, A. B., Fodrie, F. J., Ridge, J. T., Lindquist, N. L., Theuerkauf, E. J., Coleman, S. E., et al. 2014. Oyster reefs can outpace sea-level rise. Nature Climate Change, 4: 493497.CrossRefGoogle Scholar
Rodriguez, A. B., Simms, A. R., and Anderson, J. B. 2010. Bay-head deltas across the northern Gulf of Mexico back step in response to the 8.2 ka cooling event. Quaternary Science Reviews, 29: 39833993.CrossRefGoogle Scholar
Rogers, K., Wilton, K. M., and Saintilan, N. 2006. Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science, 66: 559569.CrossRefGoogle Scholar
Saintilan, N., and Hashimoto, T. R. 1999. Mangrove-saltmarsh dynamics on a bay-head delta in the Hawkesbury River estuary, New South Wales, Australia. Hydrobiologia, 413: 95102.CrossRefGoogle Scholar
Saintilan, N., and Williams, R. 2010. Short Note: The decline of saltmarsh in southeast Australia: Results of recent surveys. Wetlands Australia Journal, 18: 4954.CrossRefGoogle Scholar
Schwimmer, R. A., and Pizzuto, J. E. 2000. A model for the evolution of marsh shorelines. Journal of Sedimentary Research, 70: 10261035.CrossRefGoogle Scholar
Shennan, I., and Horton, B. 2002. Holocene land- and sea-level changes in Great Britain. Journal of Quaternary Science, 17: 511526.CrossRefGoogle Scholar
Shepard, C. C., Crain, C. M., and Beck, M. W. 2011. The protective role of coastal marshes: A systematic review and meta-analysis. PLoS ONE, 6: e27374.CrossRefGoogle ScholarPubMed
Shideler, G. L. 1984. Suspended sediment responses in a wind-dominated estuary of the Texas Gulf Coast. Journal of Sedimentary Petrology, 54: 731745.Google Scholar
Simms, A. R., and Rodriguez, A. B. 2014. Where do coastlines stabilize following rapid retreat? Geophysical Research Letters, 41: 16981703.CrossRefGoogle Scholar
Simms, A. R., and Rodriguez, A. B. 2015. The Influence of valley morphology on the rate of Bayhead Delta Progradation. Journal of Sedimentary Research, 85: 3844.CrossRefGoogle Scholar
Simms, A. R., Rodriguez, A. B., and Anderson, J. B. 2018. Bayhead deltas and shorelines: Insights from modern and ancient examples. Sedimentary Geology, 374: 1735.CrossRefGoogle Scholar
Singh Chauhan, P. P. 2009. Autocyclic erosion in tidal marshes. Geomorphology, 110: 4557.CrossRefGoogle Scholar
Snow, A. A., and Vince, S. W. 1984. Plant Zonation in an Alaskan Salt Marsh: II. An experimental study of the role of edaphic conditions. Journal of Ecology, 72: 669684.CrossRefGoogle Scholar
Sousa, A. I., Lillebø, A. I., Caçador, I., and Pardal, M. A. 2008. Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems. Environmental Pollution, 156: 628635.CrossRefGoogle ScholarPubMed
Stumpf, R. P. 1983. The process of sedimentation on the surface of a salt marsh. Estuarine, Coastal and Shelf Science, 17: 495508.CrossRefGoogle Scholar
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J., et al. 2009. Sinking deltas due to human activities. Nature Geoscience, 2: 681686.CrossRefGoogle Scholar
Ta, T. K. O., Nguyen, V. L., Tateishi, M., Kobayashi, I., Saito, Y., and Nakamura, T. 2002. Sediment facies and Late Holocene progradation of the Mekong River Delta in Bentre Province, southern Vietnam: an example of evolution from a tide-dominated to a tide- and wave-dominated delta. Sedimentary Geology, 152: 313325.CrossRefGoogle Scholar
Theuerkauf, E. J., and Rodriguez, A. B. 2017. Placing barrier-island transgression in a blue-carbon context. Earth’s Future, 5: 789810.CrossRefGoogle Scholar
Theuerkauf, E. J., Stephens, J. D., Ridge, J. T., Fodrie, F. J., and Rodriguez, A. B. 2015. Carbon export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a critical width threshold. Estuarine, Coastal and Shelf Science, 164: 367378.CrossRefGoogle Scholar
Thomas, M. A., and Anderson, J. B. 1994. Sea-level controls on the facies architecture of the Trinity/Sabine incised-valley system, Texas continental shelf. In: Incised-Valley Systems: Origin and Sedimentary Sequences. Eds Dalrymple, R. W., Boyd, R., and Zaitlin, B. A.., SEPM, Special Publication 51, SEPM, Tulsa, pp. 6382.Google Scholar
Törnqvist, T. E., Gonzalez, J. L., Newsom, L., van der Borg, K., de Jong, A. F. M., and Kurnik, C. W. 2004. Deciphering Holocene sea-level history on the U.S. Gulf Coast: a high-resolution record from the Mississippi Delta. Geological Society of America Bulletin, 116: 10261039.CrossRefGoogle Scholar
van de Plassche, O., van der Borg, K., and de Jong, A. F. M. 1998. Sea level-climate correlation during the past 1400 yr. Geology, 26: 319322.2.3.CO;2>CrossRefGoogle Scholar
Van der Wal, D., Wielemaker-Van den Dool, A., and Herman, P. M. J. 2008. Spatial patterns, rates and mechanisms of saltmarsh cycles Westerschelde, the Netherlands. Estuarine, Coastal and Shelf Science, 76: 357368.CrossRefGoogle Scholar
Van Eerden, M. R., Drent, R. H., Stahl, J., and Bakker, J. P. 2005. Connecting seas: western Palaearctic continental flyway for water birds in the perspective of changing land use and climate. Global Change Biology, 11: 894908.CrossRefGoogle Scholar
Warren, R. S., Fell, P. E., Rozsa, R., Brawley, A. H., Orsted, A. C., Olson, E. T., Swamy, V., and Niering, W. A. 2002. Salt marsh restoration in Connecticut: 20 years of science and management. Restoration Ecology, 10: 497513.CrossRefGoogle Scholar
Watson, E. B., and Byrne, R. 2013. Late Holocene marsh expansion in Southern San Francisco Bay, California. Estuaries and Coasts, 36: 643653.CrossRefGoogle Scholar
White, W. A., Morton, R. A., and Holmes, C. W. 2002. A comparison of factors controlling sedimentation rates and wetland loss in fluvial-deltaic sytems, Texas Gulf coast. Geomorphology, 44: 4766.CrossRefGoogle Scholar
Williams, K., Ewel, K. C., Stumpf, R. P., Putz, F. E., and Workman, T. W. 1999. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology, 80: 20452063.CrossRefGoogle Scholar
Williams, P. B., and Orr, M. K. 2002. Physical evolution of restored breached levee salt marshes in the San Francisco Bay Estuary. Restoration Ecology, 10: 527542.CrossRefGoogle Scholar
Xiao, D., Zhang, L., and Zhu, Z. 2010. The range expansion patterns of Spartina alterniflora on salt marshes in the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science, 88: 99104.CrossRefGoogle Scholar
Yang, S. L., Li, H., Ysebaert, T., Bouma, T. J., Zhang, W. X., Wang, Y. Y., Li, P., et al. 2008. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: on the role of physical and biotic controls. Estuarine, Coastal and Shelf Science, 77: 657671.CrossRefGoogle Scholar
Zhang, R. S., Shen, Y. M., Lu, L. Y., Yan, S. G., Wang, Y. H., Li, J. L., and Zhang, Z. L. 2004. Formation of Spartina alterniflora salt marshes on the coast of Jiangsu Province, China. Ecological Engineering, 23: 95105.CrossRefGoogle Scholar
Ahmad, M. F., Dong, P., Mamat, M., Nik, W. B. W., and Mohd, M. H. 2011. The critical shear stresses for sand and mud mixture. Applied Mathematical Sciences, 5: 5371.Google Scholar
Allen, J. R. L. 2000. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19: 11551231.CrossRefGoogle Scholar
Amos, C. L., Bergamasco, A., Umgiesser, G., Cappucci, S., Cloutier, D., Denat, L., Flind, M., Bonardi, M., and Cristante, S. 2004. The stability of tidal flats in Venice Lagoon–the results of in-situ measurements using two benthic, annular flumes. Journal of Marine Systems, 51: 211241.CrossRefGoogle Scholar
Amos, C. L., Umgiesser, G., Ferrarin, C., Thompson, C. E. L. C. , Whitehouse, R. J. S., Sutherland, T. F., and Bergamasco, A. 2010. The erosion rates of cohesive sediments in Venice lagoon, Italy. Continental Shelf Research, 30: 859870.CrossRefGoogle Scholar
Balke, T., Bouma, T. J., Horstman, E. M., Webb, E. L., Erftemeijer, P. L. A., and Herman, P. M. J. 2011. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Marine Ecology Progress Series, 440: 19.CrossRefGoogle Scholar
Balke, T., Klaassen, P. C., Garbutt, A., Van der Wal, D., Herman, P. M. J., and Bouma, T. J. 2012. Conditional outcome of ecosystem engineering: A case study on tussocks of the salt marsh pioneer Spartina anglica. Geomorphology, 153154: 232238.CrossRefGoogle Scholar
Baptist, M. J., Babovic, V., Rodríguez-Uthurburu, J., Keijzer, M., Uittenbogaard, R. E., Mynett, A., and, Verwey, A. 2007. On inducing equations for vegetation resistance. Journal of Hydraulic Research, 45: 435450.CrossRefGoogle Scholar
Bayliss-Smith, T. P., Healey, R., Lailey, R., Spencer, T., and, Stoddart, D. R. 1979. Tidal flows in salt marsh creeks. Estuarine and Coastal Marine Science, 9: 235255.CrossRefGoogle Scholar
Beeftink, W. G., and Rozema, J. 1993. The nature and functioning of salt marshes. In: Pollution of the North Sea, Salomons, W, Bayne, B. L., Duursma, E. K., and Forstner, U. (eds). Springer, Berlin, Heidelberg, pp. 5987.CrossRefGoogle Scholar
Belliard, J.-P., Toffolon, M., Carniello, L., and D’Alpaos, A. 2015. An ecogeomorphic model of tidal channel initiation and elaboration in progressive marsh accretional contexts. Journal of Geophysical Research: Earth Surface, 120: 10401064.Google Scholar
Bendoni, M., Francalanci, S., Cappietti, L., and Solari, L. 2014. On salt marshes retreat: Experiments and modeling toppling failures induced by wind waves. Journal of Geophysical Research: Earth Surface, 119: 603620.Google Scholar
Bendoni, M., Mel, R., Lanzoni, S., Francalanci, S., and Oumeraci, H. 2016. Insights into lateral marsh retreat mechanism through localized field measurements. Water Resources Research, 52: 14461464.CrossRefGoogle Scholar
Boon, J. D. I. 1975. Tidal discharge asymmetry in a salt marsh drainage system. Limnology and Oceanography, 20: 7180.CrossRefGoogle Scholar
Bouma, T. J., Friedrichs, M., Van Wesenbeeck, B. K., Temmerman, S., Graf, G., and Herman, P. M. J. 2009. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos, 118: 260268.CrossRefGoogle Scholar
Brivio, L., Ghinassi, M., D’Alpaos, A., Finotello, A., Fontana, A., Roner, M., and Howes, N. 2016. Aggradation and lateral migration shaping geometry of a tidal point bar: An example from salt marshes of the Northern Venice Lagoon (Italy). Sedimentary Geology, 343: 141155.CrossRefGoogle Scholar
Callaghan, D. P., Bouma, T. J., Klaassen, P., van der Wal, D., Stive, M. J. F., and Herman, P. M. J. 2010. Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of waves and tidal flows. Estuarine, Coastal and Shelf Science, 89: 7388.CrossRefGoogle Scholar
Callaway, J. C., and Josselyn, M. N. 1992. The introduction and spread of smooth cordgrass Spartina alterniflora in South San Francisco Bay. Estuaries, 15: 218226.CrossRefGoogle Scholar
Carniello, L., D’Alpaos, A., and Defina, A. 2011. Modeling wind waves and tidal flows in shallow micro-tidal basins. Estuarine, Coastal and Shelf Science, 92: 263276.CrossRefGoogle Scholar
Carniello, L., Defina, A., and D’Alpaos, L. 2012. Modeling sand-mud transport induced by tidal currents and wind waves in shallow microtidal basins: Application to the Venice Lagoon (Italy). Estuarine, Coastal and Shelf Science, 102103: 105115.CrossRefGoogle Scholar
Chen, Y., Li, Y., Cai, T., Thompson, C., and Li, Y. 2016. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries. Earth Surface Processes and Landforms, 41: 19671979.CrossRefGoogle Scholar
Chen, Z., Ortiz, A., Zong, L., and Nepf, H. 2012. The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation. Water Resources Research, 48: 112.CrossRefGoogle Scholar
Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R., and Townend, I. H. 2013. Morphodynamics of tidal networks: Advances and challenges. Marine Geology, 346: 116.CrossRefGoogle Scholar
Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., et al. 1997. The value of the world’s ecosystem services and natural capital. Nature, 387: 253260.CrossRefGoogle Scholar
D’Alpaos, A., Ghinassi, M., Finotello, A., Brivio, L., Bellucci, L. G. L. G., and Marani, M. 2017. Tidal meander migration and dynamics: A case study from the Venice Lagoon. Marine and Petroleum Geology, 87: 8090.CrossRefGoogle Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., Bonometto, A., Cecconi, G., and Rinaldo, A. 2007a. Spontaneous tidal network formation within a constructed salt marsh: Observations and morphodynamic modelling. Geomorphology, 91: 186197. DOI: 10.1016/j.geomorph.2007.04.013CrossRefGoogle Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S., and Rinaldo, A. 2005. Tidal network ontogeny: Channel initiation and early development. Journal of Geophysical Research: Earth Surface, 110: 114.Google Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A. 2007b. Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research: Earth Surface, 112: 117.Google Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A. 2009. On the O’Brien–Jarrett–Marchi law. Rendiconti Lincei, 20: 225236.CrossRefGoogle Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A. 2010. On the tidal prism-channel area relations. Journal of Geophysical Research: Earth Surface, 115: 113.Google Scholar
D’Alpaos, A., Lanzoni, S., Mudd, S. M., and Fagherazzi, S. 2006. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuarine, Coastal and Shelf Science, 69: 311324.CrossRefGoogle Scholar
D’Alpaos, A., and Marani, M. 2016. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Advances in Water Resources, 93: 265275.CrossRefGoogle Scholar
Defina, A., Carniello, L., Fagherazzi, S., and D’Alpaos, L. 2007. Self-organization of shallow basins in tidal flats and salt marshes. Journal of Geophysical Research: Earth Surface, 112: 111.CrossRefGoogle Scholar
Di Silvio, G., Dall’Angelo, C., Bonaldo, D., Fasolato, G., Dall’Angelo, C., Bonaldo, D., and Fasolato, G. 2010. Long term model of planimetric and bathymetric evolution of a tidal lagoon. Continental Shelf Research, 30: 894903.CrossRefGoogle Scholar
Dronkers, J. 2016. Dynamic of Coastal System. 2nd edn. World Scientific, Singapore.CrossRefGoogle Scholar
Dronkers, J. J. 1964. Tidal Computations in Rivers and Coastal Waters. North Holland, Amsterdam.Google Scholar
Fagherazzi, S., Bortoluzzi, A., Dietrich, W. E., Adami, A., Lanzoni, S., Marani, M., and Rinaldo, A. 1999. Tidal networks 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resources Research, 35: 38913904.CrossRefGoogle Scholar
Fagherazzi, S., Carniello, L., D’Alpaos, L., and Defina, A. 2006. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proceedings of the National Academy of Sciences of the United States of America, 103: 83378341.CrossRefGoogle ScholarPubMed
Fagherazzi, S., and Furbish, D. J. 2001. On the shape and widening of salt marsh creeks. Journal of Geophysical Research, 106: 991.CrossRefGoogle Scholar
Fagherazzi, S., Gabet, E. J., and, Furbish, D. J. 2004. The effect of bidirectional flow on tidal channel planforms. Earth Surface Processes and Landforms, 29: 295309.CrossRefGoogle Scholar
Fagherazzi, S., Hannion, M., and D’Odorico, P. 2008. Geomorphic structure of tidal hydrodynamics in salt marsh creeks. Water Resources Research, 44: 112.CrossRefGoogle Scholar
Fagherazzi, S., Kirwan, M. L., Mudd, S. M., Guntenspergen, G. R., Temmerman, S., D’Alpaos, A., van de Koppel, J. et al. 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics, 50: 128.CrossRefGoogle Scholar
Fagherazzi, S., and Sun, T. 2004. A stochastic model for the formation of channel networks in tidal marshes. Geophysical Research Letters, 31: 14.CrossRefGoogle Scholar
Fagherazzi, S., Wiberg, P. L., Temmerman, S., Struyf, E., Zhao, Y., and Raymond, P. A. 2013. Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecological Processes, 2: 116.CrossRefGoogle Scholar
Finotello, A., Lanzoni, S., Ghinassi, M., Marani, M., Rinaldo, A., and D’Alpaos, A., 2018. Field migration rates of tidal meanders recapitulate fluvial morphodynamics. Proceedings of the National Academy of Sciences of the United States of America, 115: 14631468.CrossRefGoogle ScholarPubMed
Folkard, A. M. 2011. Flow regimes in gaps within stands of flexible vegetation: Laboratory flume simulations. Environmental Fluid Mechanics, 11: 289306.CrossRefGoogle Scholar
Francalanci, S., Bendoni, M., Rinaldi, M., and Solari, L. 2013. Ecomorphodynamic evolution of salt marshes: Experimental observations of bank retreat processes. Geomorphology, 195: 5365.CrossRefGoogle Scholar
French, J. R., and Stoddart, D. R. 1992. Hydrodynamics of salt marsh creek systems: Implications for marsh morphological development and material exchange. Earth Surface Processes and Landforms, 17: 235252.CrossRefGoogle Scholar
Friedrichs, C. T. 1995. Stability shear stress and equilibrium cross-sectional of sheltered tidal channels. Journal of Coastal Research, 11: 10621074.Google Scholar
Friedrichs, C. T., and Perry, J. E. 2001. Tidal salt marsh morphodynamics: A synthesis. Journal of Coastal Research, SI: 737.Google Scholar
Gabet, E. J. 1998. Lateral migration and bank erosion in a saltmarsh tidal channel in San Francisco Bay, California. Estuaries 21: 745753.CrossRefGoogle Scholar
Garofalo, D. 1980. The influence of wetland vegetation on tidal stream channel migration and morphology. Estuaries, 3: 258270.CrossRefGoogle Scholar
Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B., and Silliman, B. R. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change, 106: 729.CrossRefGoogle Scholar
Ghinassi, M., D'alpaos, A., Gasparotto, A., Carniello, L., Brivio, L., Finotello, A., Roner, M. et al. 2018. Morphodynamic evolution and stratal architecture of translating tidal point bars: Inferences from the northern Venice Lagoon (Italy). Sedimentology, 65: 13541377.CrossRefGoogle Scholar
Hartig, E. K., Gornitz, V., Kolker, A., Mushacke, F., and Fallon, D. 2002. Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands, 22: 7189.CrossRefGoogle Scholar
Horton, R. E. 1945. Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56: 151180.CrossRefGoogle Scholar
Hu, K., Chen, Q., and Wang, H. 2015a. A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary. Coastal Engineering, 95: 6676.CrossRefGoogle Scholar
Hu, X., and Chen, C. T. 2005. Refraction of water waves by periodic cylinder arrays. Physical Review Letters, 95: 14.CrossRefGoogle ScholarPubMed
Hu, Z., van Belzen, J., van der Wal, D., Balke, T., Wang, Z. B., Stive, M. and Bouma, T. J. 2015b. Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: The importance of temporal and spatial variability in hydrodynamic forcing. Journal of Geophysical Research: Biogeosciences, 120: 14501469.Google Scholar
Hughes, Z. J. 2012. Tidal channels on tidal flats and marshes. In: Principles of Tidal Sedimentology, Davis, R. A. and Dalrymple, R. W. (eds). Springer, Dordrecht, pp. 269300.CrossRefGoogle Scholar
Hughes, Z. J., FitzGerald, D. M., Wilson, C. A., Pennings, S. C., Wiçski, K., and Mahadevan, A. 2009. Rapid headward erosion of marsh creeks in response to relative sea level rise. Geophysical Research Letters, 36: 15.CrossRefGoogle Scholar
Jarrett, J. T. 1976. Tidal prism-inlet area relationships. Joural of Waterways and Harbors, 95: 4352.Google Scholar
Julian, J. P., and Torres, R. 2006. Hydraulic erosion of cohesive riverbanks. Geomorphology, 76: 193206.CrossRefGoogle Scholar
Kearney, W. S., and Fagherazzi, S. 2016. Salt marsh vegetation promotes efficient tidal channel networks. Nature Communications, 7: 17.CrossRefGoogle ScholarPubMed
Kleinhans, M. G., Schuurman, F., Bakx, W., and Markies, H. 2009. Meandering channel dynamics in highly cohesive sediment on an intertidal mud flat in the Westerschelde estuary, the Netherlands. Geomorphology, 105: 261276.CrossRefGoogle Scholar
Lanzoni, S., and Seminara, G. 1998. On tide propagation in convergent estuaries. Journal of Geophysical Research: Oceans, 103: 3079330812.CrossRefGoogle Scholar
Lanzoni, S., and Seminara, G. 2002. Long-term evolution and morphodynamic equilibrium of tidal channels. Journal of Geophysical Research, 107: 113.CrossRefGoogle Scholar
Leonard, L. A., and Croft, A. L. 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuarine, Coastal and Shelf Science, 69: 325336.CrossRefGoogle Scholar
Leonard, L. A., and Luther, M. E. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography, 40: 14741484.CrossRefGoogle Scholar
Leonardi, N., Defne, Z., Ganju, N. K., and Fagherazzi, S. 2016a. Salt marsh erosion rates and boundary features in a shallow Bay. Journal of Geophysical Research: Earth Surface, 121: 18611875.Google Scholar
Leonardi, N., and Fagherazzi, S. 2014. How waves shape salt marshes. Geology, 42: 887890.CrossRefGoogle Scholar
Leonardi, N., Ganju, N. K., and Fagherazzi, S. 2016b. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proceedings of the National Academy of Sciences, 113: 6468.CrossRefGoogle ScholarPubMed
Leopold, L. B., Collins, J. N., and Collins, L. M. 1993. Hydrology of some tidal channels in estuarine marshland near San Francisco. Catena, 20: 469493.CrossRefGoogle Scholar
Da Lio, C., D’Alpaos, A., and Marani, M. 2013. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 371: 20120367.Google ScholarPubMed
López, F., and García, M. H. 2001. Mean flow and turbulence structure of open-channel flow through non-emergent vegetation. Journal of Hydraulic Engineering, 127: 392402.CrossRefGoogle Scholar
Marani, M., Belluco, E., D’Alpaos, A., Defina, A., Lanzoni, S., and Rinaldo, A. 2003. On the drainage density of tidal networks. Water Resources Research, 39: 111.CrossRefGoogle Scholar
Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L., and Rinaldo, A. 2010. The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. Journal of Geophysical Research: Earth Surface, 115: 115.CrossRefGoogle Scholar
Marani, M., D’Alpaos, A., Lanzoni, S., and Santalucia, M. 2011. Understanding and predicting wave erosion of marsh edges. Geophysical Research Letters, 38: 15.CrossRefGoogle Scholar
Marani, M., Lanzoni, S., Zandolin, D., Seminara, G., and Rinaldo, A. 2002. Tidal meanders. Water Resources Research, 38: 714.CrossRefGoogle Scholar
Marchi, E. 1990. Sulla stabilità delle bocche lagunari a marea. Rendiconti Lincei, 1: 137150.CrossRefGoogle Scholar
Mariotti, G. 2018. Marsh channel morphological response to sea level rise and sediment supply. Estuarine, Coastal and Shelf Science, 209: 89101.CrossRefGoogle Scholar
Mitsch, W. J., and Gosselink, J. G. 2000. The value of wetlands: importance of scale and landscape setting. Ecological Economics, 35: 2533.CrossRefGoogle Scholar
Möller, I., Spencer, T., French, J. R., Leggett, D. J., and Dixon, M. 1999. Wave transformation over saltmarshes: A field and numerical modelling study from North Norfolk, England. Estuarine, Coastal and Shelf Science, 49: 411426.CrossRefGoogle Scholar
Morris, J. T., Sundberg, K., and Hopkinson, C. S. 2013. Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography, 26: 7884.CrossRefGoogle Scholar
Mudd, S. M., D’Alpaos, A., and Morris, J. T. 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research: Earth Surface, 115: 114.CrossRefGoogle Scholar
Mudd, S. M., Fagherazzi, S., Morris, J. T., and Furbish, D. J. 2004. Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: Toward a predictive model of marsh morphologic and ecologic evolution. In: The Ecogeomorphology of Tidal Marshes, Coastal and Estuarine Studies n. 59, Fagherazzi, S., Marani, M., and Blum, L. K. (eds). American Geophysical Union, Washington, D.C., pp. 165188.Google Scholar
Myrick, R. M., and Leopold, L. B. 1963. Hydraulic geometry of a small tidal estuary. United States Geological Survey Professional Paper 422: 118.Google Scholar
Nepf, H. M. 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research, 35: 479489.CrossRefGoogle Scholar
Nepf, H. M. 2012. Hydrodynamics of vegetated channels. Journal of Hydraulic Research, 50: 262279.CrossRefGoogle Scholar
Neumeier, U., and Amos, C. L. 2006. The influence of vegetation on turbulence and flow velocities in European salt-marshes. Sedimentology, 53: 259277.CrossRefGoogle Scholar
Nichols, M. M., Johnson, G. H., and Peebles, P. C. 1991. Modern sediments and facies model for a microtidal coastal plain estuary, the James Estuary, Virginia. Journal of Sedimentary Petrology, 61: 883899.Google Scholar
Nikora, N., and Nikora, V. 2007. A viscous drag concept for flow resistance in vegetated channels. Proceedings of the 32nd IAHR Congress, Venice.Google Scholar
O’Brien, M. P. 1969. Equilibrium flow areas of inlets on sandy coasts. Journal of Waterways and Harbors, 95: 4352.CrossRefGoogle Scholar
Van Oyen, T., Carniello, L., D’Alpaos, A., Temmerman, S., Troch, P., and Lanzoni, S. 2014. An approximate solution to the flow field on vegetated intertidal platforms: Applicability and limitations. Journal of Geophysical Research F: Earth Surface, 119: 16821703.Google Scholar
Van Oyen, T., Lanzoni, S., D’Alpaos, A., Temmerman, S., Troch, P., and Carniello, L. 2012. A simplified model for frictionally dominated tidal flows. Geophysical Research Letters, 39: 16.CrossRefGoogle Scholar
Pestrong, R. 1972. Tidal-flat sedimentation at cooley landing, Southwest San Francisco bay. Sedimentary Geology, 8: 251288.CrossRefGoogle Scholar
Pethick, J. 1992. Saltmarsh geomorphology. In: Saltmarshes: Morphodynamics, Conservation and Engineering Significance, Allen, J. R. L., and Pye, K. (eds). Cambridge University Press, Cambridge, pp. 4162.Google Scholar
Pethick, J. S. 1969. Drainage in salt marshes. In: The Coastline of England and Wales. 3rd edn. Steers, J. R. (ed.). Cambridge University Press: Cambridge, pp. 752730.Google Scholar
Pethick, J. S. 1980. Velocity surges and asymmetry in tidal channels. Estuarine and Coastal Marine Science, 11: 331345.CrossRefGoogle Scholar
Pye, K., and French, P. 1993. Erosion & Accretion Processes on British Salt Marshes. Cambridge Environmental Research Consultants.Google Scholar
Redfield, A. C. 1972. Development of a New England salt marsh. Ecological Monographs, 42: 201237.CrossRefGoogle Scholar
Rietkerk, M., and van de Koppel, J. 2008. Regular pattern formation in real ecosystems. Trends in Ecology and Evolution, 23: 169175.CrossRefGoogle ScholarPubMed
Rigon, R., Rinaldo, A., and Rodriguez-Iturbe, I. 1994. On landscape self-organization. Journal of Geophysical Research: Solid Earth, 99: 1197111993.CrossRefGoogle Scholar
Rinaldo, A., Dietrich, W. E., Rigon, R., Vogel, G. K., and Rodriguez-Iturbe, I. 1995. Geomorphological signatures of varying climate. Nature, 374: 632635.CrossRefGoogle Scholar
Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., and Dietrich, W. E. 1999a. Tidal networks 2. Watershed delineation and comparative network morphology. Water Resources Research, 35: 39053917.CrossRefGoogle Scholar
Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., and Dietrich, W. E. 1999b. Tidal networks 3. Landscape-forming discharges and studies in empirical geomorphic relationships. Water Resources Research, 35: 39193929.CrossRefGoogle Scholar
Rinaldo, A., Rodriguez-Iturbe, I., Rigon, R., Ijjasz-Vasquez, E., and Bras, R. L. 1993. Self-organized fractal river networks. Physical Review Letters, 70: 822825.CrossRefGoogle ScholarPubMed
Rupprecht, F., Möller, I., Paul, M., Kudella, M., Spencer, T., van Wesenbeeck, B. K., Wolters, G., et al. 2017. Vegetation-wave interactions in salt marshes under storm surge conditions. Ecological Engineering, 100: 301315.CrossRefGoogle Scholar
Salehi, M., and Strom, K. 2012. Measurement of critical shear stress for mud mixtures in the San Jacinto estuary under different wave and current combinations. Continental Shelf Research, 47: 7892.CrossRefGoogle Scholar
Schwarz, C., Ye, Q., Wal, D., Zhang, L., Bouma, T., Ysebaert, T., and Herman, P. 2014. Impacts of salt marsh plants on tidal channels initiation and inheritance. Journal of Geophysical Research: Earth Surface, 119: 385400.Google Scholar
Shepard, C. C., Crain, C. M., and Beck, M. W. 2011. The protective role of coastal marshes: A systematic review and meta-analysis. PLOS ONE 6: e27374.CrossRefGoogle ScholarPubMed
Shi, Z., Hamilton, L. J., and Wolanski, E. 2000. Near-bed currents and suspended sediment transport in saltmarsh canopies. Journal of Coastal Research, 16: 909914.Google Scholar
Silinski, A., Heuner, M., Schoelynck, J., Puijalon, S., Schröder, U., Fuchs, E., Troch, P., et al. 2015. Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of Scirpus maritimus. PLOS ONE, 10: 116.CrossRefGoogle Scholar
Soulsby, R. L. 1997. Dynamics of Marine Sands. Thomas Telford Publications, London.Google Scholar
Soulsby, R. L., and Clarke, S. 2005. Bed shear-stresses under combined waves and currents on smooth and rough beds. Hydraulics Research Report, 1905: TR 137.Google Scholar
Steel, T. J., and Pye, K. 1997. The development of salt marsh creek networks: Evidence from the UK. Canadian Coastal Conference, pp. 1–16.Google Scholar
Stefanon, L., Carniello, L., D’Alpaos, A., Lanzoni, S., D’Alpaos, A., and Lanzoni, S. 2010. Experimental analysis of tidal network growth and development. Continental Shelf Research 30: 950962.CrossRefGoogle Scholar
Stefanon, L., Carniello, L., D’Alpaos, A., and Rinaldo, A. 2012. Signatures of sea level changes on tidal geomorphology: Experiments on network incision and retreat. Geophysical Research Letters, 39: 16.CrossRefGoogle Scholar
Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38: 913920.CrossRefGoogle Scholar
Tambroni, N., Luchi, R., and Seminara, G. 2017. Can tide dominance be inferred from the point bar pattern of tidal meandering channels? Journal of Geophysical Research: Earth Surface, 122: 121.Google Scholar
Tanino, Y., and Nepf, H. M. 2008. Lateral dispersion in random cylinder arrays at high Reynolds number. Journal of Fluid Mechanics, 600: 339371.CrossRefGoogle Scholar
Tanino, Y., and Nepf, H. M. 2009. Laboratory investigation of lateral dispersion within dense arrays of randomly distributed cylinders at transitional Reynolds number. Physics of Fluids, 21: 113.CrossRefGoogle Scholar
Temmerman, S., Bouma, T. J., Govers, G., Wang, Z. B., De Vries, M. B., Herman, P. M. J., De Vries, M. B., and Herman, P. M. J. 2005. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research: Earth Surface, 110: 118.CrossRefGoogle Scholar
Temmerman, S., Bouma, T. J., Van de Koppel, J., Van der Wal, D., De Vries, M. B., and Herman, P. M. J. 2007. Vegetation causes channel erosion in a tidal landscape. Geology, 35: 631634.CrossRefGoogle Scholar
Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., and De Vriend, H. J. 2013. Ecosystem-based coastal defence in the face of global change. Nature, 504: 7983.CrossRefGoogle ScholarPubMed
Temmerman, S., De Vries, M. B., and Bouma, T. J. 2012. Coastal marsh die-off and reduced attenuation of coastal floods: A model analysis. Global and Planetary Change, 9293: 267274.CrossRefGoogle Scholar
Tonelli, M., Fagherazzi, S., and Petti, M. 2010. Modeling wave impact on salt marsh boundaries. Journal of Geophysical Research: Oceans, 115: 117.CrossRefGoogle Scholar
Torres, R., and Styles, R. 2007. Effects of topographic structure on salt marsh currents. Journal of Geophysical Research: Earth Surface, 112: F02023.CrossRefGoogle Scholar
Townend, I. H. 2010. An exploration of equilibrium in Venice Lagoon using an idealised form model. Continental Shelf Research, 30: 984999.CrossRefGoogle Scholar
Tucker, G. E., Catani, F., Rinaldo, A., and Bras, R. L. 2001. Statistical analysis of drainage density from digital terrain data. Geomorphology, 36: 187202.CrossRefGoogle Scholar
Valentine, K., Mariotti, G., and Fagherazzi, S. 2014. Repeated erosion of cohesive sediments with biofilms. Advances in Geosciences, 39: 914.CrossRefGoogle Scholar
Vandenbruwaene, W., Bouma, T. J., Meire, P., and Temmerman, S. 2013. Bio-geomorphic effects on tidal channel evolution: Impact of vegetation establishment and tidal prism change. Earth Surface Processes and Landforms, 38: 122132.CrossRefGoogle Scholar
Vandenbruwaene, W., Temmerman, S., Bouma, T. J., Klaassen, P. C., de Vries, M. B., Callaghan, D. P., van Steeg, P. et al. 2011. Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape. Journal of Geophysical Research: Earth Surface, 116: 113.CrossRefGoogle Scholar
Wamsley, T. V., Cialone, M. A., Smith, J. M., Atkinson, J. H., and Rosati, J. D. 2010. The potential of wetlands in reducing storm surge. Ocean Engineering, 37: 5968.CrossRefGoogle Scholar
van der Wegen, M., Wang, Z. B., Savenije, H. H. G., and Roelvink, J. A. 2008. Long-term morphodynamic evoluation and energy dissipation in a coastal plain, tidal embayment. Journal of Geophysical Research: Earth Surface, 113: 122.CrossRefGoogle Scholar
van Wesenbeeck, B. K., van De, K. oppel, J., Herman, P. M. J., and Bouma, T. J. 2008. Does scale-dependent feedback explain spatial complexity in salt-marsh ecosystems? Oikos, 117: 152159.CrossRefGoogle Scholar
White, B. L., and Nepf, H. M. 2007. Shear instability and coherent structures in shallow flow adjacent to a porous layer. Journal of Fluid Mechanics, 593: 132.CrossRefGoogle Scholar
White, B. L., and Nepf, H. M. 2008. A vortex-based model of velocity and shear stress in a partially vegetated shallow channel. Water Resources Research, 44: 115.CrossRefGoogle Scholar
Yang, S. L. 1998. The role of scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze estuary. Estuarine, Coastal and Shelf Science, 47: 227233.CrossRefGoogle Scholar
Ainouche, M. L., Baumel, A., Salmon, A., and Yannic, G. 2003. Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytologist, 161: 165172.CrossRefGoogle Scholar
Ainouche, M. L., Fortune, P. M., Salmon, A., Parisod, C., Grandbastien, M.-A., Fukunaga, K., Ricou, M., and Misset, M.-T. 2009. Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biological Invasions, 11: 11591173.CrossRefGoogle Scholar
Alber, M., Swenson, E. M., Adamowicz, S. C., and Mendelssohn, I. A. 2008. Salt marsh dieback: an overview of recent events in the US. Estuarine, Coastal and Shelf Science, 80: 111.CrossRefGoogle Scholar
Alberti, J., Escapa, M., Daleo, P., Casariego, A. and Iribarne, O. 2010a. Crab bioturbation and herbivory reduce pre- and post-germination success of Sarcocornia perennis in bare patches of SW Atlantic salt marshes. Marine Ecology Progress Series, 400: 5561.CrossRefGoogle Scholar
Alberti, J., Escapa, M., Daleo, P., Iribarne, O., Silliman, B., and Bertness, M. 2007a. Local and geographic variation in grazing intensity by herbivorous crabs in SW Atlantic salt marshes. Marine Ecology Progress Series, 349: 235243.CrossRefGoogle Scholar
Alberti, J., Méndez Casariego, A., Daleo, P., Fanjul, E., Silliman, B. R., Bertness, M. D., and Iribarne, O. 2010b. Abiotic stress mediates top-down and bottom-up control in a Southwestern Atlantic salt marsh. Oecologia, 163: 181191.CrossRefGoogle Scholar
Alberti, J., Montemayor, D., Alvarez, F., Casariego, A. M., Luppi, T., Canepuccia, A., Isacch, J. P., and Iribarne, O. 2007b. Changes in rainfall pattern affect crab herbivory rates in a SW Atlantic salt marsh. Journal of Experimental Marine Biology and Ecology, 353: 126133.CrossRefGoogle Scholar
Altieri, A. H., Bertness, M. D., Coverdale, T. C., Herrmann, N. C., and Angelini, C. 2012. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology, 93: 14021410.CrossRefGoogle ScholarPubMed
Angelini, C., Griffin, J. N., Van de Koppel, , Lamers, J. L. P. M., Smolders, A. J. P., Derksen-Hooijberg, M., Van der Heide, T. and Silliman, B. R. 2016. A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nature Communications, 7: 12473.CrossRefGoogle ScholarPubMed
Angelini, C., and Silliman, B. R. 2012. Patch size-dependent community recovery after massive disturbance. Ecology, 93: 101110.CrossRefGoogle ScholarPubMed
Armitage, A. R., and Fong, P. 2004. Upward cascading effects of nutrients: shifts in a benthic microalgal community and a negative herbivore response. Oecologia, 139: 560567.CrossRefGoogle Scholar
Baldwin, A. H., and Mendelssohn, I. A. 1998. Response of two oligohaline marsh communities to lethal and nonlethal disturbance. Oecologia, 116: 543555.CrossRefGoogle ScholarPubMed
Basan, P. B., and Frey, R. W. 1977. Actual-palaeontology and neoichnology of salt marshes near Sapelo Island, Georgia. Geological Journal Special Issue, 9: 4170.Google Scholar
Bazely, D. R., and Jefferies, R. L. 1986. Changes in the composition and standing crop of salt-marsh communities in response to the removal of a grazer. Journal of Ecology, 74: 693706.CrossRefGoogle Scholar
Beeftink, W. G. 1977. The coastal salt marshes of western and northern Europe: an ecological and phytosociological approach. In Chapman, V. J., ed., Wet Coastal Ecosystems. Elsevier Scientific Publishing Company, Amsterdam, pp. 109155.Google Scholar
Bernik, B. M., Li, H., and Blum, M. J. 2016. Genetic variability of Spartina alterniflora intentionally introduced to China. Biological Invasions, 18: 14851498.CrossRefGoogle Scholar
Bertness, M. D. 1984. Ribbed mussels and Spartina alterniflora production in a New England salt marsh. Ecology, 65: 17941807.CrossRefGoogle Scholar
Bertness, M. D. 1985. Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh. Ecology, 66: 10421055.CrossRefGoogle Scholar
Bertness, M. D. 1991a. Interspecific interactions among high marsh perennials in a New England salt marsh. Ecology, 72: 125137.CrossRefGoogle Scholar
Bertness, M. D. 1991b. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology, 72: 138148.CrossRefGoogle Scholar
Bertness, M. D., Brisson, C. P. Coverdale, T. C. Bevil, M. C. Crotty, S. M., and Suglia, E. R. 2014. Experimental predator removal causes rapid salt marsh die-off. Ecology Letters, 17: 830835.CrossRefGoogle ScholarPubMed
Bertness, M. D., and Callaway, R. 1994. Positive interactions in communities. Trends in Ecology and Evolution, 9: 191193.CrossRefGoogle ScholarPubMed
Bertness, M. D., Crain, C., Holdredge, C., and Sala, N. 2008. Eutrophication and consumer control of New England salt marsh primary productivity. Conservation Biology, 22: 131139.CrossRefGoogle ScholarPubMed
Bertness, M. D., and Ellison, A. M. 1987. Determinants of pattern in a New England salt marsh plant community. Ecological Monographs, 57: 129147.CrossRefGoogle Scholar
Bertness, M. D., and Ewanchuk, P. J. 2002. Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia, 132: 392401.CrossRefGoogle ScholarPubMed
Bertness, M. D., Gough, L., and Shumway, S. W. 1992a. Salt tolerances and the distribution of fugitive salt marsh species. Ecology, 73: 18421851.CrossRefGoogle Scholar
Bertness, M. D., and Hacker, S. D. 1994. Physical stress and positive associations among marsh plants. American Naturalist, 144: 363372.CrossRefGoogle Scholar
Bertness, M. D., and Pennings, S. C. 2000. Spatial variation in process and pattern in salt marsh plant communities in Eastern North America. Pages 39–57 in Weinstein, M. P. and Kreeger, D. A., eds., Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht.Google Scholar
Bertness, M. D., and Shumway, S. W. 1992. Consumer driven pollen limitation of seed production in marsh grasses. American Journal of Botany, 79: 288293.CrossRefGoogle Scholar
Bertness, M. D., and Shumway, S. W. 1993. Competition and facilitation in marsh plants. American Naturalist, 142: 718724.CrossRefGoogle ScholarPubMed
Bertness, M. D., Wikler, K., and Chatkupt, T. 1992b. Flood tolerance and the distribution of Iva frutescens across New England salt marshes. Oecologia, 91: 171178.CrossRefGoogle ScholarPubMed
Bilkovic, D. M., Mitchell, M. M., Isdell, R. E., Schliep, M., and Smyth, A. R. 2017. Mutualism between ribbed mussels and cordgrass enhances salt marsh nitrogen removal. Ecosphere, 8: e01795.CrossRefGoogle Scholar
Blakeslee, A. M. H., Altman, I., Miller, A. W., Byers, J. E., Hamer, C. E., and Ruiz, G. M. 2012. Parasites and invasions: a biogeographic examination of parasites and hosts in native and introduced ranges. Journal of Biogeography, 39: 609622.CrossRefGoogle Scholar
Blum, M. J., Bando, K. J., Katz, M., and Strong, D. R. 2007. Geographic structure, genetic diversity and source tracking of Spartina alterniflora. Journal of Biogeography, 34: 20552069.CrossRefGoogle Scholar
Boesch, D. F., and Turner, R. E. 1984. Dependence of fishery species on salt marshes – the role of food and refuge. Estuaries, 7: 460468.CrossRefGoogle Scholar
Bortolus, A., and Iribarne, O. 1999. Effects of the SW Atlantic burrowing crab Chasmagnathus granulata on a Spartina salt marsh. Marine Ecology, Progress Series, 178: 7988.CrossRefGoogle Scholar
Bradley, P. M., and Dunn, E. L. 1989. Effects of sulfide on the growth of three salt marsh halophytes of the southeastern United States. American Journal of Botany, 76: 17071713.CrossRefGoogle Scholar
Brewer, J. S., and Bertness, M. D. 1996. Disturbance and intraspecific variation in the clonal morphology of salt marsh perennials. Oikos, 77: 107116.CrossRefGoogle Scholar
Brewer, J. S., Levine, J. M., and Bertness, M. D. 1998. Interactive effects of elevation and burial with wrack on plant community structure in some Rhode Island salt marshes. Journal of Ecology, 86: 125136.CrossRefGoogle Scholar
Byers, J. E. 2000. Competition between two estuarine snails: implications for invasions of exotic species. Ecology, 81: 12251239.CrossRefGoogle Scholar
Byers, J. E., Rogers, T. L., Grabowski, J. H., Hughes, A. R., Piehler, M. F., and Kimbro, D. L. 2014. Host and parasite recruitment correlated at a regional scale. Oecologia, 174: 731738.CrossRefGoogle Scholar
Callaway, J. C., Sullivan, G., and Zedler, J. B. 2003. Species-rich plantings increase biomass and nitrogen accumulation in a wetland restoration experiment. Ecological Applications, 13: 16261639.CrossRefGoogle Scholar
Callaway, R. M. 1994. Facilitative and interfering effects of Arthrocnemum subterminale on winter annuals. Ecology, 75: 681686.CrossRefGoogle Scholar
Callaway, R. M., and Pennings, S. C. 1998. Impact of a parasitic plant on the zonation of two salt marsh perennials. Oecologia, 114: 100105.CrossRefGoogle ScholarPubMed
Cavanaugh, K. C., Kellner, J. R., Forde, A. J., Gruner, D. S., Parker, J. D., Rodriguez, W., and Feller, I. C. 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Science, USA, 111: 723727.CrossRefGoogle ScholarPubMed
Cebrian, J. 1999. Patterns in the fate of production in plant communities. American Naturalist, 154: 449468.CrossRefGoogle ScholarPubMed
Chapman, V. J. 1974. Salt marshes and salt deserts of the world. In: Reimold, R. J. and Queen, W. H., editors. Ecology of Halophytes. Academic Press, New York, pp. 319.CrossRefGoogle Scholar
Coverdale, T. C., Herrmann, N. C., Altieri, A. H., and Bertness, M. D.. 2013. Latent impacts: the role of historical human activity in coastal habitat loss. Frontiers in Ecology and the Environment, 11: 6974.CrossRefGoogle Scholar
Craft, C. 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnology and Oceanography, 52: 12201230.CrossRefGoogle Scholar
Crain, C. M., and Bertness, M. D. 2006. Ecosystem engineering across environmental gradients: implications for conservation and management. Bioscience, 56: 211218.CrossRefGoogle Scholar
Crain, C. M., Silliman, B. R., Bertness, S. L., and Bertness, M. D. 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology, 85: 25392549.CrossRefGoogle Scholar
Cresswell, W., Lind, J., and Quinn, J. L. 2010. Predator-hunting success and prey vulnerability: quantifying the spatial scale over which lethal and non-lethal effects of predation occur. Journal of Animal Ecology, 79: 556562.CrossRefGoogle ScholarPubMed
Crichton, O. W. 1960. Marsh crab: intertidal tunnel-maker and grass-eater. Estuarine Bulletin, 5: 310.Google Scholar
Crotty, S. M., Sharp, S. J., Bersoza, A. C., Prince, K. D., Cronk, K., Johnson, E., E., and Angelini, C. 2018. Foundation species patch configuration mediates salt marsh biodiversity, stability and multifunctionality. Ecology Letters, 21: 16811692.CrossRefGoogle ScholarPubMed
Currin, C. A., Newell, S. Y., and Paerl, H. W. 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Marine Ecology Progress Series, 121: 99116.CrossRefGoogle Scholar
Dai, T., and Wiegert, R. G. 1996a. Estimation of the primary productivity of Spartina alterniflora using a canopy model. Ecography, 19: 410423.CrossRefGoogle Scholar
Dai, T., and Wiegert, R. G. 1996b. Ramet population dynamics and net aerial primary productivity of Spartina alterniflora. Ecology, 77: 276288.CrossRefGoogle Scholar
Daleo, P., Alberti, J., Bruschetti, C. M., Pascual, J., Iribarne, O., and Silliman, B. R. 2015. Physical stress modifies top-down and bottom-up forcing on plant growth and reproduction in a coastal ecosystem. Ecology, 96: 21472156.CrossRefGoogle Scholar
Daleo, P., Alberti, J., Canepuccia, A., Escapa, M., Fanjul, E., Silliman, B. R., Bertness, M. D., and Iribarne, O. 2008. Mychorrhizal fungi determine salt-marsh plant zonation depending on nutrient supply. Journal of Ecology, 96: 431437.CrossRefGoogle Scholar
Daleo, P., Fanjul, E., Casariego, A. M., Silliman, B. R., Bertness, M. D., and Iribarne, O. 2007. Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecology Letters 10: 902908.CrossRefGoogle ScholarPubMed
Daleo, P., and Iribarne, O. 2009. Beyond competition: the stress-gradient hypothesis tested in plant–herbivore interactions. Ecology, 90: 23682374.CrossRefGoogle ScholarPubMed
Darley, W. M., Montague, C. L., Plumley, F. G., Sage, W. W., and Psalidas, A. T. 1981. Factors limiting edaphic algal biomass and productivity in a Georgia salt marsh. Journal of Phycology, 17: 122128.CrossRefGoogle Scholar
Davidson, A., Griffin, J. N., Angelini, C., Coleman, F., Atkins, R. L., and Silliman, B. R. 2015. Non-consumptive predator effects intensify grazer-plant interactions by driving vertical habitat shifts. Marine Ecology Progress Series, 537: 4958.CrossRefGoogle Scholar
de Bettencourt, A. M. M., Neves, R. J. J., Lança, M. J., Batista, P. J., and Alves, M. J. 1994. Uncertainties in import/export studies and the outwelling theory. An analysis with the support of hydrodynamic modelling. In Mitsch, W. J., ed., Global Wetlands: Old world and new. Elsevier Science B. V., Amsterdam, pp. 235256.Google Scholar
Deegan, L. A., Johnson, D. S., Warren, R. S., Peterson, B. J., Fleeger, J. W., Fagherazzi, S., and Wollheim, W. M. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature, 490: 388392.CrossRefGoogle ScholarPubMed
Denno, R. F. 1980. Ecotope differentiation in a guild of sap-feeding insects on the salt marsh grass, Spartina patens. Ecology, 61: 702714.CrossRefGoogle Scholar
Denno, R. F., Gratton, C., Dobel, H., and Finke, D. L. 2003. Predation risk affects relative strength of top-down and bottom-up impacts on insect herbivores. Ecology, 84: 10321044.CrossRefGoogle Scholar
Denno, R. F., Lewis, D., and Gratton, C. 2005. Spatial variation in the relative strength of top-down and bottom-up forces: causes and consequences for phytophagous insect populations. Annales Zoologici Fennici, 42: 295311.Google Scholar
Denno, R. F., Peterson, M. A., Gratton, C., Cheng, J., Langellotto, G. A., Huberty, A. F., and Finke, D. L. 2000. Feeding-induced changes in plant quality mediate interspecific competition between sap-feeding herbivores. Ecology, 81: 18141827.CrossRefGoogle Scholar
Denno, R. F., and Roderick, G. K. 1992. Density-related dispersal in planthoppers: effects of interspecific crowding. Ecology, 73: 13231334.CrossRefGoogle Scholar
Denno, R. F., Roderick, G. K., Peterson, M. A., Huberty, A. F., Dobel, H. G., Eubanks, M. D., Losey, J. E., and Langellotto, G. A. 1996. Habitat persistence underlies intraspecific variation in the dispersal strategies of planthoppers. Ecological Monographs, 66: 389408.CrossRefGoogle Scholar
Diaz-Ferguson, E., Robinson, J. D., Silliman, B., and Wares, J. P. 2010. Comparative phylogeography of North American Atlantic salt marsh communities. Estuaries and Coasts, 33: 828839.CrossRefGoogle Scholar
Döbel, H. G., Denno, R. F., and Coddington, J. A. 1990. Spider (Araneae) community structure in an intertidal salt marsh: effects of vegetation structure and tidal flooding. Environmental Entomology, 19: 13561370.CrossRefGoogle Scholar
Donnelly, J. P., Bryant, S. S., Butler, J., Dowling, J., Fan, L., Hausmann, N., Newby, P., et al. 2001a. 700 yr sedimentary record of intense hurricane landfalls in southern New England. Geological Society of America Bulletin, 113: 714727.2.0.CO;2>CrossRefGoogle Scholar
Donnelly, J. P., Roll, S., Wengren, M., Butler, J., Lederer, R., and Webb, T. III 2001b. Sedimentary evidence of intense hurricane strikes from New Jersey. Geology, 29: 615618.2.0.CO;2>CrossRefGoogle Scholar
Ellison, A. M. 1987. Effects of competition, disturbance, and herbivory on Salicornia europaea. Ecology, 68: 576586.CrossRefGoogle Scholar
Ellison, A. M. 1991. Ecology of case-bearing moths (Lepidoptera: coleophoridae) in a New England salt marsh. Environmental Entomology, 20: 857864.CrossRefGoogle Scholar
Elschot, K., Vermeulen, A., Vandenbruwaene, W., Bakker, J. P., Bouma, T. J., Stahl, J., Castelijns, H., and Temmerman, S. 2017. Top-down vs. bottom-up control on vegetation composition in a tidal marsh depends on scale. PLOS ONE, 12: e0169960.CrossRefGoogle Scholar
Engels, J. G., and Jensen, K. 2010. Role of biotic interactions and physical factors in determining the distribution of marsh species along an estuarine salinity gradient. Oikos, 119: 679685.CrossRefGoogle Scholar
Escapa, M., Minkoff, D. R., Perillo, G. M. E., and Iribarne, O. 2007. Direct and indirect effects of burrowing crab Chasmagnathus granulatus activities on erosion of southwest Atlantic Sarcocornia-dominated marshes. Limnology and Oceanography, 52: 23402349.CrossRefGoogle Scholar
Ewanchuk, P. J., and Bertness, M. D. 2003. Recovery of a northern New England salt marsh plant community from winter icing. Oecologia, 136: 616626.CrossRefGoogle ScholarPubMed
Fariña, J. M., He, Q., Silliman, B. R., and Bertness, M. D. 2017. Biogeography of salt marsh plant zonation on the Pacific coast of South America. Journal of Biogeography, 45: 238247.CrossRefGoogle Scholar
Fariña, J. M., Silliman, B. R., and Bertness, M. D. 2009. Can conservation biologists rely on established community structure rules to manage novel systems?…Not in salt marshes. Ecological Applications, 19: 413422.CrossRefGoogle Scholar
Feher, L. C., Osland, M. J., Griffith, K. T., Grace, J. B., Howard, R. J., Stagg, C. L., Enwright, N. M., et al. 2017. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere, 8: e01956.CrossRefGoogle Scholar
Finke, D. L., and Denno, R. F. 2004. Predator diversity dampens trophic cascades. Nature, 429: 407410.CrossRefGoogle ScholarPubMed
Finke, D. L., and Denno, R. F. 2006. Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades. Oecologi, 149: 265275.CrossRefGoogle ScholarPubMed
Foster, W. A., and Treherne, J. E. 1976. Insects of marine saltmarshes: problems and adaptations. In: Cheng, L., ed., Marine Insects. North-Holland Publishing Company, Amsterdam, pp. 542.Google Scholar
Frey, R. W., and Basan, P. B. 1978. Coastal salt marshes. In: Davis, R. A. Jr., ed., Coastal Sedimentary Environments. Springer-Verlag, New York, pp. 101169.CrossRefGoogle Scholar
Gabler, C. A., Osland, M. J., Grace, J. B., Stagg, C. L., Day, R. H., Hartley, S. B., Enwright, N. M., et al. 2017. Macroclimatic change expected to transform coastal wetland ecosystems this century. Nature Climate Change, 7: 142147.CrossRefGoogle Scholar
Gallagher, J. L., Reimold, R. J., Linthurst, R. A., and Pfeiffer, W. J. 1980. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt marsh. Ecology, 61: 303312.CrossRefGoogle Scholar
Ganong, W. F. 1903. The vegetation of the Bay of Fundy salt and diked marshes: an ecological study. Botanical Gazette, 36: 161186, 280–302, 350–367, 429–455.CrossRefGoogle Scholar
Gedan, K. B., Crain, C. M., and Bertness, M. D. 2009. Small-mammal herbivore control of secondary succession in New England tidal marshes. Ecology, 90: 430440.CrossRefGoogle ScholarPubMed
Grewell, B. J. 2008a. Hemiparasites generate environmental heterogeneity and enhance species coexistence in salt marshes. Ecological Applications, 18: 12971306.CrossRefGoogle ScholarPubMed
Grewell, B. J. 2008b. Parasite facilitates plant species coexistence in a coastal wetland. Ecology, 89: 14811488.CrossRefGoogle Scholar
Griffin, J. N., and Silliman, B. R. 2011 Predator diversity stabilizes and strengthens trophic control of a keystone grazer. Biology Letters, 7: 7982.CrossRefGoogle ScholarPubMed
Grosholz, E. 2010. Avoidance by grazers facilitates spread of an invasive hybrid plant. Ecology Letters, 13: 145153.CrossRefGoogle ScholarPubMed
Guo, H., and Pennings, S. C. 2012. Mechanisms mediating plant distributions across estuarine landscapes in a low-latitude tidal estuary. Ecology, 93: 90100.CrossRefGoogle Scholar
Hacker, S. D., and Bertness, M. D. 1995. A herbivore paradox: why salt marsh aphids live on poor-quality plants. American Naturalist, 145: 192210.CrossRefGoogle Scholar
Hacker, S. D., and Bertness, M. D. 1999. Experimental evidence for factors maintaining plant species diversity in a New England salt marsh. Ecology, 80: 20642073.CrossRefGoogle Scholar
Hackney, C. T., and Bishop, T. D. 1981. A note on the relocation of marsh debris during a storm surge. Estuarine, Coastal and Shelf Science, 12: 621624.CrossRefGoogle Scholar
Haines, E. B. 1976. Stable carbon isotope ratios in the biota, soils and tidal water of a Georgia salt marsh. Estuarine and Coastal Marine Science, 4: 609616.CrossRefGoogle Scholar
Haines, E. B., and Montague, C. L. 1979. Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology, 60: 4856.CrossRefGoogle Scholar
Hanley, T. C., Kimbro, D. L., and Hughes, A. R. 2017. Stress and subsidy effects of seagrass wrack duration, frequency, and magnitude on salt marsh community structure. Ecology, 98: 18841895.CrossRefGoogle ScholarPubMed
Hardwick-Witman, M. N. 1985. Biological consequences of ice rafting in a New England salt marsh community. Journal of Experimental Marine Biology and Ecology, 87: 283298.CrossRefGoogle Scholar
He, Q., Altieri, A. H., and Cui, B. 2015. Herbivory drives zonation of stress-tolerant marsh plants. Ecology, 96: 13181328.CrossRefGoogle ScholarPubMed
He, Q., and Bertness, M. D. 2014. Extreme stresses, niches, and positive species interactions along stress gradients. Ecology, 95: 14371443.CrossRefGoogle ScholarPubMed
He, Q., Bertness, M. D., and Altieri, A. H. 2013. Global shifts towards positive species interactions with increasing environmental stress. Ecology Letters, 16: 695706.CrossRefGoogle ScholarPubMed
He, Q., Bertness, M. D., Bruno, F., Li, B., Chen, G., Coverdale, T. C., Altieri, A. H., et al. 2014. Economic development and coastal ecosystem change in China. Scientific Reports, 4: 5995.CrossRefGoogle ScholarPubMed
He, Q., and Cui, B. 2015. Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone. Scientific Reports, 5: 8612.CrossRefGoogle ScholarPubMed
He, Q., Cui, B., Bertness, M. D., and An, Y. 2012. Testing the importance of plant strategies on facilitation using congeners in a coastal community. Ecology, 93: 20232029.CrossRefGoogle Scholar
He, Q., and Silliman, B. R. 2015. Biogeographic consequences of nutrient enrichment for plant-herbivore interactions in coastal wetlands. Ecology Letters, 18: 462471.CrossRefGoogle ScholarPubMed
He, Q., and Silliman, B. R. 2016. Consumer control as a common driver of coastal vegetation worldwide. Ecological Monographs, 86: 278294.CrossRefGoogle Scholar
He, Q., Silliman, B. R., and Cui, B. 2017a. Incorporating thresholds into understanding salinity tolerance: a study using salt-tolerant plants in salt marshes. Ecology and Evolution, 2017: 63266333.CrossRefGoogle Scholar
He, Q., Silliman, B. R., Liu, Z., and Cui, B. 2017b. Natural enemies govern ecosystem resilience in the face of extreme droughts. Ecology Letters, 20: 194201.CrossRefGoogle ScholarPubMed
Hensel, M. J. S., and Silliman, B. R. 2013. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem. Proceedings of the National Academy of Science, USA, 110: 2062120626.CrossRefGoogle Scholar
Hilton, G. M., Ruxton, G. D., and Cresswell, W. 1999. Choice of foraging area with respect to predation risk in redshanks: the effects of weather and predator activity. Oikos, 87: 295302.CrossRefGoogle Scholar
Ho, C.-K., and Pennings, S. C. 2008. Consequences of omnivory for trophic interactions on a salt marsh shrub. Ecology, 89: 17141722.CrossRefGoogle ScholarPubMed
Holdredge, C., Bertness, M. D., and Altieri, A. H. 2008. Role of crab herbivory in die-off of New England salt marshes. Conservation Biology, 23: 672679.CrossRefGoogle ScholarPubMed
Hopkinson, C. S., Gosselink, J. G., and Parrondo, R. T. 1978. Aboveground production of seven marsh plant species in coastal Louisiana. Ecology, 59: 760769.CrossRefGoogle Scholar
Hovel, K. A., Bartholomew, A., and Lipcius, R. N. 2001. Rapidly entrainable tidal vertical migrations in the salt marsh snail Littoraria irrorata. Estuaries, 24: 808816.CrossRefGoogle Scholar
Hughes, A. R., and Lotterhos, K. E. 2014. Genotypic diversity at multiple spatial scales in the foundation marsh species, Spartina alterniflora. Marine Ecology Progress Series, 497: 105117.CrossRefGoogle Scholar
Hughes, A. R., Moore, A. F. P., and Piehler, M. F. 2014. Independent and interactive effects of two facilitators on their habitat-providing host plant, Spartina alterniflora. Oikos, 123: 488499.CrossRefGoogle Scholar
Jensen, A. 1985. The effect of cattle and sheep grazing on salt-marsh vegetation at Skallingen, Denmark. Vegetatio, 60: 3748.CrossRefGoogle Scholar
Johnson, D. S., and Heard, R. 2017. Bottom-up control of parasites. Ecosphere, 8: e01885.CrossRefGoogle Scholar