Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T10:44:15.453Z Has data issue: false hasContentIssue false

Part I - Theory of Remote Compositional Analysis Techniques and Laboratory Measurements

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access
Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 1 - 258
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Amthauer, G. & Rossman, G.R. (1984) Mixed valence of iron in minerals with cation clusters. Physics and Chemistry of Minerals, 11, 3751.Google Scholar
Aronson, J.R., Bellotti, L.H., Eckroad, S.W., Emslie, A.G., McConnell, R.K., & Thüna, P.C. (1970) Infrared spectra and radiative thermal conductivity of minerals at high temperature. Journal of Geophysical Research, 75(17), 34433456.CrossRefGoogle Scholar
Baratoux, D., Toplis, M.J., Monnereau, M., & Sautter, V. (2013) The petrological expression of early Mars volcanism. Journal of Geophysical Research, 118, 5964.CrossRefGoogle Scholar
Bell, P.M. & Mao, H.K. (1973) Optical and chemical analysis of iron in Luna 20 plagioclase. Geochimica et Cosmochimica Acta, 37, 755759.CrossRefGoogle Scholar
Berg, B.L., Cloutis, E.A., Beck, P., et al. (2016) Reflectance spectroscopy (0.35–25 µm) of ammonium-bearing minerals and comparison to Ceres family asteroids. Icarus, 265, 218237.Google Scholar
Bishop, J.L. & Murad, E. (1996) Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars. In: Mineral spectroscopy: A tribute to Roger G. Burns. Special publication (Geochemical Society). No. 5. Geochemical Society, Houston, TX, 337358.Google Scholar
Bishop, J.L., Dyar, M.D., Lane, M.D., & Banfield, J.F. (2004) Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth. International Journal of Astrobiology, 3, 275285.Google Scholar
Bishop, J.L., Perry, K.A., Dyar, M.D., et al. (2013) Coordinated spectral and XRD analyses of magnesite-nontronite-forsterite mixtures and implications for carbonates on Mars. Journal of Geophysical Research, 118, 635650.Google Scholar
Burns, R.G. (1981) Intervalence transitions in mixed valence minerals of iron and titanium. Annual Review of Earth and Planetary Sciences, 9, 345383.CrossRefGoogle Scholar
Burns, R.G. (1993) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge.Google Scholar
Burns, R.G. & Vaughan, D.J. (1975) 2 – Polarized Electronic Spectra. In: Infrared and Raman spectroscopy of lunar and terrestrial minerals (Karr, C., ed.). Academic Press, New York, 3972.CrossRefGoogle Scholar
Cannon, K.M., Mustard, J.F., Parman, S.W., Sklute, E.C., Dyar, M.D., & Cooper, R.F. (2017) Spectral properties of martian and other planetary glasses and their detection in remotely sensed data. Journal of Geophysical Research, 122, 249268.Google Scholar
Carlson, R.W., Smythe, W.D., Lopes-Gautier, R.M.C., et al. (1997) The distribution of sulfur dioxide and other infrared absorbers on the surface of Io. Geophysical Research Letters, 24, 24792482.Google Scholar
Cheek, L.C. (2014) Foundations of lunar highland crustal mineralogy derived from remote sensing and laboratory spectroscopy of plagioclase-dominated Materials. Brown University Earth, Environmental and Planetary Sciences Theses and Dissertations.Google Scholar
Chemtob, S.M., Nickerson, R.D., Morris, R.V., Agresti, D.G., & Catalano, J.G. (2015) Synthesis and structural characterization of ferrous trioctahedral smectites: Implications for clay mineral genesis and detectability on Mars. Journal of Geophysical Research, 120, 11191140.Google Scholar
Cloutis, E.A., Sunshine, J.M., & Morris, R.V. (2004) Spectral reflectance-compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry. Meteoritics and Planetary Science, 39, 545565.Google Scholar
Cloutis, E.A., Hawthorne, F.C., Mertzman, S.A., et al. (2006) Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus, 184, 121157.Google Scholar
Cotton, F.A. (1990) Chemical applications of group theory, 3rd edn. Wiley-Interscience, New York.Google Scholar
DeMeo, F.E., Binzel, R.P., Slivan, S.M., & Bus, S.J. (2009) An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.Google Scholar
De Sanctis, M.C., Ammannito, E., Capria, M.T., et al. (2012) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697.Google Scholar
Dowty, E.C. & Clark, J.R. (1973) Crystal structure refinement and visible-region absorption spectra of a Ti3+ fassaite from the Allende meteorite. American Mineralogist, 58, 230242.Google Scholar
Eckert, B. & Steudel, R. (2003) Molecular spectra of sulfur molecules and solid sulfur allotropes. In: Elemental sulfur and sulfur-rich compounds II (Steudel, R., ed.). Springer, Berlin, Heidelberg, 3198.Google Scholar
Ehlmann, B.L. & Edwards, C.S. (2014) Mineralogy of the martian surface. Annual Review of Earth and Planetary Sciences, 42, 291315.CrossRefGoogle Scholar
Fraeman, A.A., Arvidson, R.E., Catalano, J.G., et al. (2013) A hematite-bearing layer in Gale crater, Mars: Mapping and implications for past aqueous conditions. Geology, 41, 11031106.Google Scholar
Gaffey, S.J. (1985) Reflectance spectroscopy in the visible and near-infrared (0.35–2.55 µm): Applications in carbonate petrology. Geology, 13, 270273.2.0.CO;2>CrossRefGoogle Scholar
Goldman, D.S. & Rossman, G.R. (1977) The spectra of iron in orthopyroxene revisited: The splitting of the ground state. American Mineralogist, 62, 151157.Google Scholar
Hapke, B. (1981) Bidirectional reflectance spectroscopy, 1. Theory. Journal of Geophysical Research, 86, 30393054.Google Scholar
Harris, D.C. & Bertolucci, M.D. (1989) Symmetry and spectroscopy: An introduction to vibrational and electronic spectroscopy. Dover Publications, Mineola, NY.Google Scholar
Horgan, B.H.N., Cloutis, E.A., Mann, P., & Bell, J.F. (2014) Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra. Icarus, 234, 132154.Google Scholar
Isaacson, P.J., Klima, R.L., Sunshine, J.M., et al. (2014) Visible to near-infrared optical properties of pure synthetic olivine across the olivine solid solution. American Mineralogist, 99, 467478.Google Scholar
Izenberg, N.R., Klima, R.L., Murchie, S.L., et al. (2014) The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus, 228, 364374.CrossRefGoogle Scholar
Karr, C. (1975) Infrared and Raman spectroscopy of lunar and terrestrial materials. Academic Press, New York.Google Scholar
Klima, R.L., Dyar, M.D., & Pieters, C.M. (2011) Near-infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure. Meteoritics and Planetary Science, 46, 379395.Google Scholar
Lane, M.D., Bishop, J.L., Dyar, M.D., et al. (2015) Mid-infrared emission spectroscopy and visible/near-infrared reflectance spectroscopy of Fe-sulfate minerals. American Mineralogist, 100, 6682.Google Scholar
Ling, Z., Cao, F., Ni, Y., Wu, Z., Zhang, J., & Li, B. (2016) Correlated analysis of chemical variations with spectroscopic features of the K–Na jarosite solid solutions relevant to Mars. Icarus, 271, 1929.CrossRefGoogle Scholar
Mao, H.K., Bell, P.M., & Virgo, D. (1977) Crystal-field spectra of fassaite from the Angra dos Reis meteorite. Earth and Planetary Science Letters, 35, 352356.CrossRefGoogle Scholar
Mattson, S.M. & Rossman, G.R. (1988) Fe2+-Ti4+ charge transfer in stoichiometric Fe2+,Ti4+-minerals. Physics and Chemistry of Minerals, 16, 7882.Google Scholar
McCollom, T.M., Ehlmann, B.L., Wang, A., Hynek, B., Moskowitz, B., & Berquó, T.S. (2014) Detection of iron substitution in natroalunite-natrojarosite solid solutions and potential implications for Mars. American Mineralogist, 99, 948964.Google Scholar
McCord, T.B., Adams, J.B., & Johnson, T.V. (1970) Asteroid vesta – Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
Meyer, B., Gouterman, M., Jensen, D., Oommen, T.V., Spitzer, K., & Stroyer-Hansen, T. (1972) The spectrum of sulfur and its allotropes. Advances in Chemistry, 110, 5372.Google Scholar
Morris, R.V., Lauer, H.V. Jr., Lawson, C.A., Gibson, E.K. Jr., Nace, G.A., & Stewart, C. (1985) Spectral and other physicochemical properties of submicron powders of hematite (a-Fe2O3), maghemite (g-Fe2O3), magnetite (Fe3O4), goethite (a-FeOOH), and lepidocrocite (g-FeOOH). Journal of Geophysical Research, 90, 31263144.CrossRefGoogle Scholar
Morris, R.V., Golden, D.C., Bell, J.F. III, et al. (2000) Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. Journal of Geophysical Research, 105, 17571817.CrossRefGoogle Scholar
Mustard, J.F., Poulet, F., Gendrin, A., et al. (2005) Olivine and pyroxene diversity in the crust of Mars. Science, 307, 15941597.CrossRefGoogle ScholarPubMed
Nash, D.B., Fanale, F.P., & Nelson, R.M. (1980) SO2 Frost: UV‐visible reflectivity and Io surface coverage. Geophysical Research Letters, 7, 665668.Google Scholar
Pieters, C.M. (1978) Mare basalt types on the front side of the moon – A summary of spectral reflectance data. Proc. 9th Lunar Planet. Sci. Conf., 3, 2825–2849.Google Scholar
Pieters, C.M. (1986) Composition of the lunar highland crust from near-infrared spectroscopy. Reviews of Geophysics, 24, 557578.CrossRefGoogle Scholar
Pieters, C.M., Head, J.W. III, Patterson, W., et al. (1986) The color of Venus. Science, 234, 13791383.Google Scholar
Pitman, K.M., Dobrea, E.Z.N., Jamieson, C.S., Dalton, J.B., Abbey, W.J., & Joseph, E.C.S. (2014) Reflectance spectroscopy and optical functions for hydrated Fe-sulfates. American Mineralogist, 99, 15931603.Google Scholar
Rossman, G.R. (1975) Spectroscopic and magnetic studies of ferric iron hydroxy sulfates: Intensification of color in ferric iron clusters bridged by a single hydroxide ion. American Mineralogist, 60, 698704.Google Scholar
Rossman, G.R. (1976) Spectroscopic and magnetic studies of ferric iron hydroxy sulfates: The series Fe(OH)SO4•nH2O and the jarosites. American Mineralogist, 61, 398404.Google Scholar
Rossman, G.R. (1988) Optical spectroscopy. In: Spectroscopic methods in mineralogy and geology (Hawthorne, F.C., ed.). Mineralogical Society of America, Washington, DC, 207–254.Google Scholar
Rossman, G.R. (1996) Why hematite is red: Correlation of optical absorption intensities and magnetic moments of Fe3+ minerals. In: Mineral spectroscopy: A tribute to Roger G. Burns. Special publication (Geochemical Society). No. 5. Geochemical Society, Houston, TX, 2327.Google Scholar
Rossman, G.R. (2014) Optical spectroscopy. Reviews in Mineralogy and Geochemistry, 78, 371398.CrossRefGoogle Scholar
Sherman, D.M. & Waite, T.D. (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, 70, 12621269.Google Scholar
Sherman, D.M. & Vergo, N. (1988) Optical (diffuse reflectance) and Mössbauer spectroscopic study of nontronite and related Fe-bearing smectites. American Mineralogist, 73, 13461354.Google Scholar
Sklute, E.C., Jensen, H.B., Rogers, A.D., & Reeder, R.J. (2015) Morphological, structural, and spectral characteristics of amorphous iron sulfates. Journal of Geophysical Research, 120, 809830.CrossRefGoogle ScholarPubMed
Staid, M.I., Pieters, C.M., Besse, S., et al. (2011) The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan‐1. Journal of Geophysical Research, 116, E00G10, DOI:10.1029/2010JE003735.Google Scholar
, C.-M., Singer, R.B., Parkin, K.M., & Burns, R.G. (1977) Temperature dependence of Fe2+ crystal field spectra: Implications to mineralogical mapping of planetary surfaces. Proc. 8th Lunar Sci. Conf, 1063–1079.Google Scholar
Sunshine, J.M. & Pieters, C.M. (1993) Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the Modified Gaussian Model. Journal of Geophysical Research, 98, 90759087.Google Scholar
Sunshine, J.M. & Pieters, C.M. (1998) Determining the composition of olivine from reflectance spectroscopy. Journal of Geophysical Research, 103, 13,675–13,688.Google Scholar
Vilas, F., Jarvis, K.S., & Gaffey, M.J. (1994) Iron alteration minerals in the visible and near-infrared spectra of low-albedo asteroids. Icarus, 109, 274283.CrossRefGoogle Scholar
Whitten, J. & Head, J.W. (2015) Lunar cryptomaria: Mineralogy and composition of ancient volcanic deposits. Planetary and Space Science, 106, 6781.CrossRefGoogle Scholar
Wildner, M., Andrut, M., & Rudowicz, C.Z. (2004) Optical absorption spectroscopy in geosciences: Part I: Basic concepts of crystal field theory; Part 2: Quantitative aspects of crystal fields. In: Spectroscopic methods in mineralogy (Beran, A. & Libowitzky, E., eds.). Mineralogical Society of Great Britain and Ireland.Google Scholar

References

Arnold, J.A. (2014) Refining mid-infrared emission spectroscopy as a tool for understanding planetary surface mineralogy through laboratory studies, computational models, and lunar remote sensing data. PhD thesis, State University of New York at Stony Brook.Google Scholar
Arnold, J.A., Glotch, T.D., & Plonka, A.M. (2014) Mid-infrared optical constants of clinopyroxene and orthoclase derived from oriented single-crystal reflectance spectra. American Mineralogist, 99, 19421955.Google Scholar
Aronson, J.R. (1986) Optical constants of monoclinic anisotropic crystals: Orthoclase. Spectrochimica Acta A: Molecular Spectroscopy, 42, 187190.CrossRefGoogle Scholar
Aronson, J.R., Emslie, A.G., Allen, R.V., & McLinden, H.G. (1967) Studies of the middle- and far-infrared spectra of mineral surfaces for application in remote compositional mapping of the Moon and planets. Journal of Geophysical Research, 72, 687703.Google Scholar
Aronson, J.R., Emslie, A.G., Miseo, E.V., Smith, E.M., & Strong, P.F. (1983) Optical constants of monoclinic anisotropic crystals: Gypsum. Applied Optics, 22, 40934098.CrossRefGoogle ScholarPubMed
Aronson, J.R., Emslie, A.G., & Strong, P.F. (1985) Optical constants of triclinic anisotropic crystals: Blue vitriol. Applied Optics, 24, 12001203.Google Scholar
Bandfield, J.L. (2009) Effects of surface roughness and graybody emissivity on martian thermal infrared spectra. Icarus, 202, 414428.Google Scholar
Bandfield, J.L., Hayne, P.O., Williams, J.-P., Greenhagen, B.T., & Paige, D.A. (2015) Lunar surface roughness derived from LRO Diviner Radiometer observations. Icarus, 248, 357372.Google Scholar
Belousov, M.V. & Pavinich, V.F. (1978) Infrared reflection spectra of monoclinic crystals. Optics and Spectroscopy, 45, 771774.Google Scholar
Berreman, D.W. (1972) Optics in stratified and anisotropic media: 4×4-matrix formulation. Journal of the Optical Society of America, 62, 502510.Google Scholar
Bohren, C.F. & Huffman, D.R. (2007) Absorption and scattering of light by small particles. John Wiley & Sons, Hoboken, NJ.Google Scholar
Born, M. & Wolf, E. (1980) Principles of optics. Pergamon Press, Oxford.Google Scholar
Chandrasekhar, S. (1960) Radiative transfer. Dover Publications, Mineola, NY.Google Scholar
Christensen, P.R. & Harrison, S.T. (1993) Thermal infrared emission spectroscopy of natural surfaces: Application to desert varnish coatings on rocks. Journal of Geophysical Research, 98, 19,81919,834.Google Scholar
Clark, B.E., Bus, S.J., Rivkin, A.S., et al. (2004) E-type asteroid spectroscopy and compositional modeling. Journal of Geophysical Research, 109, E02001, DOI:10.1029/2003JE002200.Google Scholar
Conel, J.E. (1969) Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums. Journal of Geophysical Research, 74, 16141634.Google Scholar
Cooper, C.D. & Mustard, J.F. (2002) Spectroscopy of loose and cemented sulfate-bearing soils: Implications for duricrust on Mars. Icarus, 158, 4255.Google Scholar
Davidsson, B.J.R., Rickman, H., Bandfield, J.L., et al. (2015) Interpretation of thermal emission. I. The effect of roughness for spatially resolved atmosphereless bodies. Icarus, 252, 121.CrossRefGoogle Scholar
Denevi, B.W., Lucey, P.G., Hochberg, E.J., & Steutel, D. (2007) Near‐infrared optical constants of pyroxene as a function of iron and calcium content. Journal of Geophysical Research, 112, E05009, DOI:10.1029/2006JE002802.CrossRefGoogle Scholar
Donaldson, Hanna K.L., Thomas, I.R., Bowles, N.E., et al. (2012a) Laboratory emissivity measurements of the plagioclase solid solution series under varying environmental conditions. Journal of Geophysical Research, 117, E11004, DOI:10.1029/2012JE004184.Google Scholar
Donaldson, Hanna K.L., Wyatt, M.B., Thomas, I.R., et al. (2012b) Thermal infrared emissivity measurements under a simulated lunar environment: Application to the Diviner Lunar Radiometer experiment. Journal of Geophysical Research, 117, E00H05, DOI:10.1029/2011JE003862.Google Scholar
Donaldson, Hanna K.L., Cheek, L.C., Pieters, C.M., et al. (2014) Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust. Journal of Geophysical Research, 119, 15161545.Google Scholar
Donaldson, Hanna K.L., Greenhagen, B.T., Patterson, W.R., et al. (2017) Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon. Icarus, 283, 326342.Google Scholar
Emslie, A.G. & Aronson, J.R. (1983) Determination of the complex dielectric tensor of triclinic crystals: Theory. Journal of the Optical Society of America, 73, 916919.CrossRefGoogle Scholar
Feely, K.C. & Christensen, P.R. (1999) Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks. Journal of Geophysical Research, 104, 24,19524,210.Google Scholar
Glotch, T.D. & Rossman, G.R. (2009) Mid-infrared reflectance spectra and optical constants of six iron oxide/oxyhydroxide phases. Icarus, 204, 663671.CrossRefGoogle Scholar
Glotch, T., Rossman, R.G., & Aharonson, O. (2007) Mid-infrared (5–100 μm) reflectance spectra and optical constants of ten phyllosilicate minerals. Icarus, 192, 605622.Google Scholar
Glotch, T.D., Bandfield, J.L., Tornabene, L.L., Jensen, H.B., & Seelos, F.P. (2010) Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophysical Research Letters, 37, 15.Google Scholar
Glotch, T.D., Bandfield, J.L., Lucey, P.G., et al. (2015) Formation of lunar swirls by magnetic field standoff of the solar wind. Nature Communications, 6, 6189.Google Scholar
Glotch, T.D., Bandfield, J.L., Wolff, M.J., Arnold, J.A., & Che, C. (2016) Constraints on the composition and particle size of chloride salt-bearing deposits on Mars. Journal of Geophysical Research, 121, 454471.Google Scholar
Greenhagen, B.T., Lucey, P.G., Wyatt, M.B., et al. (2010) Global silicate mineralogy of the Moon from the Diviner Lunar Radiometer. Science, 329, 1507.Google Scholar
Hapke, B. (1981) Bidirectional reflectance spectroscopy, 1. Theory. Journal of Geophysical Research, 86, 30393054.Google Scholar
Hapke, B. (1993/2012) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge.Google Scholar
Hapke, B. (1996) A model of radiative and conductive energy transfer in planetary regoliths. Journal of Geophysical Research, 101, 1681716831.Google Scholar
Hardgrove, C.J., Rogers, A.D., Glotch, T.D., & Arnold, J.A. (2016) Thermal emission spectroscopy of microcrystalline sedimentary phases: Effects of natural surface roughness on spectral feature shape. Journal of Geophysical Research, 121, 542555.CrossRefGoogle Scholar
Henderson, B.G. & Jakosky, B.M. (1994) Near-surface thermal gradients and their effects on mid-infrared emission spectra of planetary surfaces. Journal of Geophysical Research, 99, 1906319073.Google Scholar
Henderson, B.G. & Jakosky, B.M. (1997) Near‐surface thermal gradients and mid‐IR emission spectra: A new model including scattering and application to real data. Journal of Geophysical Research, 102, 65676580.Google Scholar
Henderson, B.G., Lucey, P.G., & Jakosky, B.M. (1996) New laboratory measurements of mid‐IR emission spectra of simulated planetary surfaces. Journal of Geophysical Research, 101, 1496914975.Google Scholar
Hiroi, T. (1994) Recalculation of the isotropic H-functions. Icarus, 109(2), 313317.CrossRefGoogle Scholar
Höfer, S., Werling, S., & Beyerer, J. (2013) Thermal pattern generation for infrared deflectometry. AMA Conferences 2013 – Nürnberg Exhibition Centre, May 14–16, 2013 – SENSOR, OPTO and IRS², 785790.CrossRefGoogle Scholar
Huffman, D.R. & Stapp, J.L. (1971) Interstellar silicate extinction related to the 2200 Å band. Nature Physical Science, 229, 45.CrossRefGoogle Scholar
Ito, G., Arnold, J.A., & Glotch, T.D. (2017) T‐matrix and radiative transfer hybrid models for densely packed particulates at mid‐infrared wavelengths. Journal of Geophysical Research, 122, 822838.CrossRefGoogle Scholar
Keshava, N. & Mustard, J.F. (2002) Spectral unmixing. IEEE Signal Processing Magazine, 19(1), 4457, DOI:10.1109/79.974727.Google Scholar
Lane, M.D. (1999) Midinfrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite. Journal of Geophysical Research, 104, 1409914108.Google Scholar
Lawrence, S.J. & Lucey, P.G. (2007) Radiative transfer mixing models of meteoritic assemblages. Journal of Geophysical Research, 112, E07005, DOI:10.1029/2006JE002765.Google Scholar
Li, S. & Li, L. (2011) Radiative transfer modeling for quantifying lunar surface minerals, particle size, and submicroscopic metallic Fe. Journal of Geophysical Research, 116, E09001, DOI:10.1029/2011JE003837.CrossRefGoogle Scholar
Li, S. & Milliken, R.E. (2015) Estimating the modal mineralogy of eucrite and diogenite meteorites using visible–near infrared reflectance spectroscopy. Meteoritics and Planetary Science, 50, 18211850.Google Scholar
Liu, Y., Glotch Timothy, D., Scudder Noel, A., et al. (2016) End‐member identification and spectral mixture analysis of CRISM hyperspectral data: A case study on southwest Melas Chasma, Mars. Journal of Geophysical Research, 121, 20042036.CrossRefGoogle Scholar
Logan, L.M. & Hunt, G.R. (1970) Emission spectra of particulate silicates under simulated lunar conditions. Journal of Geophysical Research, 75, 65396548.Google Scholar
Logan, L.M., Hunt, G.R., Salisbury, J.W., & Balsamo, S.R. (1973) Compositional implications of Christiansen frequency maximums for infrared remote sensing applications. Journal of Geophysical Research, 78, 49835003.Google Scholar
Long, L.L., Querry, M.R., Bell, R.J., & Alexander, R.W. (1993) Optical properties of calcite and gypsum in crystalline and powdered form in the infrared and far-infrared. Infrared Physics, 34, 191201.Google Scholar
Lucey, P.G. (1998) Model near-infrared optical constants of olivine and pyroxene as a function of iron content. Journal of Geophysical Research, 103, 17031713.Google Scholar
Mackowski, D.W. (1994) Calculation of total cross sections of multiple-sphere clusters. Journal of the Optical Society of America A, 11, 28512861.Google Scholar
Mackowski, D.W. & Mishchenko, M.I. (1996) Calculation of the T matrix and the scattering matrix for ensembles of spheres. Journal of the Optical Society of America A, 13, 22662278.Google Scholar
Mackowski, D.W. & Mishchenko, M.I. (2011) A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 21822192.Google Scholar
Mayerhöfer, T. & Popp, J. (2007) Employing spectra of polycrystalline materials for the verification of optical constants obtained from corresponding low-symmetry single crystals. Applied Optics, 46, 327334.Google Scholar
Mie, G. (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 330, 377445.Google Scholar
Millán, L., Thomas, I., & Bowles, N. (2011) Lunar regolith thermal gradients and emission spectra: Modeling and validation. Journal of Geophysical Research, 116, DOI: 10.1029/2011JE003874.Google Scholar
Mishchenko, M.I. (1994) Asymmetry parameters of the phase function for densely packed scattering grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 52, 95110.CrossRefGoogle Scholar
Moersch, J.E. & Christensen, P.R. (1995) Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra. Journal of Geophysical Research, 100, 74657477.Google Scholar
Murcray, F.H., Murcray, D.G., & Williams, W.J. (1970) Infrared emissivity of lunar surface features: 1. Balloon‐borne observations. Journal of Geophysical Research, 75, 26622669.Google Scholar
Mustard, J.F. & Pieters, C.M. (1987) Quantitative abundance estimates from bidirectional reflectance measurements. Journal of Geophysical Research, 92, E617E626.CrossRefGoogle Scholar
Mustard, J.F. & Pieters, C.M. (1989) Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. Journal of Geophysical Research, 94, 1361913634.Google Scholar
Mustard, J.F. & Hays, J.E. (1997) Effects of hyperfine particles on reflectance spectra from 0.3 to 25 µm. Icarus, 125, 145163.Google Scholar
Mustard, J.F. & Sunshine, J.M. (1999) Spectral analysis for Earth science: Investigations using remote sensing data. Remote sensing for the Earth sciences: Manual of remote sensing, 3 (Rencz, A., ed.). John Wiley & Sons, New York, 251307.Google Scholar
Mustard, J.F., Li, L., & He, G.Q. (1998) Nonlinear spectral mixture modeling of lunar multispectral data: Implications for lateral transport. Journal of Geophysical Research, 103, 1941919425.CrossRefGoogle Scholar
Osterloo, M.M., Hamilton, V.E., Bandfield, J.L., et al. (2008) Chloride-bearing materials in the southern highlands of Mars. Science, 319, 16511654.Google Scholar
Osterloo, M.M., Anderson, F.S., Hamilton, V.E., & Hynek, B.M. (2010) Geologic context of proposed chloride-bearing materials on Mars. Journal of Geophysical Research, 115, E10012, DOI:10.1029/2010JE003613.CrossRefGoogle Scholar
Pitman, K.M., Wolff, M.J., & Clayton, C. (2005) Application of modern radiative transfer tools to model laboratory quartz emissivity. Journal of Geophysical Research, 110, E08003, DOI:10.1029/2005JE002428.Google Scholar
Poulet, F. & Erard, S. (2004) Nonlinear spectral mixing: Quantitative analysis of laboratory mineral mixtures. Journal of Geophysical Research, 109, DOI:10.1029/2003JE002179.Google Scholar
Poulet, F., Bibring, J.P., Langevin, Y., et al. (2009) Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. Icarus, 201(1), 6983, DOI:10.1016/J.Icarus.2008.12.025.Google Scholar
Ramsey, M.S. & Christensen, P.R. (1998) Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research, 103, 577596.Google Scholar
Robertson, K.M., Milliken, R.E., & Li, S. (2016) Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra. Icarus, 277, 171186.Google Scholar
Rogers, A.D. & Aharonson, O. (2008) Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements. Journal of Geophysical Research, 113, E06S14, DOI:10.1029/2007JE002995.Google Scholar
Roush, T.L., Pollack, J.B., & Orenberg, J. (1991) Derivation of midinfrared (5–25 µm) optical constants of some silicates and palagonite. Icarus, 94, 191208.Google Scholar
Roush, T., Esposito, F., Rossman, G.R., & Colangeli, L. (2007) Estimated optical constants of gypsum in the regions of weak absorptions: Application of scattering theories and comparisons to independent measurements. Journal of Geophysical Research, 112, DOI:10.1029/2007JE002920.Google Scholar
Salisbury, J.W. & Wald, A. (1992) The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals. Icarus, 96, 121128.Google Scholar
Salisbury, J.W. & Walter, L.S. (1989) Thermal infrared (2.5–13.5 µm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. Journal of Geophysical Research, 94, 91929202.Google Scholar
Salisbury, F.B., Wald, A., & D’Aria, D.M. (1994) Thermal-infrared remote sensing and Kirchhoff’s law 1. Laboratory measurements. Journal of Geophysical Research, 99, 1189711911.CrossRefGoogle Scholar
Shirley, K.A. & Glotch, T.D. (2019) Particle size effects on mid-IR spectra of lunar analog materials in a simulated lunar environment. Journal of Geophysical Research, 124, 970–988.Google Scholar
Shirley, K.A., Glotch, T.D., Greenhagen, B.T., & White, M. (2015) A multiplicative approach to correcting the thermal channels for the Diviner Lunar Radiometer Experiment. 46th Lunar Planet. Sci. Conf., Abstract #1992.Google Scholar
Shkuratov, Y., Starukhina, L., Hoffmann, H., & Arnold, G. (1999) A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon. Icarus, 137, 235246.Google Scholar
Sklute, E.C., Glotch, T.D., Piatek, J., Woerner, W., Martone, A., & Kraner, M. (2015) Optical constants of synthetic potassium, sodium, and hydronium jarosite. American Mineralogist, 100, 11101122.CrossRefGoogle Scholar
Spitzer, W.G. & Kleinman, D.A. (1961) Infrared lattice bands of quartz. Physical Review, 121, 13241335.Google Scholar
Stamnes, K., Tsay, S.-C., Wiscombe, W., & Jayaweera, K. (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 27, 25022509.Google Scholar
Swanepoel, R. (1983) Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E: Scientific Instruments, 16, 1214.CrossRefGoogle Scholar
Thomas, I.R., Greenhagen, B.T., Bowles, N.E., Donaldson Hanna, K.L., Temple, J., & Calcutt, S.B. (2012) A new experimental setup for making thermal emission measurements in a simulated lunar environment. Review of Scientific Instruments, 83, 124502.Google Scholar
Trang, D., Lucey Paul, G., Gillis‐Davis Jeffrey, J., Cahill Joshua, T.S., Klima Rachel, L., & Isaacson Peter, J. (2013) Near‐infrared optical constants of naturally occurring olivine and synthetic pyroxene as a function of mineral composition. Journal of Geophysical Research, 118, 708732.Google Scholar
Van de Hulst, H.C. (1957) Light scattering by small particles. Dover Publications, Mineola, NY.Google Scholar
Wald, A.E. (1994) Modeling thermal infrared (2–14 μm) reflectance spectra of frost and snow. Journal of Geophysical Research, 99, 24,24124,250.Google Scholar
Wald, A.E. & Salisbury, J.W. (1995) Thermal infrared directional emissivity of powdered quartz. Journal of Geophysical Research, 100, 2466524675.Google Scholar
Wenrich, M.L. & Christensen, P.R. (1996) Optical constants of minerals derived from emission spectroscopy: Application to quartz. Journal of Geophysical Research, 101, 1592115931.Google Scholar

References

Adler, H.H. & Kerr, P.F. (1963) Infrared spectra, symmetry and structure relations of some carbonate minerals. American Mineralogist, 48, 839853.Google Scholar
Adler, H.H. & Kerr, P.F. (1965) Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals. American Mineralogist, 50, 132147.Google Scholar
Arnold, J.A., Glotch, T.D., & Plonka, A.M. (2014) Mid-infrared optical constants of clinopyroxene and orthoclase derived from oriented single-crystal reflectance spectra. American Mineralogist, 99, 19421955.Google Scholar
Aronson, J.R. & Elmslie, A.G. (1973) Spectral reflectance and emittance of particulate materials. 2: Application and results. Applied Optics, 12, 25732585.CrossRefGoogle ScholarPubMed
Aronson, J.R., Emslie, A.G., & McLinden, H.G. (1966) Infrared spectra from particulate surfaces. Science, 152, 345346.Google Scholar
Ashley, J.W. (2011) Meteorites on Mars as Planetary Research Tools with Special Considerations for Martian Weathering Processes. PhD dissertation, Arizona State University.Google Scholar
Ashley, J.W. & Christensen, P.R. (2012) Thermal emission spectroscopy of unpowdered meteorites. 43rd Lunar Planet. Sci. Conf., Abstract #2519.Google Scholar
Baldridge, A.M. & Christensen, P.R. (2009) A laboratory technique for thermal emission measurement of hydrated minerals. Applied Spectroscopy, 63, 678688.Google Scholar
Baldridge, A.M., Hook, S.J., Grove, C.I., & Rivera, G. (2009) The ASTER spectral library version 2.0. Remote Sensing of the Environment, 13, 711715.Google Scholar
Bishop, J.L., Lane, M.D., Dyar, M.D., & Brown, A.J. (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43, 3554.Google Scholar
Bishop, J.L., Lane, M.D., Dyar, M.D., King, S.J., Brown, A.J., & Swayze, G. (2014a) Spectral properties of Ca-sulfates: Gypsum, bassanite, and anhydrite. American Mineralogist, 99, 21052115.Google Scholar
Bishop, J.L., Quinn, R., & Dyar, M.D. (2014b) Spectral and thermal properties of perchlorate salts and implications for Mars. American Mineralogist, 99, 15801592.Google Scholar
Bishop, J.L., Murad, E., & Dyar, M.D. (2015) Akaganéite and schwertmannite: Spectral properties, structural models and geochemical implications of their possible presence on Mars. American Mineralogist, 100, 738746.Google Scholar
Bishop, J.L., King, S.J., Lane, M.D., et al. (2017) Spectral properties of anhydrous carbonates and nitrates. 48th Lunar Planet. Sci. Conf., Abstract #2362.Google Scholar
Born, M. & Wolf, E. (1980) Principles of Optics, 6th edn. Pergamon, Tarrytown, NY, 627633.Google Scholar
Böttcher, M.E., Gehlken, P.-L., Fernandez-Gonzalez, A., & Prieto, M. (1997) Characterization of synthetic BaCO3–SrCO3 (witherite-strontianite) solid-solutions by Fourier transform infrared spectroscopy. European Journal of Mineralogy, 9, 519528.Google Scholar
Che, C. & Glotch, T.D. (2012) The effect of high temperatures on the mid-to-far-infrared and near-infrared reflectance spectra of phyllosilicates and natural zeolites: Implications for martian exploration. Icarus, 218, 585601.CrossRefGoogle Scholar
Che, C., Glotch, T.D., Bish, D.L., Michalski, J.R., & Xu, W. (2011) Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals. Journal of Geophysical Research, 116, DOI:10.1029/2010JE003740.Google Scholar
Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., & Tao, X. (2015) Applications of micro-Fourier Transform Infrared Spectroscopy (FTIR) in the geological sciences: A review. International Journal of Molecular Sciences, 16, 26227.Google Scholar
Chihara, H., Koike, C., Tsuchiyama, A., Tachibana, S., & Sakamoto, D. (2002) Compositional dependence of infrared absorption spectra of crystalline silicates. I. Mg-Fe pyroxenes. Astronomy & Astrophysics, 391, 267273.Google Scholar
Christensen, P.R. & Harrison, S.T. (1993) Thermal infrared emission spectroscopy of natural surfaces: Application to desert varnish coatings on rocks. Journal of Geophysical Research, 98, 19,81919,834.Google Scholar
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., et al. (2000a) A thermal emission spectral library of rock-forming minerals. Journal of Geophysical Research, 105, 97359739.Google Scholar
Christensen, P.R., Bandfield, J.L., Clark, R.N., et al. (2000b) Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. Journal of Geophysical Research, 105, 96239642.Google Scholar
Christensen, P.R., Morris, R.V., Lane, M.D., Bandfield, J.L., & Malin, M.C. (2001) Global mapping of martian hematite mineral deposits: Remnants of water-driven processes on early Mars. Journal of Geophysical Research, 106, 2387323885.Google Scholar
Clark, R.N., Swayze, G.A., Wise, R., et al. (2007) USGS Digital Spectral Library splib06a: U.S. Geological Survey, Digital Data Series 231.Google Scholar
Cloutis, E.A. (2015) The University of Winnepeg’s Planetary Spectrophotometer Facility (aka HOSERLab): What’s new. 46th Lunar Planet. Sci. Conf., Abstract #1187.Google Scholar
Cloutis, E.A., Pranoti, M.A., & Mertzman, S.A. (2002) Spectral reflectance properties of zeolites and remote sensing implications. Journal of Geophysical Research, 107, E9, DOI:1029/2000JE001467.Google Scholar
Coblentz, W.W. (1905) Investigations of infra-red spectra, 35. Carnegie Institution Publications, Washington, DC.Google Scholar
Coblentz, W.W. (1906) Investigations of infra-red spectra, 65. Carnegie Institution Publications, Washington, DC.Google Scholar
Coblentz, W.W. (1908) Investigations of infra-red spectra, 97. Carnegie Institution Publications, Washington, DC.Google Scholar
Conel, J.E. (1965) Infrared thermal emission from silicates. Jet Propulsion Laboratory Technical Memorandum 33–243.Google Scholar
Conel, J.E. (1969) Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums. Journal of Geophysical Research, 74, 16141634.Google Scholar
Cooper, C.D. & Mustard, J.F. (1999) Effects of very fine particle size on reflectance spectra of smectite and palagonitic soil. Icarus, 142, 557570.Google Scholar
Cooper, B.L., Salisbury, J.W., Killen, R.M., & Potter, A.E. (2002), Midinfrared spectral features of rocks and their powders. Journal of Geophysical Research, 107, 5017, 10.1029/2001JE001462.Google Scholar
Crowley, J.K. & Hook, S.J. (1996) Mapping playa evaporate minerals and associated sediments in Death Valley, California, with multispectral thermal infrared images. Journal of Geophysical Research, 101, 643660.Google Scholar
Dominguez, G., McLeod, A.S., Gainsforth, Z., et al. (2014) Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples. Nature Communications, 5, 5445.Google Scholar
Donaldson Hanna, K. & Sprague, A.L. (2009) Vesta and the HED meteorites: Mid-infrared modeling of minerals and their abundances. Meteoritics and Planetary Science, 44(11), 17551770.Google Scholar
Donaldson Hanna, K.L., Thomas, I.R., Bowles, N.E., et al. (2012) Laboratory emissivity measurements of the plagioclase solid solution series under varying environmental conditions. Journal of Geophysical Research, 117, E11004, DOI:10.1029/2012JE004184.Google Scholar
Donaldson Hanna, K.L., Greenhagen, B.T., Patterson, W.R. III, et al. (2017) Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon. Icarus, 283, 326–342.Google Scholar
Dyar, M.D., Glotch, T.D., Lane, M.D., et al. (2011) Spectroscopy of Yamato 984028. Polar Science, 4, 530549.Google Scholar
Edwards, C.S. & Christensen, P.R. (2013) Microscopic emission and reflectance thermal infrared spectroscopy: Instrumentation for quantitative in situ mineralogy of complex planetary surfaces, Applied Optics, 52, 22002217.CrossRefGoogle ScholarPubMed
Estep-Barnes, P.A. (1977) Infrared spectroscopy. In Zussman, J. (ed.), Physical methods in determinative mineralogy, 2nd edn. Academic Press, New York, 529603.Google Scholar
Farmer, V.C. (1974) The infrared spectra of minerals. The Mineralogical Society, London.Google Scholar
Feely, K.C. & Christensen, P.R. (1999) Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks. Journal of Geophysical Research, 104, 24,19524,210.Google Scholar
Friedlander, L.R., Glotch, T.D., Bish, D.L., et al. (2015) Structural and spectroscopic changes to natural nontronite induced by experimental impacts between 10 and 40 GPa. Journal of Geophysical Research, 120, 888912.Google Scholar
Frost, R.L., Kloprogge, T., Martens, W.N., & Williams, P. (2002) Vibrational spectroscopy of the basic manganese, ferric and ferrous phosphate minerals: Strunzite, ferristrunzite, and ferrostrunzite. Neues Jahrbuch für Mineralogie, Monatshefte, 11, 481496.Google Scholar
Gadsden, J.A. (1975) Infrared spectra of minerals and related inorganic compounds. Butterworth & Co, London.Google Scholar
Glotch, T.D. & Rossman, G.R. (2009) Mid-infrared reflectance spectra and optical constants of six oxide/oxyhydroxide phases. Icarus, 204, 663671.Google Scholar
Glotch, T.D., Christensen, P.R., & Sharp, T.G. (2006) Fresnel modeling of hematite crystal surfaces and application to martian hematite spherules. Icarus, 181, 408418.Google Scholar
Glotch, T.D., Rossman, G.R., & Aharonson, O. (2007) Mid-infrared (5–100 μm) reflectance spectra and optical constants of ten phyllosilicate minerals. Icarus, 192, 605622.Google Scholar
Goodrich, C.A., Kita, N.T., Yin, Q., et al. (2017) Petrogenesis and provenance of ungrouped achondrite Northwest Africa 7325 from petrology, trace elements, oxygen, chromium and titanium isotopes, and mid-IR spectroscopy. Geochimica et Cosmochimica Acta, 203, 381403.Google Scholar
Hamilton, V.E. (2000) Thermal infrared emission spectroscopy of the pyroxene mineral series. Journal of Geophysical Research, 105, 97019716.CrossRefGoogle Scholar
Hamilton, V.E. (2010) Thermal infrared (vibrational) spectroscopy of Mg-Fe olivines: A review and applications to determining the composition of planetary surfaces. Chemie der Erde, 70, 733.CrossRefGoogle Scholar
Hamilton, V.E. & Christensen, P.R. (2000) Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy. Journal of Geophysical Research, 105, 97179733.Google Scholar
Hamilton, V.E., Wyatt, M.B., McSween, H.Y. Jr., & Christensen, P.R. (2001) Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy. 2. Application to martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer. Journal of Geophysical Research, 106(7), 1472214746.Google Scholar
Hamilton, V.E., Christensen, P.R., McSween, H.Y. Jr., & Bandfield, J.L. (2003) Searching for the source regions of Martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars. Meteoritics and Planetary Science, 38(6), 871885.Google Scholar
Hapke, B. (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge.Google Scholar
Helbert, J., Moroz, L.V., Maturilli, A., et al. (2007) A set of laboratory analogue materials for the MERTIS instrument on the ESA BepiColombo mission to Mercury. Advanced Space Research, 40, 272279.Google Scholar
Hellwege, K.H., Lesch, W., Plihal, M., & Schaack, G. (1970) Zwei-Phononen-Absorptionsspektren und Dispersion der Schwingungszweige in Kristallen der Kalkspatstruktur. Zeitschrift für Physik, 232, 6186.Google Scholar
Henderson, B.G. & Jakosky, B.M. (1997) Near-surface thermal gradients and mid-IR emission spectra: A new model including scattering and application to real data. Journal of Geophysical Research, 102, 65676580.Google Scholar
Huminicki, D.M.C. & Hawthorne, F.C. (2002) The crystal chemistry of the phosphate minerals. In: Phosphates: Geochemical, geobiological, and materials importance (Kohn, M.J., Rakovan, J., & Hughes, J.M., eds.). Reviews in Mineralogy and Geochemistry. Mineralogical Society of America, Washington, DC, 48, 123253.Google Scholar
Hunt, G.R. & Vincent, R.K. (1968) The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes. Journal of Geophysical Research, 73, 60396046.Google Scholar
Johnson, J.R., Hörz, F. & Staid, M.I. (2003) Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars. American Mineralogist, 88, 15751582.Google Scholar
Keller, L.P., Bajt, S., Baratta, G.A., et al. (2006) Infrared spectroscopy of comet 81P/Wild 2 samples returned by Stardust. Science, 314, 17281731.Google Scholar
Kereszturi, A., Gyollai, I., & Szabó, M. (2015) Case study of chondrule alteration with IR spectroscopy in NWA 2086 CV3 meteorite. Planetary and Space Science, 106, 122131.Google Scholar
King, P.L., Ramsey, M.S., McMillan, P.F., & Swayze, G.A. (2004) Laboratory Fourier Transform Infrared Spectroscopy methods for geologic samples. In: Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remote Sensing (King, P.L., Ramsey, M.S., & Swayze, G.A., eds.). Mineralogical Association of Canada, Short Course 33, 57–91.Google Scholar
Klima, R.L. & Pieters, C.M. (2006) Near- and mid-infrared microspectroscopy of the Ronda peridotite. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002537.Google Scholar
Kodama, H. (1985) Infrared Spectra of Minerals: Reference Guide to Identification and Characterization of Minerals for The Study of Soils. Agriculture Canada, Ottawa.Google Scholar
Koike, C., Chihara, H., Tsuchiyama, A., Suto, H., Sogawa, H., & Okuda, H. (2003) Compositional dependence of infrared absorption spectra of crystalline silicate. II. Natural and synthetic olivines. Astronomy & Astrophysics, 399, 11011107.Google Scholar
Kokaly, R.F., Clark, R.N., Swayze, G.A., et al. (2017) USGS Spectral Library Version 7, USGS Data Series, Reston, VA.Google Scholar
Lane, M.D. (1999) Midinfrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite. Journal of Geophysical Research, 104, 1409914108.Google Scholar
Lane, M.D. (2007) Midinfrared emission spectroscopy of sulfate and sulfate-bearing minerals. American Mineralogist, 92, 118.Google Scholar
Lane, M.D. & Christensen, P.R. (1997) Thermal infrared emission spectroscopy of anhydrous carbonates. Journal of Geophysical Research, 102, 2558125592.Google Scholar
Lane, M.D. & Christensen, P.R. (1998) Thermal infrared emission spectroscopy of salt minerals predicted for Mars. Icarus, 135, 528536.Google Scholar
Lane, M.D., Morris, R.V., Mertzman, S.A., & Christensen, P.R. (2002) Evidence for platy hematite grains in Sinus Meridiani, Mars. Journal of Geophysical Research, 107(E12), 5126, DOI:10.1029/2001JE001832.Google Scholar
Lane, M.D., Glotch, T.D., Dyar, M.D., et al. (2011a) Midinfrared spectroscopy of synthetic olivines: Thermal emission, specular and diffuse reflectance, and attenuated total reflectance studies of forsterite to fayalite. Journal of Geophysical Research, 116, E08010, DOI:10.1029/2010JE003588.Google Scholar
Lane, M.D., Mertzman, S.A., Dyar, M.D., & Bishop, J.L. (2011b) Phosphate minerals measured in the visible-near infrared and thermal infrared: Spectra and XRD analyses. 42nd Lunar Planet. Sci. Conf., Abstract #1013.Google Scholar
Lane, M.D., Bishop, J.L., Dyar, M.D., et al. (2015) Mid-infrared emission spectroscopy and visible/near-infrared reflectance spectroscopy of Fe-sulfate minerals. American Mineralogist, 100, 6682, DOI:10.2138/am-2015-4762.Google Scholar
Logan, L.M. & Hunt, G.R. (1970) Emission spectra of particulate silicates under simulated lunar conditions. Journal of Geophysical Research, 75, 65396548.Google Scholar
Logan, L.M., Hunt, G.R., Salisbury, J.W., & Balsamo, S.R. (1973) Compositional implications of Christiansen frequency maximums for infrared remote sensing applications. Journal of Geophysical Research, 78, 49835003.Google Scholar
Long, L.L., Querry, M.R., Bell, R.J., & Alexander, R.W. (1993) Optical properties of calcite and gypsum in crystalline and powdered form in the infrared and far-infrared. Infrared Physics, 34, 191201.Google Scholar
Lorentz, H.A. (1880) Über die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Annalen der Physik, 245, 641665.Google Scholar
Lorenz, L. (1881) Über die Refractionsconstante. Annalen der Physik, 247, 70103.Google Scholar
Lyon, R.J.P. (1964) Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils. II. Rough and powdered surfaces. NASA Contract Report, CR-100.Google Scholar
Lyon, R.J.P. (1965) Analysis of rocks by spectral infrared emission (8–25 µm). Economic Geology, 60, 715736.Google Scholar
Lyon, R.J.P. & Burns, E.A. (1963) Analysis of rocks and minerals by reflected infrared radiation. Economic Geology, 58, 274284.Google Scholar
Marino, M., Carati, A., & Galgani, L. (2007) Classical light dispersion theory in a regular lattice. Annals of Physics, 322, 799823.Google Scholar
Maturilli, A., Helbert, J., Witzke, A., & Moroz, L. (2006) Emissivity measurements of analogue materials for the interpretation of data from PFS on Mars Express and MERTIS on Bepi-Colombo. Planetary and Space Science, 54(11), 10571064.Google Scholar
Maturilli, A., Helbert, J., & Moroz, L. (2008) The Berlin emissivity database (BED). Planetary and Space Science, 56(3–4), 420425. Spectral library now available at figshare.com/articles/BED_Emissivity_Spectral_Library/1536469.Google Scholar
Maturilli, A., Helbert, J., Ferrari, S., Davidsson, B., & D’Amore, M. (2016) Characterization of asteroid analogues by means of emission and reflectance spectroscopy in the 1- to 100-m spectral range. Earth Planets and Space, 68(1), article ID 113, 111.Google Scholar
Michalski, J.R., Kraft, M.D., Diedrich, T., Sharp, T.G., & Christensen, P.R. (2003) Thermal emission spectroscopy of the silica polymorphs and considerations for remote sensing of Mars. Geophysical Research Letters, 30, DOI:10.1029/2003GL018354.Google Scholar
Michalski, J.R., Kraft, M.D., Sharp, T.G., Williams, L.B., & Christensen, P.R. (2006) Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission Spectrometer data. Journal of Geophysical Research, 111 (E3), DOI:10.1029/2005JE002438.Google Scholar
Milam, K.A., McSween, H.Y. Jr., & Christensen, P.R. (2007) Plagioclase compositions derived from thermal emission spectra of compositionally complex mixtures: Implications for martian feldspar mineralogy. Journal of Geophysical Research, 112, DOI:10.1029/2006JE002880.Google Scholar
Milosevic, M. (2012) Internal Reflection and ATR Spectroscopy. In: Chemical analysis: A series of monographs on analytical chemistry and its applications (Mark F. Vitha, Series Editor). John Wiley & Sons, New York.Google Scholar
Moenke, H. (1962) Mineralspektren I: Die Ultrarotabsorption der Häufigsten und Wirtschaftlich Wichtigsten Halogenid-, Oxyd-, Hydroxyd-, Carbonat-, Nitrat-, Borat-, Sulfat-, Chromat-, Wolframat-, Molybdat-, Phosphat-, Arsenat-, Vanadat- und Silikatmineralien im Spektralbereich 400–4000 cm–1. Akademie Verlag, Berlin.Google Scholar
Moenke, H. (1966) Mineralspektren II: Die Ultrarotabsorption Häufiger und Paragenetisch oder Wirtschaftlich Wichtiger Carbonate-, Borat-, Sulfat-, Chromat-, Phosphat-, Arsenat-, und Vanadat- und Silikatmineralien im Spektralbereich 400–4000 cm–1 (25–2.5 microns). Akademie Verlag, Berlin.Google Scholar
Moersch, J.E. & Christensen, P.R. (1995) Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra. Journal of Geophysical Research, 100, 74657477.Google Scholar
Morlok, A., Bowey, J., Köhler, M., & Grady, M.M. (2006) FTIR 2–16 micron spectroscopy of micron-sized olivines from primitive meteorites. Meteoritics and Planetary Science, 41, 773784.Google Scholar
Mozgawa, W., Krol, M., & Barczyk, K. (2011) FT-IR studies of zeolites from different structural groups. Chemik, 65, 667674.Google Scholar
Mustard, J.F. & Hays, J.E. (1997) Effects of hyperfine particles on reflectance spectra from 0.3 to 25 µm. Icarus, 125, 145163.Google Scholar
Onomichi, M., Kudo, K., & Arai, T. (1971) Reflection spectra of calcite in far-infrared region. Journal of the Physical Society of Japan, 31, 1837.Google Scholar
Palomba, E., Rotundi, A., & Colangeli, L. (2006) Infrared micro-spectroscopy of the martian meteorite Zagami: Extraction of individual mineral phase spectra. Icarus, 182, 6879.Google Scholar
Pieters, C.M. & Hiroi, T. (2004) RELAB (Reflectance Experiment Laboratory): A NASA multiuser spectroscopy facility. 35th Lunar Planet. Sci. Conf., Abstract #1720.Google Scholar
Pieters, C.M., Klima, R.L., Hiroi, T., et al. (2008) Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine. Journal of Geophysical Research, 113, E06004, DOI:10.1029/2007JE002939.Google Scholar
Pitman, K.M., Dijkstra, C., Hofmeister, A.M., & Speck, A.K. (2010) Infrared laboratory absorbance spectra of olivine: Using classical dispersion analysis to extract peak parameters. Mon. Royal Astronomical Society, 406, 460481.Google Scholar
Pitman, K.M., Noe Dobrea, E.Z., Jamieson, C.S., Dalton III, J.B., Abbey, W.J., & Joseph, E.C.S. (2014) Reflectance spectroscopy and optical functions for hydrated Fe-sulfates. American Mineralogist, 99, 15931603.Google Scholar
Ramsey, M.S. & Christensen, P.R. (1998) Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research, 103, 577596.Google Scholar
Rogers, A.D. & Nekvasil, H. (2015) Feldspathic rocks on Mars: Compositional constraints from infrared spectroscopy and possible formation mechanisms. Geophysical Research Letters, 42, 26192626.Google Scholar
Ross, S.D. (1974a) Sulphates and other oxy-anions of Group VI. In: The Infrared Spectra of Minerals (Farmer, V.C., ed.). The Mineralogical Society, London, 423444.Google Scholar
Ross, S.D. (1974b) Phosphates and other oxyanions of Group V. In: The Infrared Spectra of Minerals (Farmer, V.C., ed.). The Mineralogical Society, London, 383422.Google Scholar
Ruff, S.W. (2004) Spectral evidence for zeolite in the dust on Mars. Icarus, 168, 131143.Google Scholar
Ruff, S.W. & Christensen, P.R. (2007) Basaltic andesite, altered basalt, and a TES-based search for smectite clay minerals on Mars. Geophysical Research Letters, 34, DOI:10.1029/2007GL029602.Google Scholar
Ruff, S.W., Christensen, P.R., Barbera, P.W., & Anderson, D.L. (1997) Quantitative thermal emission spectroscopy of minerals: A technique for measurement and calibration. Journal of Geophysical Research, 102, 1489914913.Google Scholar
Salisbury, F.B. & D’Aria, D.M. (1992) Emissivity of terrestrial materials in the 8–14 µm atmospheric window. Remote Sensing Environment, 42, 83106.Google Scholar
Salisbury, J.W. & Eastes, J.W. (1985) The effect of particle size and porosity on spectral contrast in the mid-infrared. Icarus, 64, 586588.Google Scholar
Salisbury, J.W. & Wald, A. (1992) The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals. Icarus, 96, 121128.Google Scholar
Salisbury, J.W. & Walter, L.S. (1989) Thermal infrared (2.5–13.5 µm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. Journal of Geophysical Research, 94, 91929202.Google Scholar
Salisbury, J.W., Walter, L.S., & D’Aria, D. (1988) Mid-infrared (2.5 to 13.5 µm) spectra of igneous rocks. USGS Open File Report 88–686.Google Scholar
Salisbury, J.W., D’Aria, D.M., & Jarosewich, E. (1991a) Midinfrared (2.5–13.5 µm) reflectance spectra of powdered stony meteorites. Icarus, 92, 280297.Google Scholar
Salisbury, J.W., Walter, L.S., Vergo, N., & D’Aria, D.M. (1991b) Infrared (2.1–25 µm) spectra of minerals. Johns Hopkins University Press, Baltimore, MD.Google Scholar
Salisbury, J.W., Wald, A., & D’Aria, D.M. (1994) Thermal-infrared remote sensing and Kirchhoff’s law 1. Laboratory measurements. Journal of Geophysical Research, 99, DOI:10.1029/93JB03600.Google Scholar
Spitzer, W.G. & Kleinman, D.A. (1961) Infrared lattice bands of quartz. Physical Review, 121, 13241335.Google Scholar
Stutman, J.M., Termine, J.D., & Posner, A.S. (1965) Vibrational spectra and the structure of the phosphate ion in some calcium phosphates. Transactions of the New York Academy of Sciences, 27, 669675, DOI:10.1111/j.2164-0947.Google Scholar
Thomas, I.R., Greenhagen, B.T., Bowles, N.E., Donaldson Hanna, K.L., Temple, J., & Calcutt, S.B. (2012) A new experimental setup for making thermal emission measurements in a simulated lunar environment. Review of Scientific Instruments, 83, 124502.Google Scholar
Vernazza, P., Delbo, M., King, P.L., et al. (2012) High surface porosity as the origin of emissivity features in asteroid spectra. Icarus, 221, 11621172.Google Scholar
Vernazza, P., Castillo-Rogez, J., Beck, P., et al. (2017) Different origins or different evolutions? Decoding the spectral diversity among C-type asteroids. The Astronomical Journal, 153, 72.Google Scholar
Wald, A.E. & Salisbury, J.W. (1995) Thermal infrared directional emissivity of powdered quartz. Journal of Geophysical Research, 100, 2466524675.Google Scholar
Weinger, B.A., Reffner, J.A., & DeForest, P.R. (2009) A novel approach to the examination of soil evidence: Mineral identification using infrared microprobe analysis. Journal of Forensic Sciences, 54, 851856.Google Scholar
Weir, C.E. & Lippincott, E.R. (1961) Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. Journal of Research of the National Bureau of Standards A: Physics and Chemistry, 65A, 173183.Google Scholar
Wenrich, M.L. & Christensen, P.R. (1996) Optical constants of minerals derived from emission spectroscopy: Application to quartz. Journal of Geophysical Research, 101, 1592115931.Google Scholar
Wyatt, M.B., Hamilton, V.E., McSween, H.Y. Jr., Christensen, P.R., & Taylor, L.A. (2001) Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy, 1. Determination of mineralogy, chemistry, and classification strategies. Journal of Geophysical Research, 106, 14,71114,732.CrossRefGoogle Scholar
Yesiltas, M., Sedlmair, J., & Peale, R.E. (2017) Synchrotron-based three-dimensional Fourier-transform infrared spectro-microtomography of Murchison meteorite grain. Applied Spectroscopy, 71(6), 11981208.Google Scholar

References

Adams, J.B. (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the Solar System. Journal of Geophysical Research, 79, 48294836.Google Scholar
Adams, J.B. (1975) Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals. In: Infrared and Raman spectroscopy of lunar and terrestrial minerals (Karr, C., ed.). Academic Press, New York, 91116.Google Scholar
Adams, J.B. & Filice, A.L. (1967) Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. Journal of Geophysical Research, 72, 57055715.Google Scholar
Adams, J.B. & Goullaud, L.H. (1978) Plagioclase feldspars: Visible and near infrared diffuse reflectance spectra as applied to remote sensing. Proceedings of the 9th Lunar and Planetary Science Conference, 29012909.Google Scholar
Allen, C.C., Gooding, J.L., Jercinovic, M., & Keil, K. (1981) Altered basaltic glass: A terrestrial analog to the soil of Mars. Icarus, 45, 347369.Google Scholar
Amador, E.S., Bishop, J.L., McKeown, N.K., Parente, M., & Clark, J.T. (2009) Detection of Kaolinite at Mawrth Vallis, Mars: Analysis of laboratory mixtures and development of remote sensing parameters. 40th Lunar Planet. Sci. Conf., Abstract #2188.Google Scholar
Anderson, J.H. & Wickersheim, K.A. (1964) Near infrared characterization of water and hydroxyl groups on silica surfaces. Surface Science, 2, 252260.Google Scholar
Baker, L.L., Strawn, D.G., McDaniel, P.A., et al. (2011) Poorly crystalline, iron-bearing aluminosilicates and their importance on Mars. 42nd Lunar Planet. Sci. Conf., Abstract #1939.Google Scholar
Bell, J.F., III, Morris, R.V. & Adams, J.B. (1993) Thermally altered palagonitic tephra: A spectral and process analog to the soil and dust of Mars. Journal of Geophysical Research, 98, 33733385.Google Scholar
Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., & Wolf, M. (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica Cosmochimica Acta, 60, 21112121.Google Scholar
Bish, D. & Carey, J.W. (2001) Thermal behavior of natural zeolites. In: Natural zeolites: Occurrence, properties, and applications. Mineralogical Society of America Reviews in Mineralogy and Geochemistry (Bish, D.L. & Ming, D.W., eds.). Mineralogical Society of America, Washington, DC, 403–452.Google Scholar
Bish, D.L., Carey, J.W., Vaniman, D.T., & Chipera, S.J. (2003) Stability of hydrous minerals on the martian surface. Icarus, 164, 96103.Google Scholar
Bishop, J.L. (2005) Hydrated minerals on Mars. In: Water on Mars and life. Advances in Astrobiology and Biogeophysics. (Tokano, T., ed.). Springer, Berlin, 65–96.Google Scholar
Bishop, J.L. & Murad, E. (1996) Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars. In: Mineral spectroscopy: A tribute to Roger G. Burns (Dyar, M.D., McCammon, C., & Schaefer, M.W., eds.). The Geochemical Society, Houston, TX, 337358.Google Scholar
Bishop, J.L. & Murad, E. (2002) Spectroscopic and geochemical analyses of ferrihydrite from hydrothermal springs in Iceland and applications to Mars. In: Volcano–ice interactions on Earth and Mars (Smellie, J.L. & Chapman, M.G., eds.). Special Publication No.202. Geological Society, London, 357370.Google Scholar
Bishop, J.L. & Murad, E. (2005) The visible and infrared spectral properties of jarosite and alunite. American Mineralogist, 90, 11001107.Google Scholar
Bishop, J.L. & Pieters, C.M. (1995) Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials. Journal of Geophysical Research, 100, 53695379.Google Scholar
Bishop, J.L. & Rampe, E.B. (2016) Evidence for a changing martian climate from the mineralogy at Mawrth Vallis. Earth and Planetary Science Letters, 448, 4248.Google Scholar
Bishop, J.L., Pieters, C.M., & Burns, R.G. (1993) Reflectance and Mössbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials. Geochimica Cosmochimica Acta, 57, 45834595.Google Scholar
Bishop, J.L., Pieters, C.M., & Edwards, J.O. (1994) Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays and Clay Minerals, 42, 702716.Google Scholar
Bishop, J.L., Fröschl, H., & Mancinelli, R.L. (1998a) Alteration processes in volcanic soils and identification of exobiologically important weathering products on Mars using remote sensing. Journal of Geophysical Research, 103, 31,45731,476.Google Scholar
Bishop, J.L., Pieters, C.M., Hiroi, T., & Mustard, J.F. (1998b) Spectroscopic analysis of martian meteorite Allan Hills 84001 powder and applications for spectral identification of minerals and other soil components on Mars. Meteoritics and Planetary Science, 33, 699708.Google Scholar
Bishop, J.L., Mustard, J.F., Pieters, C.M., & Hiroi, T. (1998c) Recognition of minor constituents in reflectance spectra of Allan Hills 84001 chips and the importance for remote sensing on Mars. Meteoritics and Planetary Science, 33, 693698.Google Scholar
Bishop, J.L., Murad, E., Madejová, J., Komadel, P., Wagner, U., & Scheinost, A. (1999) Visible, Mössbauer and infrared spectroscopy of dioctahedral smectites: Structural analyses of the Fe-bearing smectites Sampor, SWy-1 and SWa-1. 11th International Clay Conference, June, 1997 (Kodama, H., Mermut, A.R., & Torrance, J.K., eds.). Ottawa, 413419.Google Scholar
Bishop, J.L., Lougear, A., Newton, J., et al. (2001) Mineralogical and geochemical analyses of Antarctic sediments: A reflectance and Mössbauer spectroscopy study with applications for remote sensing on Mars. Geochimica Cosmochimica Acta, 65, 28752897.Google Scholar
Bishop, J.L., Schiffman, P., & Southard, R.J. (2002a) Geochemical and mineralogical analyses of palagonitic tuffs and altered rinds of pillow lavas on Iceland and applications to Mars. In: Volcano–ice interactions on Earth and Mars (Smellie, J.L. & Chapman, M.G., eds.). Special Publication No. 202. Geological Society, London, 371392.Google Scholar
Bishop, J.L., Murad, E., & Dyar, M.D. (2002b) The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Minerals, 37, 617628.Google Scholar
Bishop, J.L., Madeová, J., Komadel, P., & Fröschl, H. (2002c) The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Minerals, 37, 607616.Google Scholar
Bishop, J.L., Minitti, M.E., Lane, M.D., & Weitz, C.M. (2003) The influence of glassy coatings on volcanic rocks from Mauna Iki, Hawaii and applications to rocks on Mars. 34th Lunar Planet. Sci. Conf., Abstract #1516.Google Scholar
Bishop, J.L., Murad, E., Lane, M.D., & Mancinelli, R.L. (2004) Multiple techniques for mineral identification on Mars: A study of hydrothermal rocks as potential analogues for astrobiology sites on Mars. Icarus, 169, 331–323.Google Scholar
Bishop, J.L., Dyar, M.D., Lane, M.D., & Banfield, J.F. (2005) Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth. International Journal of Astrobiology, 3, 275285.Google Scholar
Bishop, J.L., Schiffman, P., Murad, E., Dyar, M.D., Drief, A., & Lane, M.D. (2007) Characterization of alteration products in tephra from Haleakala, Maui: A visible-infrared spectroscopy, Mössbauer spectroscopy, XRD, EPMA and TEM study. Clays and Clay Minerals, 55, 117.Google Scholar
Bishop, J.L., Dyar, M.D., Sklute, E.C., & Drief, A. (2008a) Physical alteration of antigorite: A Mössbauer spectroscopy, reflectance spectroscopy and TEM study with applications to Mars. Clay Minerals, 43, 5567.Google Scholar
Bishop, J.L., Lane, M.D., Dyar, M.D., & Brown, A.J. (2008b) Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43, 3554.Google Scholar
Bishop, J.L., Parente, M., Weitz, C.M., et al. (2009) Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. Journal of Geophysical Research, 114, E00D09, DOI:10.1029/2009JE003352.Google Scholar
Bishop, J.L., Parente, M., & Hamilton, V.E. (2011a) Spectral signatures of martian meteorites and what they can tell us about rocks on Mars. Meteoritical Society 74th Annual Meeting, Abstract #5393.Google Scholar
Bishop, J.L., Gates, W.P., Makarewicz, H.D., McKeown, N.K., & Hiroi, T. (2011b) Reflectance spectroscopy of beidellites and their importance for Mars. Clays and Clay Minerals, 59, 376397.Google Scholar
Bishop, J.L., Schelble, R.T., McKay, C.P., Brown, A.J., & Perry, K.A. (2011c) Carbonate rocks in the Mojave Desert as an analog for martian carbonates. International Journal of Astrobiology, 10, 349358, DOI:10.1017/S1473550411000206.Google Scholar
Bishop, J.L., Perry, K.A., Dyar, M.D., et al. (2013a) Coordinated spectral and XRD analyses of magnesite-nontronite-forsterite mixtures and implications for carbonates on Mars. Journal of Geophysical Research, 118, 635650.Google Scholar
Bishop, J.L., Rampe, E.B., Bish, D.L., et al. (2013b) Spectral and hydration properties of allophane and imogolite. Clays and Clay Minerals, 61, 5774.Google Scholar
Bishop, J.L., Quinn, R.C., & Dyar, M.D. (2014a) Spectral and thermal properties of perchlorate salts and implications for Mars. American Mineralogist, 99, 15801592.Google Scholar
Bishop, J.L., Lane, M.D., Dyar, M.D., King, S.J., Brown, A.J., & Swayze, G. (2014b) Spectral properties of Ca-sulfates: Gypsum, bassanite and anhydrite. American Mineralogist, 99, 21052115.Google Scholar
Bishop, J.L., Murad, E., & Dyar, M.D. (2015) Akaganéite and schwertmannite: Spectral properties, structural models and geochemical implications of their possible presence on Mars. American Mineralogist, 100, 738746.Google Scholar
Bishop, J.L., Davila, A., Hanley, J., & Roush, T.L. (2016a) Dehydration-rehydration experiments with Cl salts mixed into Mars analog materials and the effects on their VNIR spectral properties. 47th Lunar Planet. Sci. Conf., Abstract #1645.Google Scholar
Bishop, J.L., Schiffman, P., Gruendler, L., et al. (2016b) Formation of opal, clays and sulfates from volcanic ash at Kilauea Caldera as an analog for surface alteration on Mars. Clay Minerals Society 53rd Annual Meeting.Google Scholar
Bishop, J.L., King, S.J., Lane, M.D., et al. (2017) Spectral properties of anhydrous carbonates and nitrates. 48th Lunar Planet. Sci. Conf., Abstract #2362.Google Scholar
Bishop, J.L., King, S.J., Lane, M.D., et al. (2019) Spectral properties of anhydrous carbonates and nitrates. Journal of Geophysical Research, submitted.Google Scholar
Brindley, G.W. & Brown, G. (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London.Google Scholar
Burns, R.G. (1970) Crystal field spectra and evidence of cation ordering in olivine minerals. American Mineralogist, 55, 16081632.Google Scholar
Burns, R.G. (1993) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge.Google Scholar
Burns, R.G. & Huggins, F.E. (1972) Cation determinative curves for Mg-Fe-Mn olivines from vibrational spectra. American Mineralogist, 57, 967985.Google Scholar
Calvin, W.M. & King, T.V.V. (1997) Spectral characteristics of Fe-bearing phyllosilicates: Comparison to Orgueil (C11), Murchison and Murray (CM2). Meteoritics and Planetary Science, 32, 693701.Google Scholar
Calvin, W.M., King, T.V.V., & Clark, R.N. (1994) Hydrous carbonates on Mars? Evidence from Mariner 6/7 infrared spectrometer and groundbased telescopic spectra. Journal of Geophysical Research, 99, 1465914675.Google Scholar
Cannon, K.M., Mustard, J.F., Parman, S.W., Sklute, E.C., Dyar, M.D., & Cooper, R.F. (2017) Spectral properties of martian and other planetary glasses and their detection in remotely sensed data. Journal of Geophysical Research, 122, 249268.Google Scholar
Cariati, F., Erre, L., Gessa, C., Micera, G., & Piu, P. (1981) Water molecules and hydroxyl groups in montmorillonites as studied by near infrared spectroscopy. Clays and Clay Minerals, 29, 157159.Google Scholar
Chapman, C.R. & Salisbury, J.W. (1973) Comparisons of meteorite and asteroid spectral reflectivities. Icarus, 19, 507522.Google Scholar
Cheek, L.C., Pieters, C.M., Dyar, M.D., & Milam, K.A. (2009) Revisiting plagioclase optical properties for lunar exploration. 40th Lunar Planet. Sci. Conf., Abstract #1928.Google Scholar
Clark, J.T., Bishop, J.L., Parente, M., Brown, A.J., & McKeown, N.K. (2008) Constraining sulfate abundances on Mars using CRISM spectra and laboratory mixtures. 39th Lunar Planet. Sci. Conf., Abstract #1540.Google Scholar
Clark, R.N. (1983) Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water. Journal of Geophysical Research, 88, 1063510644.Google Scholar
Clark, R.N. (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. In: Manual of remote sensing, 3: Remote sensing for the Earth sciences (Rencz, A.N., ed.). John Wiley & Sons, New York, 358.Google Scholar
Clark, R.N. & Roush, T.L. (1984) Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 63296340.Google Scholar
Clark, R.N., King, T.V.V., Klejwa, M., & Swayze, G.A. (1990) High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95, 1265312680.Google Scholar
Clark, R.N., Swayze, G.A., Livo, K.E., et al. (2003) Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. Journal of Geophysical Research, 108, 5131, DOI:10.1029/2002JE001847.Google Scholar
Cloutis, E.A. & Gaffey, M.J. (1991) Pyroxene spectroscopy revisited: Spectral-compositional correlations and relationships to geothermometry. Journal of Geophysical Research, 96, 2280922826.Google Scholar
Cloutis, E.A., Gaffey, M.J., Jackowski, T., & Reed, K. (1986) Calibration of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. Journal of Geophysical Research, 91, 1164111653.Google Scholar
Cloutis, E.A., Asher, P.M., & Mertzman, S.A. (2002) Spectral reflectance properties of zeolites and remote sensing implications. Journal of Geophysical Research, 107, 5067, DOI:10.1029/2000JE001467.Google Scholar
Cloutis, E.A., Sunshine, J.M., & Morris, R.V. (2004) Spectral reflectance-compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry. Meteoritics and Planetary Science, 39, 545565.Google Scholar
Cloutis, E.A., Hawthorne, F.C., Mertzman, S.A., et al. (2006) Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus, 184, 121157.Google Scholar
Cloutis, E.A., Craig, M.A., Kruzelecky, R.V., et al. (2008) Spectral reflectance properties of minerals exposed to simulated Mars surface conditions. Icarus, 195, 140168.Google Scholar
Cloutis, E.A., Hardersen, P.S., Bish, D.L., Bailey, D.T., Gaffey, M.J., & Craig, M.A. (2010a) Reflectance spectra of iron meteorites: Implications for spectral identification of their parent bodies. Meteoritics and Planetary Science, 45, 304332.Google Scholar
Cloutis, E.A., Hudon, P., Romanek, C.S., et al. (2010b) Spectral reflectance properties of ureilites. Meteoritics and Planetary Science, 45, 16681694.Google Scholar
Cloutis, E.A., Hiroi, T., Gaffey, M.J., Alexander, C.M.O.D., & Mann, P. (2011a) Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites. Icarus, 212, 180209.Google Scholar
Cloutis, E.A., Hudon, P., Hiroi, T., Gaffey, M.J., & Mann, P. (2011b) Spectral reflectance properties of carbonaceous chondrites: 2. CM chondrites. Icarus, 216, 309346.Google Scholar
Cloutis, E.A., Hudon, P., Hiroi, T., & Gaffey, M.J. (2012a) Spectral reflectance properties of carbonaceous chondrites: 3. CR chondrites. Icarus, 217, 389407.Google Scholar
Cloutis, E.A., Hudon, P., Hiroi, T., & Gaffey, M.J. (2012b) Spectral reflectance properties of carbonaceous chondrites: 7. CK chondrites. Icarus, 221, 911924.Google Scholar
Cloutis, E.A., Hudon, P., Hiroi, T., Gaffey, M.J., & Mann, P. (2012c) Spectral reflectance properties of carbonaceous chondrites: 8. “Other” carbonaceous chondrites: CH, ungrouped, polymict, xenolithic inclusions, and R chondrites. Icarus, 221, 9841001.Google Scholar
Cloutis, E., Berg, B., Mann, P., & Applin, D. (2016) Reflectance spectroscopy of low atomic weight and Na-rich minerals: Borates, hydroxides, nitrates, nitrites, and peroxides. Icarus, 264, 2036.Google Scholar
Cornell, R.M. & Schwertmann, U. (2003) The iron oxides: Structure, properties, reactions, occurrences and uses, 2nd edn. Wiley-VCH, Weinheim.Google Scholar
Cotton, F.A. (1990) Chemical applications of group theory, 3rd edn. Wiley-Interscience, New York.Google Scholar
Crowley, J.K. (1991) Visible and near-infrared (0.4–2.5 μm) reflectance spectra of Playa evaporite minerals. Journal of Geophysical Research, 96, 1623116240.Google Scholar
Crowley, J.K., Williams, D.E., Hammarstrom, J.M., Piatak, N., Chou, I.-M. & Mars, J.C. (2003) Spectral reflectance properties (0.4–2.5 µm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes. Geochemistry: Exploration, Environment, Analysis, 3, 219228.Google Scholar
Cuadros, J., Michalski, J.R., Dekov, V., Bishop, J., Fiore, S., & Dyar, M.D. (2013) Crystal-chemistry of interstratified Mg/Fe-clay minerals from seafloor hydrothermal sites. Chemical Geology, 360361, 142158.Google Scholar
Dalton, J.B. (2003) Spectral behavior of hydrated sulfate salts: Implications for Europa Mission spectrometer design. Astrobiology, 3, 771784.Google Scholar
Davis, A.C., Bishop, J.L., Veto, M., et al. (2014) Comparing VNIR and TIR spectra of clay-bearing rocks. 45th Lunar Planet. Sci. Conf., Abstract #2699.Google Scholar
De Angelis, S., Manzari, P., De Sanctis, M.C., Ammannito, E., & Di Iorio, T. (2016) VIS-IR study of brucite–clay–carbonate mixtures: Implications for Ceres surface composition. Icarus, 280, 315327.Google Scholar
Decarreau, A., Petit, S., Martin, F., Vieillard, P., & Joussein, E. (2008) Hydrothermal synthesis, between 75 and 150C, of high-charge ferric nontronites. Clays and Clay Mineral, 56, 322337.Google Scholar
Deer, W.A., Howie, R.A., & Zussman, J. (1992) An introduction to the rock-forming minerals. Longman, London.Google Scholar
Dyar, M.D., Sklute, E.C., Menzies, O.N., et al. (2009) Spectroscopic characteristics of synthetic olivine: An integrated multi-wavelength and multi-technique approach. American Mineralogist, 94, 883898.Google Scholar
Ehlmann, B.L., Mustard, J.F., & Poulet, F. (2009) Modeling modal mineralogy of laboratory mixtures of nontronite and mafic minerals from visible near-infrared spectra data. 40th Lunar Planet. Sci. Conf., Abstract #1771.Google Scholar
Ehlmann, B.L., Bish, D.L., Ruff, S.W., & Mustard, J.F. (2012) Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars. Journal of Geophysical Research, 117, E00J16, DOI:10.1029/2012JE004156.Google Scholar
Farrand, W.H. & Singer, R.B. (1992) Alteration of hydrovolcanic basaltic ash: Observations with visible and near-infrared spectrometry. Journal of Geophysical Research, 97, 1739317408.Google Scholar
Fernandez-Martinez, A., Timon, V., Roman-Ross, G., Cuello, G.J., Daniels, J.E., & Ayora, C. (2010) The structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate. American Mineralogist, 95, 13121322.Google Scholar
Fischer, E. & Pieters, C.M. (1993) The continuum slope of Mars: Bi-directional reflectance investigations and applications to Olympus Mons. Icarus, 102, 185202.Google Scholar
Fraeman, A.A., Ehlmann, B.L., Northwood-Smith, G.W.D., Liu, Y., Wadhwa, M., & Greenberger, R.N. (2016) Using VSWIR microimaging spectroscopy to explore the mineralogical diversity of HED meteorites. 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 1–5.Google Scholar
Gaffey, M.J. (1976) Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research, 81, 905920.Google Scholar
Gaffey, S.J. (1987) Spectral reflectance of carbonate minerals in the visible and near infared (0.35–2.55 µm): Anhydrous carbonate minerals. Journal of Geophysical Research, 92, 14291440.Google Scholar
Gaffey, S.J., McFadden, L.A., Nash, D. & Pieters, C.M. (1993) Ultraviolet, visible, and near-infrared reflectance spectroscopy: Laboratory spectra of geologic materials. In: Remote geochemical analysis: Elemental and mineralogical composition (Pieters, C.M & Englert, P.A.J., eds.). Cambridge University Press, Cambridge, 4377.Google Scholar
Gates, W.P. (2005) Infrared spectroscopy and the chemistry of dioctahedral smectites. In: The application of vibrational spectroscopy to clay minerals and layered double hydroxides (Kloprogge, J.T., ed.). Clay Minerals Society, Aurora, CO, 125168.Google Scholar
Goryniuk, M.C., Rivard, B.A., & Jones, B. (2004) The reflectance spectra of opal-A (0.5–25 μm) from the Taupo Volcanic Zone: Spectra that may identify hydrothermal systems on planetary surfaces. Geophysical Research Letters, 31, DOI:10.1029/2004GL021481.Google Scholar
Hanley, J., Dalton, J.B., Chevrier, V.F., Jamieson, C.S., & Barrows, R.S. (2014) Reflectance spectra of hydrated chlorine salts: The effect of temperature with implications for Europa. Journal of Geophysical Research, 119, 23702377.Google Scholar
Hanley, J., Chevrier, V.F., Barrows, R.S., Swaffer, C., & Altheide, T.S. (2015) Near- and mid-infrared reflectance spectra of hydrated oxychlorine salts with implications for Mars. Journal of Geophysical Research, 120, 14151426.Google Scholar
Hapke, B. (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge.Google Scholar
Harner, P.L. & Gilmore, M.S. (2015) Visible–near infrared spectra of hydrous carbonates, with implications for the detection of carbonates in hyperspectral data of Mars. Icarus, 250, 204214.Google Scholar
Herzberg, G. (1945) Molecular spectra and molecular structure. II. Infrared and Raman spectra of polyatomic molecules. D. Van Nostrand, New York.Google Scholar
Hiroi, T. & Pieters, C.M. (1994) Estimation of grain sizes and mixing ratios of fine powder mixtures of common geologic minerals. Journal of Geophysical Research, 99, 10,86710,879.Google Scholar
Hiroi, T., Miyamoto, M., Mikouchi, T., & Ueda, Y. (2005) Visible and near-infrared reflectance spectroscopy of the Yamato 980459 meteorite in comparison with some shergottites. Antarctic Metorite Research, 18, 8395.Google Scholar
Hiroi, T., Jenniskens, P.M., Bishop, J.L., Shatir, T.S.M., Kudoda, A.M., & Shaddad, M.H. (2010) Bidirectional visible-NIR and biconical FT-IR reflectance spectra of Almahata Sitta meteorite samples. Meteoritics and Planetary Science, 45, 18361845.Google Scholar
Honma, A., Bishop, J.L., McKeown, N.K., Brown, A.J., & Parente, M. (2008) Constraining phyllosilicate abundances on Mars using CRISM spectra and laboratory mixtures. 39th Lunar Planet. Sci. Conf., Abstract #1457.Google Scholar
Huheey, J.E., Keiter, E.A., & Keiter, R.I. (1993) lnorganic chemistry: Principles of structure and reactivity, 4th edn. HarperCollins, New York.Google Scholar
Hunt, G.R. & Ashley, R.P. (1979) Spectra of altered rocks in the visible and near infrared. Economic Geology, 74, 16131629.Google Scholar
Hunt, G.R. & Salisbury, J.W. (1970) Visible and near-infrared spectra of minerals and rocks: 1. Silicate minerals. Modern Geology, 1, 283300.Google Scholar
Hunt, G.R. & Salisbury, J.W. (1971) Visible and near-infrared spectra of minerals and rocks: II. Carbonates. Modern Geology, 2, 2330.Google Scholar
Hunt, G.R., Salisbury, J.W., & Lenhoff, C.J. (1971a) Visible and near-infrared spectra of minerals and rocks: III. Oxides and hydroxides. Modern Geology, 2, 195205.Google Scholar
Hunt, G.R., Salisbury, J.W., & Lenhoff, C.J. (1971b) Visible and near-infrared spectra of minerals and rocks: IV. Sulphides and sulphates. Modern Geology, 3, 114.Google Scholar
Isaacson, P.J., Liu, Y., Patchen, A., Pieters, C.M., & Taylor, L.A. (2009) Integrated analyses of Lunar meteorites: Expanded data for lunar ground truth. 40th Lunar Planet. Sci. Conf., Abstract #2119.Google Scholar
Isaacson, P.J., Liu, Y., Patchen, A.D., Pieters, C.M., & Taylor, L.A. (2010) Spectroscopy of Lunar meteorites as constraints for ground truth: Expanded sample collection diversity. 41st Lunar Planet. Sci. Conf., Abstract #1927.Google Scholar
Isaacson, P.J., Basu Sarbadhikari, A., Pieters, C.M., et al. (2011) The lunar rock and mineral characterization consortium: Deconstruction and integrated mineralogical, petrologic, and spectroscopic analyses of mare basalts. Meteoritics and Planetary Science, 46, 228251.Google Scholar
Isaacson, P.J., Klima, R.L., Sunshine, J.M., et al. (2014) Visible to near-infrared optical properties of pure synthetic olivine across the olivine solid solution. American Mineralogist, 99, 467478.Google Scholar
Jenniskens, P., Shaddad, M.H., Numan, D., et al. (2009) The impact and recovery of asteroid 2008 TC3. Nature, 458, 485488.Google Scholar
Jeute, T.J., Baker, L.L., Abidin, Z., Bishop, J.L., & Rampe, E.B. (2017) Characterizing nanophase materials on Mars: Spectroscopic studies of allophane and imogolite. 48th Lunar Planet. Sci. Conf., Abstract #2738.Google Scholar
Johnson, J.R. & Hörz, F. (2003) Visible/near-infrared spectra of experimentally shocked plagioclase feldspars. Journal of Geophysical Research, 108, 5120, DOI:10.1029/2003JE002127, E11.Google Scholar
King, S.J., Bishop, J.L., Fenton, L.K., Lafuente, B., Garcia, G.C., & Horgan, B.H. (2013) VNIR reflectance spectra of gypsum mixtures for comparison with White Sands National Monument, New Mexico (WSNM) dune samples as an analog study of the Olympia Undae region of Mars. AGU Fall Meeting, Abstract #P23C-1800.Google Scholar
King, T.V.V. & Clark, R.N. (1989) Spectral characteristics of chlorites and Mg-serpentines using high-resolution reflectance spectroscopy. Journal of Geophysical Research, 94, 13,99714,008.Google Scholar
Klima, R.L., Pieters, C.M., & Dyar, M.D. (2007) Spectroscopy of synthetic Mg-Fe pyroxenes I: Spin-allowed and spin-forbidden crystal field bands in the visible and near-infrared. Meteoritics and Planetary Science, 42, 235253.Google Scholar
Klima, R.L., Pieters, C.M., & Dyar, M.D. (2008) Characterization of the 1.2 micrometer M1 pyroxene band: Extracting cooling history from near-IR spectra of pyroxenes and pyroxene-dominated rocks. Meteoritics and Planetary Science, 43, 15911604.Google Scholar
Klima, R.L., Dyar, M.D., & Pieters, C.M. (2011) Near-infrared spectra of clinopyroxenes: effects of calcium content and crystal structure. Meteoritics and Planetary Science, 46, 379395.Google Scholar
Lane, M.D. & Christensen, P.R. (1997) Thermal infrared emission spectroscopy of anhydrous carbonates. Journal of Geophysical Research, 102, 2558125592.Google Scholar
Lane, M.D., Dyar, M.D., & Bishop, J.L. (2007) Spectra of phosphate minerals as obtained by visible-near infrared reflectance, thermal infrared emission, and Mössbauer laboratory analyses. 38th Lunar Planet. Sci. Conf., Abstract #2210.Google Scholar
Lane, M.D., Bishop, J.L., Dyar, M.D., et al. (2015) Mid-infrared emission spectroscopy and visible/near-infrared reflectance spectroscopy of Fe-sulfate minerals. American Mineralogist, 100, 6682.Google Scholar
Lapotre, M.G.A., Ehlmann, B.L., & Minson, S.E. (2017) A probabilistic approach to remote compositional analysis of planetary surfaces. Journal of Geophysical Research, 122, 9831009.Google Scholar
Lauretta, D.S. & McSween, H.Y. Jr. (2006) Meteorites and the early solar system II. The University of Arizona Press, Tucson, AZ.Google Scholar
Lin, T.J., Ver Eecke, H.C., Breves, E.A., et al. (2016) Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavour Segment, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 17, 300323.Google Scholar
McFadden, L.A. & Cline, T.P. (2005) Spectral reflectance of martian meteorites: Spectral signatures as a template for locating source region on Mars. Meteoritics and Planetary Science, 40, 151172.Google Scholar
McFadden, L.A., Gaffey, M.J., & Takeda, H. (1980) Reflectance spectra of some newly found, unusual meteorites and their bearing on the surface mineralogy of asteroids. Proceedings of the 13th Lunar and Planetary Symposium, Tokyo, 273–280.Google Scholar
McKeown, N.K., Bishop, J.L., Cuadros, J., et al. (2011) Interpretation of reflectance spectra of clay mineral-silica mixtures: Implications for martian clay mineralogy at Mawrth Vallis. Clays and Clay Mineral, 59, 400415.Google Scholar
Milliken, R.E. & Mustard, J.F. (2005) Quantifying absolute water content of minerals using near-infrared reflectance spectroscopy. Journal of Geophysical Research, 110, E12001, DOI:10.1029/2005JE002534.Google Scholar
Milliken, R.E., Swayze, G.A., Arvidson, R.E., et al. (2008) Opaline silica in young deposits on Mars. Geology, 36, 847850.Google Scholar
Minitti, M.E. & Rutherford, M.J. (2000) Genesis of the Mars Pathfinder “sulfur-free” rock from SNC parental liquids. Geochimica Cosmochimica Acta, 64, 25352547.Google Scholar
Minitti, M.E., Mustard, J.F., & Rutherford, M.J. (2002) The effects of glass content and oxidation on the spectra of SNC-like basalts: Application to Mars remote sensing. Journal of Geophysical Research, 107(E5), DOI:10.1029/2001JE001518.Google Scholar
Minitti, M.E., Weitz, C.M., Lane, M.D., & Bishop, J.L. (2007) Morphology, chemistry, and spectral properties of Hawaiian rock coatings and implications for Mars. Journal of Geophysical Research, 112, E05015, DOI: 10.1029/2006JE002839.Google Scholar
Moroz, L., Schade, U., & Wäsch, R. (2000) Reflectance spectra of olivine-orthopyroxene-bearing assemblages at decreased temperatures: Implications for remote sensing of asteroids. Icarus, 147, 7993.Google Scholar
Morris, R.V., Lauer, H.V. Jr., Lawson, C.A., Gibson, E.K. Jr., Nace, G.A., & Stewart, C. (1985) Spectral and other physicochemical properties of submicron powders of hematite (a-Fe2O3), maghemite (g-Fe2O3), magnetite (Fe3O4), goethite (a-FeOOH), and lepidocrocite (g-FeOOH). Journal of Geophysical Research, 90, 31263144.Google Scholar
Morris, R.V., Agresti, D.G., Lauer, H.V. Jr., Newcomb, J.A., Shelfer, T.D., & Murali, A.V. (1989) Evidence for pigmentary hematite on Mars based on optical, magnetic and Mössbauer studies of superparamagnetic (nanocrystalline) hematite. Journal of Geophysical Research, 94, 27602778.Google Scholar
Morris, R.V., Gooding, J.L., Lauer, H.V. Jr., & Singer, R.B. (1990) Origins of Marslike spectral and magnetic properties of a Hawaiian palagonitic soil. Journal of Geophysical Research, 95, 14,42714,434.Google Scholar
Morris, R.V., Schulze, D.G., Lauer, H.V. Jr., Agresti, D.G., & Shelfer, T.D. (1992) Reflectivity (visible and near IR), Mössbauer, static magnetic, and X ray diffraction properties of aluminum-substituted hematites. Journal of Geophysical Research, 97, 1025710266.Google Scholar
Morris, R.V., Golden, D.C., Bell, J.F. III, & Lauer, H.V. Jr. (1995) Hematite, pyroxene, and phyllosilicates on Mars: Implications from oxidized impact melt rocks from Manicouagan crater, Quebec, Canada. Journal of Geophysical Research, 100, 53195328.Google Scholar
Morris, R.V., Golden, D.C., & Bell, J.F. III (1997) Low-temperature reflectivity spectra of red hematite and the color of Mars. Journal of Geophysical Research, 102, 91259133.Google Scholar
Morris, R.V., Golden, D.C., Shelfer, T.D., & Lauer, H.V. Jr. (1998) Lepidocrocite to maghemite to hematite: A pathway to magnetic and hematitic martian soil. Meteoritics and Planetary Science, 33, 743751.Google Scholar
Morris, R.V., Graff, T.G., Mertzman, S.A., Lane, M.D., & Christensen, P.R. (2003) Palagonitic (not Andesitic) Mars: Evidence from thermal emission and VNIR spectra of Palagonitic alteration rinds on basaltic rock. 6th Int. Conf. on Mars, Abstract #3211.Google Scholar
Mustard, J.F. (1992) Chemical analysis of actinolite from reflectance spectra. American Mineralogist, 77, 345358.Google Scholar
Mustard, J.F. & Hays, J.E. (1997) Effects of hyperfine particles on reflectance spectra from 0.3 to 25 µm. Icarus, 125, 145163.Google Scholar
Mustard, J.F. & Pieters, C.M. (1987) Abundance and distribution of ultramafic microbreccia in moses rock dike: Quantitative application of mapping spectroscopy. Journal of Geophysical Research, 92, 1037610390.Google Scholar
Mustard, J.F. & Pieters, C.M. (1989) Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. Journal of Geophysical Research, 94, 1361913634.Google Scholar
Mustard, J.F., Sunshine, J.M., Pieters, C.M., Hoppin, A., & Pratt, S.F. (1993) From minerals to rocks: Toward modeling lithologies with remote sensing. 24th Lunar Planet. Sci. Conf., Abstract, 1041–1042.Google Scholar
Mustard, J.F., Murchie, S.L., Erard, S., & Sunshine, J.M. (1997) In situ compositions of martian volcanics: Implications for the mantle. Journal of Geophysical Research, 102, 25,60525,615.Google Scholar
Nash, D.B. & Conel, J.E. (1974) Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite. Journal of Geophysical Research, 79, 16151621.Google Scholar
Nwaodua, E.C., Ortiz, J.D., & Griffith, E.M. (2014) Diffuse spectral reflectance of surficial sediments indicates sedimentary environments on the shelves of the Bering Sea and western Arctic. Marine Geology, 355, 218233.Google Scholar
Ody, A., Poulet, F., Quantin, C., Bibring, J.P., Bishop, J.L, & Dyar, M.D. (2015) Candidates source regions of martian meteorites as identified by OMEGA/MEx. Icarus, 258, 366383.Google Scholar
Orenberg, J. & Handy, J. (1992) Reflectance spectroscopy of palagonite and iron-rich montmorillonite clay mixtures: Implications for the surface composition of Mars. Icarus, 96, 219225.Google Scholar
Papike, J.J. (1989) Planetary materials. In: Reviews in mineralogy, 36. Mineralogical Society of America, Chantilly, VA.Google Scholar
Parente, M., Makarewicz, H.D., & Bishop, J.L. (2011) Decomposition of mineral absorption bands using nonlinear least squares curve fitting: Application to martian meteorites and CRISM data. Planetary and Space Science, 59, 423442.Google Scholar
Parfitt, R.L. (2009) Allophane and imogolite: Role in soil biogeochemical processes. Clay Minerals, 44, 135155.Google Scholar
Petit, S., Madejova, J., Decarreau, A., & Martin, F. (1999) Characterization of octahedral subsitutions in kaolinites using near infrared spectroscopy. Clays and Clay Minerals, 47, 103108.Google Scholar
Petit, S., Decarreau, A., Martin, F., & Buchet, R. (2004a) Refined relationship between the position of the fundamental OH stretching and the first overtones for clays. Physics and Chemistry of Minerals, 31, 585592.Google Scholar
Petit, S., Martin, F., Wiewiora, A., de Parseval, P., & Decarreau, A. (2004b) Crystal-chemistry of talc: A near infrared (NIR) spectroscopy study. American Mineralogist, 89, 319326.Google Scholar
Pieters, C.M. (1983) Strength of mineral absorption features in the transmitted component of near-infrared reflected light: First results from RELAB. Journal of Geophysical Research, 88, 95349544.Google Scholar
Pieters, C.M. (1996) Plagioclase and maskelynite diagnostic features. 27th Lunar Planet. Sci. Conf., Abstract #1031.Google Scholar
Pieters, C.M. & Hiroi, T. (2004) RELAB (Reflectance Experiment Laboratory): A NASA multiuser spectroscopy facility. 35th Lunar Planet. Sci. Conf., Abstract #1720.Google Scholar
Pieters, C.M. & Mustard, J.F. (1988) Exploration of crustal/mantle material for the Earth and Moon using reflectance spectroscopy. Remote Sensing Environment, 24, 151178.Google Scholar
Pieters, C.M., Hawke, B.R., Gaffey, M., & McFadden, L.A. (1983) Possible lunar source areas of meteorite ALHA81005: Geochemical remote sensing information. Geophysical Research Letters, 10, 813816.Google Scholar
Pieters, C.M., Mustard, J.F., Pratt, S.F., Sunshine, J.M., & Hoppin, A. (1993) Visible-infrared properties of controlled laboratory soils. 24th Lunar Planet. Sci. Conf., Abstract, 1147–1148.Google Scholar
Pieters, C.M., Mustard, J.F., & Sunshine, J.M. (1996) Quantitative mineral analyses of planetary surfaces using reflectance spectroscopy. In: Mineral spectroscopy: A tribute to Roger G. Burns (Dyar, M.D., McCammon, C., & Schaefer, M.W., eds.). The Geochemical Society, Houston, TX, 307325.Google Scholar
Pieters, C.M., Klima, R.L., Hiroi, T., et al. (2008) The origin of brown olivine in martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine. Journal of Geophysical Research, 113, E06004, DOI:10.1029/2007JE002939.Google Scholar
Post, J.L. (1984) Saponite from near Ballarat, California. Clays and Clay Minerals, 32, 147152.Google Scholar
Post, J.L. & Noble, P.N. (1993) The near-infrared combination band frequencies of dioctahedral smectites, micas, and illites. Clays and Clay Minerals, 41, 639644.Google Scholar
Post, J.L., Cupp, B.L., & Madsen, F.T. (1997) Beidellite and associated clays from the DeLamar mine and Florida mountain area, Idaho. Clays and Clay Mineral, 45, 240250.Google Scholar
Powers, D.A., Rossman, G.R., Schugar, H.J., & Gray, H.B. (1975) Magnetic behavior and infrared spectra of jarosite, basic iron sulfate, and their chromate analogs. Journal of Solid State Chemistry, 13, 113.Google Scholar
Rice, M.S., Cloutis, E.A., Bell, J.F. III, et al. (2013) Reflectance spectra diversity of silica-rich materials: Sensitivity to environment and implications for detections on Mars. Icarus, 223, 499533.Google Scholar
Ross, S.D. (1974) Phosphates and Other Oxyanions of Group V. In: The infrared spectra of minerals (Farmer, V.C., ed.). The Mineralogical Society, London, 383422.Google Scholar
Roush, T.L., Bishop, J.L., Brown, A.J., Blake, D.F., & Bristow, T.F. (2015) Laboratory reflectance spectra of clay minerals mixed with Mars analog materials: Toward enabling quantitative clay abundances from Mars spectra. Icarus, 258, 454466.Google Scholar
Ruesch, O., Hiesinger, H., Cloutis, E., et al. (2015) Near infrared spectroscopy of HED meteorites: Effects of viewing geometry and compositional variations. Icarus, 258, 384401.Google Scholar
Salisbury, J.W. & Hunt, G.R. (1974) Meteorite spectra and weathering. Journal of Geophysical Research, 79, 4493–4441.Google Scholar
Salisbury, J.W., D’Aria, D.M., & Jarosewich, E. (1991) Midinfrared (2.5–13.5 µm) reflectance spectra of powdered stony meteorites. Icarus, 92, 280297.Google Scholar
Saper, L. & Bishop, J.L. (2011) Reflectance spectroscopy of nontronite and ripidolite mineral mixtures in context of phyllosilicate unit composition at Mawrth Vallis. 42nd Lunar Planet. Sci. Conf., Abstract #2029.Google Scholar
Schade, U. & Wäsch, R. (1999) Near-infrared reflectance spectra from bulk samples of the two martian meteorites Zagami and Nakhla. Meteoritics and Planetary Science, 34, 417424.Google Scholar
Schade, U., Wäsch, R., & Moroz, L. (2004) Near-infrared reflectance spectroscopy of Ca-rich clinopyroxenes and prospects for remote spectral characterization of planetary surfaces. Icarus, 168, 8092.Google Scholar
Scheinost, A.C., Chavernas, A., Barrón, V., & Torrent, J. (1998) Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils. Clays and Clay Minerals, 46, 528536.Google Scholar
Sherman, D.M. & Waite, T.D. (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, 70, 12621269.Google Scholar
Sherman, D.M., Burns, R.G., & Burns, V.M. (1982) Spectral characteristics of the iron oxides with application to the martian bright region mineralogy. Journal of Geophysical Research, 87, 1016910180.Google Scholar
Shkuratov, Y.G. & Grynko, Y.S. (2005) Light scattering by media composed of semitransparent particles of different shapes in ray optics approximation: Consequences for spectroscopy, photometry, and polarimetry of planetary regoliths. Icarus, 173, 1628.Google Scholar
Singer, R.B. (1981) Near-infrared spectral reflectance of mineral mixtures: Systematic combinations of pyroxenes, olivine, and iron oxides. Journal of Geophysical Research, 86, 79677982.Google Scholar
Singer, R.B. & Roush, T.L. (1983) Spectral reflectance properties of particulate weathered coatings on rocks: Laboratory modeling and applicability to Mars. 14th Lunar Planet. Sci. Conf., Abstract, 708–709.Google Scholar
Singer, R.B. & Roush, T.L. (1985) Effects of temperature on remotely sensed mineral absorption features. Journal of Geophysical Research, 90, 12,43412,444.Google Scholar
Song, X. & Boily, J.-F. (2012) Variable hydrogen bond strength in akaganéite. The Journal of Physical Chemistry C, 116, 23032312.Google Scholar
Song, X. & Boily, J.-F. (2013) Water vapor diffusion into a nanostructured iron oxyhydroxide. Inorganic Chemistry, 52, 71077113.Google Scholar
Sugihara, T., Ohtake, M., Owada, A., Ishii, T., Otsuki, M., & Takeda, H. (2004) Petrology and reflectance spectroscopy of lunar meteorite Yamato 981031: Implications for the source region of the meteorite and remote-sensing spectroscopy. Antarctic Meteorite Research, 17, 209230.Google Scholar
Sun, V.Z., Milliken, R.E., & Robertson, K.M. (2016) Hydrated silica on Mars: Relating geologic setting to degree of hydration, crystallinity, and maturity through coupled orbital and laboratory studies. 47th Lunar Planet. Sci. Conf., Abstract #2416.Google Scholar
Sunshine, J.M. & Pieters, C.M. (1993) Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the Modified Gaussian Model. Journal of Geophysical Research, 98, 90759087.Google Scholar
Sunshine, J.M. & Pieters, C.M. (1998) Determining the composition of olivine from reflectance spectroscopy. Journal of Geophysical Research, 103, 13,67513,688.Google Scholar
Sunshine, J.M., Pieters, C.M., & Pratt, S.F. (1990) Deconvolution of mineral absorption bands: An improved approach. Journal of Geophysical Research, 95, 69556966.Google Scholar
Sunshine, J.M., McFadden, L.A., & Pieters, C.M. (1993) Reflectance spectra of the Elephant Moraine A79001 meteorite: Implications for remote sensing of planetary bodies. Icarus, 105, 7991.Google Scholar
Sunshine, J.M., Bus, S.J., McCoy, T.J., Burbine, T.H., Corrigan, C.M., & Binzel, P. (2004) High-calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites. Meteoritics and Planetary Science, 39, 13431357.Google Scholar
Sunshine, J.M., Bus, S.J., Corrigan, C.M., McCoy, T.J., & Burbine, T.H. (2007) Olivine-dominated asteroids and meteorites: Dinstinguishing nebular and igneous histories. Meteoritics and Planetary Science, 42, 155170.Google Scholar
Swayze, G.A., Lowers, H.A., Benzel, W.M., et al. (2018) Characterizing the source of potentially asbestos-bearing commercial vermiculite insulation using in situ IR spectroscopy. American Mineralogist, 103, 517549.Google Scholar
Tarantola, A. & Valette, B. (1982) Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics and Space Physics, 20, 219232.Google Scholar
van Olphen, H. & Fripiat, J.J. (1979) Data handbook for clay materials and other non-metallic minerals. Pergamon Press, Oxford.Google Scholar
Wang, F., Bowen, B.B., Seo, J.-H., & Michalski, G. (2018) Laboratory and field characterization of visible to near-infrared spectral reflectance of nitrate minerals from the Atacama Desert, Chile, and implications for Mars. American Mineralogist, 103, 197206.Google Scholar
Wasson, J.T. (1985) Meteorites: Their record of early Solar System history. W.H. Freeman, New York.Google Scholar
Weir, C.E. & Lippincott, E.R. (1961) Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. Journal of Research of the National Bureau of Standards A: Physics and Chemistry, 65A, 173183.Google Scholar

References

Allamandola, L.J., Sandford, S.A., & Wopenka, B. (1987) Interstellar polycyclic aromatic hydrocarbons and carbon in interplanetary dust particles and meteorites. Science, 237, 5659.Google Scholar
Altwegg, K., Balsiger, H., Berthelier, J.J., et al. (2017) Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA-DFMS, COSAC, and Ptolemy. Monthly Notices of the Royal Astronomical Society, 469, Issue Supplement 2, S130–S141.Google Scholar
Barucci, M.A., Merlin, F., Guilbert, A., et al. (2008) Surface composition and temperature of the TNO Orcus. Astronomy & Astrophysics, 479, L13L16.Google Scholar
Barucci, M.A., Dalle Ore, C.M., Perna, D., et al. (2015) (50000) Quaoar: Surface composition variability. Astronomy & Astrophysics, 584, A107.Google Scholar
Bennett, C.J., Pirim, C., & Orlando, T.M. (2013) Space-weathering of Solar System bodies: A laboratory perspective. Chemical Reviews, 113, 90869150.Google Scholar
Blake, D., Allamandola, L., Sandford, S., Hudgins, D., & Freund, F. (1991) Clathrate hydrate formation in amorphous cometary ice analogs in vacuo. Science, 254, 548551.Google Scholar
Brown, A.J. (2014) Spectral bluing induced by small particles under the Mie and Rayleigh regimes. Icarus, 239, 8595.Google Scholar
Brown, A.J., Calvin, W.M., Becerra, P., & Byrne, S. (2016) Martian north polar cap summer water cycle. Icarus, 277, 401415.Google Scholar
Brown, M.E. & Calvin, W.M. (2000) Evidence for crystalline water and ammonia ices on Pluto’s satellite Charon. Science, 287, 107109.Google Scholar
Cable, M.L., Hörst, S.M., Hodyss, R., et al. (2012) Titan tholins: Simulating Titan organic chemistry in the Cassini-Huygens era. Chemical Reviews, 112, 18821909.Google Scholar
Capaccioni, F., Coradini, A., Filacchione, G., et al. (2015) The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science, 347, aaa0628.Google Scholar
Chaban, G.M., Bernstein, M., & Cruikshank, D.P. (2007) Carbon dioxide on planetary bodies: Theoretical and experimental studies of molecular complexes. Icarus, 187, 592599.Google Scholar
Chassefière, E., Dartois, E., Herri, J.-M., et al. (2013) CO2–SO2 clathrate hydrate formation on early Mars. Icarus, 223, 878891.Google Scholar
Choukroun, M., Kieffer, S.W., Lu, X., & Tobie, G. (2013) Clathrate hydrates: Implications for exchange processes in the outer Solar System. In: The science of Solar System ices (Gudipati, M.S. & Castillo-Rogez, J., eds.). Springer Science+Business Media, New York, 409454.Google Scholar
Clark, R.N. (1981) The spectral reflectance of water‐mineral mixtures at low temperatures. Journal of Geophysical Research, 86, 30743086.Google Scholar
Clark, R.N. & Lucey, P.G. (1984) Spectral properties of ice‐particulate mixtures and implications for remote sensing: 1. Intimate mixtures. Journal of Geophysical Research, 89, 63416348.Google Scholar
Clark, R.N. & Roush, T.L. (1984) Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 63296340.Google Scholar
Clark, R.N., Fanale, F.P., & Gaffey, M.J. (1986) Surface composition of satellites. In: Satellites (Burns, J. & Matthews, M.S., eds.), University of Arizona Press, Tucson, 437491.Google Scholar
Clark, R.N., Curchin, J.M., Hoefen, T.M., & Swayze, G.A. (2009) Reflectance spectroscopy of organic compounds: 1. Alkanes. Journal of Geophysical Research, 114, E03001, DOI:10.1029/2008JE003150.Google Scholar
Clark, R.N., Cruikshank, D.P., Jaumann, R., et al. (2012) The surface composition of Iapetus: Mapping results from Cassini VIMS. Icarus, 218, 831860.Google Scholar
Clark, R.N., Carlson, R., Grundy, W., & Noll, K. (2013) Observed ices in the Solar System. In: The science of Solar System ices (Gudipati, M.S. & Castillo-Rogez, J., eds.). Springer Science+Business Media, New York, 346.Google Scholar
Clark, R.N., Swayze, G.A., Carlson, R., Grundy, W., & Noll, K. (2014) Spectroscopy from space. In: Spectroscopic methods in mineralogy and material sciences (Henderson, G., ed.). Reviews in Mineralogy & Geochemistry, 78, 399446.Google Scholar
Clemett, S.J., Maechling, C.R., Zare, R.N., Swan, P.D., & Walker, R.M. (1993) Identification of complex aromatic molecules in individual interplanetary dust particles. Science, 262, 721725.Google Scholar
Cloutis, E.A. (1989) Spectral reflectance properties of hydrocarbons: Remote-sensing implications. Science, 245, 165168.Google Scholar
Cloutis, E.A. (2003) Quantitative characterization of coal properties using bidirectional diffuse reflectance spectroscopy. Fuel, 82, 22392254.Google Scholar
Cloutis, E.A., Gaffey, M.J., & Moslow, T.F. (1994) Spectral reflectance properties of carbon-bearing materials. Icarus, 107, 276287.Google Scholar
Cloutis, E.A., Hiroi, T., Gaffey, M.J., Alexander, C.M.O.D., & Mann, P. (2011) Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites. Icarus, 212, 180209.Google Scholar
Cook, J.C., Desch, S.J., Roush, T.L., Trujillo, C.A., & Geballe, T. (2007) Near-infrared spectroscopy of Charon: Possible evidence for cryovolcanism on Kuiper Belt objects. The Astrophysical Journal, 663, 1406.Google Scholar
Cooper, J.F., Christian, E.R., Richardson, J.D., & Wang, C. (2003) Proton irradiation of Centaur, Kuiper Belt, and Oort Cloud objects at plasma to cosmic ray energy. Earth, Moon, and Planets, 92, 961–277.Google Scholar
Cronin, J.R., Pizzarello, S., & Cruikshank, D.P. (1988) Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. In: Meteorites and the early Solar System (Kerridge, J.F. & Matthews, M.S., eds.). University of Arizona Press, Tucson, 819857.Google Scholar
Cruikshank, D. & Khare, B. (2000) Planetary surfaces of low albedo: Organic material throughout the Solar System. A new era in bioastronomy (Lemarchand, G.A. & Meech, K.J., eds.) ASP Conference Series, 213, 253262.Google Scholar
Cruikshank, D.P., Brown, R., & Clark, R. (1985) Methane ice on Triton and Pluto. In: Ices in the Solar System (Klinger, J., Benest, D., Dollfus, A., & Smoluchowski, R., eds.). Springer-Verlag, New York, 817827.Google Scholar
Cruikshank, D.P., Roush, T.L., Owen, T.C., et al. (1993) Ices on the surface of Triton. Science, 261, 742745.Google Scholar
Cruikshank, D., Roush, T., Bartholomew, M., et al. (1998) The composition of centaur 5145 Pholus. Icarus, 135, 389407.Google Scholar
Cruikshank, D.P., Meyer, A.W., Brown, R.H., et al. (2010) Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale. Icarus, 206, 561572.Google Scholar
Cull, S., Arvidson, R.E., Mellon, M., et al. (2010) Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations. Journal of Geophysical Research, 115, DOI:10.1029/2009JE003340.Google Scholar
Cuzzi, J., Clark, R., Filacchione, G., et al. (2009) Ring particle composition and size distribution. In: Saturn after Cassini/Huygens (Dougherty, M.K., Esposito, L.W., & Krimigis, S.M., eds.). Springer Science+Business Media, New York, 459509.Google Scholar
Dalle Ore, C.M., Barucci, M., Emery, J., et al. (2015) The composition of “ultra-red” TNOS and Centaurs. Icarus, 252, 311326.Google Scholar
Dalle Ore, C. M., Protopapa, S., Cook, J.C. et al. (2018) Ices on Charon: Distribution of H2O and NH3 from New Horizons LEISA observations. Icarus, 300, 2132.Google Scholar
Dartois, E. (2010) Clathrates hydrates FTIR spectroscopy: Infrared signatures and their astrophysical significance. Molecular Physics, 108, 22732278.Google Scholar
Dartois, E. & Deboffle, D. (2008) Methane clathrate hydrate FTIR spectrum: Implications for its cometary and planetary detection. Astronomy & Astrophysics, 490, L19-L22.Google Scholar
Dartois, E. & Schmitt, B. (2009) Carbon dioxide clathrate hydrate FTIR spectrum-near infrared combination modes for astrophysical remote detection. Astronomy & Astrophysics, 504, 869873.Google Scholar
Dartois, E., Engrand, C., Brunetto, R., et al. (2013) UltraCarbonaceous Antarctic micrometeorites, probing the Solar System beyond the nitrogen snow-line. Icarus, 224, 243252.Google Scholar
de Bergh, C., Schmitt, B., Moroz, L., Quirico, E., & Cruikshank, D.P. (2008) Laboratory data on ices, refractory carbonaceous materials, and minerals relevant to transneptunian objects and Centaurs. In: The Solar System beyond Neptune (Barucci, A., Boehnhardt, H., Cruikshank, D.P., & Morbidelli, A., eds.). University of Arizona Press, Tucson, 483506.Google Scholar
Devlin, J.P. & Buch, V. (1997) Vibrational spectroscopy and modeling of the surface and subsurface of ice and of ice-adsorbate interactions. Journal of Physical Chemistry B, 101, 60956098.Google Scholar
Devlin, J.P. & Buch, V. (2003) Ice nanoparticles and ice adsorbate interactions: FTIR spectroscopy and computer simulations. In: Water in confining geometries (Buch, V. & Devlin, J.P., eds.). Springer Science+Business Media, 425462.Google Scholar
Flynn, G., Keller, L., Feser, M., Wirick, S., & Jacobsen, C. (2003) The origin of organic matter in the Solar System: Evidence from the interplanetary dust particles. Geochimica et Cosmochimica Acta, 67, 47914806.Google Scholar
Flynn, G., Keller, L., Jacobsen, C., & Wirick, S. (2004) An assessment of the amount and types of organic matter contributed to the Earth by interplanetary dust. Advances in Space Research, 33, 5766.Google Scholar
Gladstone, G.R., Stern, S.A., Ennico, K., et al. (2016) The atmosphere of Pluto as observed by New Horizons. Science, 351, aad8866.Google Scholar
Gradie, J. & Veverka, J. (1980) The composition of the Trojan asteroids. Nature, 283, 840.Google Scholar
Grundy, W.M., Binzel, R.P., Buratti, B.J., et al. (2016) Surface compositions across Pluto and Charon. Science, 351, aad9189-8.Google Scholar
Gudipati, M.S., Castillo-Rogez, J., eds. (2013) The science of Solar System ices. Astrophysics and Space Science Library, 356. Springer Science+Business Media, New York.Google Scholar
Hapke, B. (1981) Bidirectional reflectance spectroscopy: 1. Theory. Journal of Geophysical Research, 86, 30393054.Google Scholar
Hapke, B. (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge.Google Scholar
Hapke, B. (2012) Theory of reflectance and emittance spectroscopy, 2nd edn. Cambridge University Press, Cambridge.Google Scholar
Hernandez, J., Uras, N., & Devlin, J.P. (1998) Coated ice nanocrystals from water−adsorbate vapor mixtures: Formation of ether−CO2 clathrate hydrate nanocrystals at 120 K. Journal of Physical Chemistry B, 102, 45264535.Google Scholar
Hobbs, P.V. (2010) Ice physics. Oxford: Oxford University Press.Google Scholar
Hudson, R., Palumbo, M., Strazzulla, G., Moore, M., Cooper, J., & Sturner, S. (2008) Laboratory studies of the chemistry of Transneptunian Object surface materials. In: The Solar System beyond Neptune (Barucci, A., Boehnhardt, H., Cruikshank, & D.P. Morbidelli, , eds.). University of Arizona Press, Tucson, 507523.Google Scholar
Imanaka, H., Khare, B.N., Elsila, J.E., et al. (2004) Laboratory experiments of Titan tholin formed in cold plasma at various pressures: Implications for nitrogen-containing polycyclic aromatic compounds in Titan haze. Icarus, 168, 344366.Google Scholar
Imanaka, H., Cruikshank, D.P., Khare, B.N., & McKay, C.P. (2012) Optical constants of laboratory synthesized complex organic materials: Part 1, Titan tholins at mid-infrared wavelengths (2.5–25 µm). Icarus, 218, 247261.Google Scholar
Jewitt, D.C. (2002) From Kuiper Belt object to cometary nucleus: The missing ultrared matter. The Astronomical Journal, 123, 1039.Google Scholar
Kebukawa, Y., Alexander, C.M.D., & Cody, G.D. (2011) Compositional diversity in insoluble organic matter in type 1, 2 and 3 chondrites as detected by infrared spectroscopy. Geochimica et Cosmochimica Acta, 75, 35303541.Google Scholar
Kerridge, J.F. (1999) Formation and processing of organics in the early Solar System. Space Science Review, 90, 275288.Google Scholar
Khare, B.N., Sagan, C., Arakawa, E., Suits, F., Callcott, T., & Williams, M. (1984) Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft X-ray to microwave frequencies. Icarus, 60, 127137.Google Scholar
Kokaly, R.F., Clark, R.N., Swayze, G.A., et al. (2017) USGS spectral library version 7. USGS Data Series.Google Scholar
Korochantsev, A., Badjukov, D., Moroz, L., & Pershin, S. (1997) Experiments on impact-induced transformations of asphaltite. Experimental Geoscience, 6, 6667.Google Scholar
Krasnopolsky, V.A. & Cruikshank, D.P. (1999) Photochemistry of Pluto’s atmosphere and ionosphere near perihelion. Journal of Geophysical Research, 104, 2197921996.Google Scholar
Kwok, S. & Zhang, Y. (2011) Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature, 479, 80.Google Scholar
Lagerkvist, C.-I., Moroz, L., Nathues, A., et al. (2005) A study of Cybele asteroids-II. Spectral properties of Cybele asteroids. Astronomy & Astrophysics, 432, 349354.Google Scholar
Lauretta, D. & McSween, H.Y. Jr., eds. (2006) Meteorites and the early Solar System II.University of Arizona Press, Tucson.Google Scholar
Lebreton, J.-P., Coustenis, A., Lunine, J., Raulin, F., Owen, T., & Strobel, D. (2009) Results from the Huygens probe on Titan. The Astronomy and Astrophysics Review, 17, 149179.Google Scholar
Lucey, P.G. & Clark, R.N. (1985) Spectral properties of water ice and contaminants. In: Ices in the Solar System (Klinger, J., Benest, D., Dollfus, A., & Smoluchowski, R., eds.). Springer-Verlag, New York, 155168.Google Scholar
Luspay-Kuti, A., Mousis, O., Hässig, M., et al. (2016) The presence of clathrates in comet 67P/Churyumov-Gerasimenko. Science Advances, 2, e1501781.Google Scholar
Manca, C., Martin, C., & Roubin, P. (2003) Comparative study of gas adsorption on amorphous ice: Thermodynamic and spectroscopic features of the adlayer and the surface. The Journal of Physical Chemistry B, 107, 89298934.Google Scholar
Mastrapa, R., Bernstein, M., Sandford, S., Roush, T., Cruikshank, D., & Dalle Ore, C. (2008) Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1.1 to 2.6 μm. Icarus, 197, 307320.Google Scholar
Mastrapa, R., Grundy, W., & Gudipati, M.S. (2013) Amorphous and crystalline H2O ice. In: The science of Solar System ices (Gudipati, M.S. & Castillo-Rogez, J., eds.). Springer Science+Business Media, 371408.Google Scholar
Materese, C.K., Cruikshank, D.P., Sandford, S.A., Imanaka, H., Nuevo, M., & White, D.W. (2014) Ice chemistry on outer Solar System bodies: Carboxylic acids, nitriles, and urea detected in refractory residues produced from the UV photolysis of N2: CH4: CO-containing ices. The Astrophysical Journal, 788, 111.Google Scholar
Materese, C.K., Cruikshank, D.P., Sandford, S.A., Imanaka, H., & Nuevo, M. (2015) Ice chemistry on outer Solar System bodies: Electron radiolysis of N2-, CH4-, and CO-containing ices. The Astrophysical Journal, 812, 150.Google Scholar
McDonald, G.D., Whited, L.J., DeRuiter, C., et al. (1996) Production and chemical analysis of cometary ice tholins. Icarus, 122, 107117.Google Scholar
Moroz, L. & Arnold, G. (1999) Influence of neutral components on relative band contrasts in reflectance spectra of intimate mixtures: Implications for remote sensing: 1. Nonlinear mixing modeling. Journal of Geophysical Research, 104, 1410914121.Google Scholar
Moroz, L.V., Arnold, G., Korochantsev, A.V., & Wäsch, R. (1998) Natural solid bitumens as possible analogs for cometary and asteroid organics: 1. Reflectance spectroscopy of pure bitumens Icarus, 134, 253268.Google Scholar
Moroz, L.V., Baratta, G., Atrazzulla, G., et al. (2004) Optical alteration of complex organics induced by ion irradiation: 1. Laboratory experiments suggest unusual space weathering trend. Icarus, 170, 214228.Google Scholar
Oancea, A., Grasset, O., Le Menn, E., et al. (2012) Laboratory infrared reflection spectrum of carbon dioxide clathrate hydrates for astrophysical remote sensing applications. Icarus, 221, 900910.Google Scholar
Owen, T.C., Roush, T.L., Cruikshank, D.P., et al. (1993) Surface ices and the atmospheric composition of Pluto. Science, 261, 745748.Google Scholar
Pizzarello, S., Cooper, G., & Flynn, G. (2006) The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. In: Meteorites and the early Solar System II (Lauretta, D.S. & McSween, H.Y., Jr., eds.). University of Arizona Press, Tucson, 625651.Google Scholar
Prokhvatilov, A. & Yantsevich, L. (1983) X-ray investigation of the equilibrium phase diagram of CH4–N2 solid mixtures. Soviet Journal of Low Temperature Physics, 9, 9498.Google Scholar
Protopapa, S., Grundy, W., Tegler, S., & Bergonio, J. (2015) Absorption coefficients of the methane–nitrogen binary ice system: Implications for Pluto. Icarus, 253, 179188.Google Scholar
Quirico, E. & Schmitt, B. (1997a) Near-infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N2 and as pure ices: Implications for Triton and Pluto. Icarus, 127, 354378.Google Scholar
Quirico, E. & Schmitt, B. (1997b) A spectroscopic study of CO diluted in N2 ice: Applications for Triton and Pluto. Icarus, 128, 181188.Google Scholar
Quirico, E., Schmitt, B., Bini, R., & Salvi, P.R. (1996) Spectroscopy of some ices of astrophysical interest: SO2, N2 and N2: CH4 mixtures. Planetary and Space Science, 44, 973986.Google Scholar
Quirico, E., Borg, J., Raynal, P.-I., Montagnac, G., & d’Hendecourt, L. (2005) A micro-Raman survey of 10 IDPs and 6 carbonaceous chondrites. Planetary and Space Science, 53, 14431448.Google Scholar
Quirico, E., Montagnac, G., Lees, V., et al. (2008) New experimental constraints on the composition and structure of tholins. Icarus, 198, 218231.Google Scholar
Quirico, E., Moroz, L., Schmitt, B., et al. (2016) Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer. Icarus, 272, 3247.Google Scholar
Raulin, F., Gazeau, M.-C., & Lebreton, J.-P. (2007) A new image of Titan: Titan as seen from Huygens. Planetary and Space Science, 55, 18431844.Google Scholar
Sandford, S.A. (2008) Terrestrial analysis of the organic component of comet dust. Annual Review of Analytical Chemistry, 1, 549578.Google Scholar
Sandford, S.A., Aléon, J., Alexander, C.M.D., et al. (2006) Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. Science, 314, 17201724.Google Scholar
Schmitt, B., de Bergh, C., & Festou, M., eds. (1998) Solar System ices. Kluwer Academic, Dordrecht.Google Scholar
Scott, T.A. (1976) Solid and liquid nitrogen. Physics Reports, 27, 89157.Google Scholar
Sephton, M.A. (2002) Organic compounds in carbonaceous meteorites. Natural Product Reports, 19, 292311.Google Scholar
Sill, G.T. & Clark, R.N. (1982) Composition of the surfaces of the Galilean satellites. In: The satellites of Jupiter (Morrison, D, ed.). University of Arizona Press, Tucson, 174212.Google Scholar
Smythe, W.D. (1975) Spectra of hydrate frosts: Their application to the outer Solar System. Icarus, 24, 421427.Google Scholar
Strazzulla, G., Baratta, G., Johnson, R., & Donn, B. (1991) Primordial comet mantle: Irradiation production of a stable organic crust. Icarus, 91, 101104.Google Scholar
Thomas, K.L., Blanford, G.E., Keller, L.P., Klöck, W., & McKay, D.S. (1993) Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochimica et Cosmochimica Acta, 57, 15511556.Google Scholar
Thomas, P.J., Chyba, C.F. & McKay, C.P., eds. (2006) Comets and the origin and evolution of life. Springer Science+Business Media, New York.Google Scholar
Trafton, L.M. (2015) On the state of methane and nitrogen ice on Pluto and Triton: Implications of the binary phase diagram. Icarus, 246, 197205.Google Scholar
Velbel, M.A. & Harvey, R.P. (2009) Along‐track compositional and textural variation in extensively melted grains returned from comet 81P/Wild 2 by the Stardust mission: Implications for capture‐melting process. Meteoritics and Planetary Science, 44, 15191540.Google Scholar
Waite, J., Young, D., Cravens, T., et al. (2007) The process of tholin formation in Titan’s upper atmosphere. Science, 316, 870875.Google Scholar

References

Acosta, T.E, Scott, E.R.D., Sharma, S.K., & Misra, A.K. (2013) The pressures and temperatures of meteorite impact: Evidence from micro-Raman mapping of mineral phases in the strongly shocked Taiban ordinary chondrite. American Mineralogist, 98, 859869.Google Scholar
Adams, D.M. & Newton, D.M. (1970a) Tables for factor group analysis of the vibrational spectra of solids. Journal of the Chemical Society A, 1970, 28222827.Google Scholar
Adams, D.M. & Newton, D.M. (1970b) Tables for factor group analysis. Beckman-RICC Ltd., Reading, UK.Google Scholar
Adams, D.M., Sharma, S.K., & Appleby, R. (1977) Spectroscopy at very high pressures: Part 14. Laser Raman scattering in ultra-small samples in the diamond anvil cell. Applied Optics, 16, 25722575.Google Scholar
Aminzadeh, A. (1997) Fluorescence bands in the FT-Raman spectra of some calcium minerals. Spectrochimica Acta, A53, 693797.Google Scholar
Angel, S.M., Carrabba, M., & Cooney, T.F. (1995) The utilization of diode lasers for Raman spectroscopy. Spectrochimica Acta, A51, 17791799.Google Scholar
Angel, S.M., Gomer, N.R., Sharma, S.K., & McKay, C. (2012) Remote Raman spectroscopy for planetary exploration: A review. Applied Spectroscopy, 66, 137150.Google Scholar
Arns, J.A. (1995) Holographic transmission gratings improve spectroscopy and ultrafast laser performances. Proceedings of the Society of Photo-optical Instrumentation Engineers, 2404, 174181.Google Scholar
Arns, J.A., Colburn, W.S., & Barden, S.C. (1999) Volume phase gratings for spectroscopy, ultrafast laser compressors, and wavelength division multiplexing, Proceedings of the Society of Photo-optical Instrumentation Engineers, 3779, 313323.Google Scholar
Aroyo, M.I., Perez-Mato, J.M., Capillas, C., et al. (2006a) Bilbao crystallographic server I: Databases and crystallographic computing programs. Zeitschrift für Kristallographie, 221, 1527.Google Scholar
Aroyo, M.I., Kirov, A., Capillas, C., Perez-Mato, J.M., & Wondratschek, H. (2006b) Bilbao crystallographic server II: Representations of crystallographic point groups and space groups. Acta Crystallographica, A62, 115128.Google Scholar
Aroyo, M.I., Perez-Mato, J.M., Orobengoa, D., Tasci, E., de la Flor, G., & Kirov, A. (2011) Crystallography online: Bilbao crystallographic server. Bulgarian Chemistry Communications, 43, 183197.Google Scholar
Battey, D.E., Slater, J.B., Wludyka, R., Owen, H., Pallister, D.M., & Morris, M.D. (1993) Axial transmissive f/1.8 imaging Raman spectrograph with volume-phase holographic filter and grating. Applied Spectroscopy, 47, 19131919.Google Scholar
Beegle, L.W., Bhartia, R., DeFlores, L., et al. (2014) SHERLOC: Scanning habitable environments with Raman and luminescence for organics and chemicals, an investigation for 2020. 45th Lunar Planet. Sci. Conf., Abstract #2835.Google Scholar
Bennett, C.J., Brotton, S.J., Jones, B.M., Misra, A.K., Sharma, S.K., & Kaiser, R.I. (2013) A novel high sensitivity Raman spectrometer to study pristine and irradiated interstellar ice analogs. Analytical Chemistry, 85, 56595665.Google Scholar
Bertie, J.E. & Bell, J.W. (1971) Unit cell group and factor group in the theory of the electronic and vibrational spectra of crystals. Journal of Chemical Physics, 54, 160162.Google Scholar
Bhagvantam, S. (1940) Effect of crystal orientation on the Raman spectrum of calcite. Proceedings of the Indian Academy of Sciences A, 11, 6271.Google Scholar
Bhagavantam, S. & Venkatarayudu, T. (1939) Raman effect in relation to crystal structure. Proceedings of the Indian Academy of Sciences A, 9, 224258.Google Scholar
Bhagavantam, S. & Venkatarayudu, T. (1969) Theory of groups and its applications to physical problems. Academic Press, New York.Google Scholar
Bishop, J.L. & Murad, E. (2004) Characterization of minerals and biogeochemical markers on Mars: A Raman and IR spectroscopy study of montmorillonite. Journal of Raman Spectroscopy, 35, 480486.Google Scholar
Bishop, J.L., Englert, P.A.J., Patel, S., et al. (2014) Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: Coordinated analyses of Raman spectra, reflectance spectra and elemental abundances. Philosophical Transactions of the Royal Society of London A, 372, 20140198.Google Scholar
Bishop, J.L., King, S.J., Lane, M.D., et al. (2017) Spectral properties of anhydrous carbonates and nitrates. 48th Lunar Planet. Sci. Conf., Abstract #2362.Google Scholar
Blacksberg, J., Rossman, G.R., & Gleckler, A. (2010) Time-resolved Raman spectroscopy for in situ planetary mineralogy. Applied Optics, 49, 49514962.Google Scholar
Blacksberg, J., Alerstam, E., Maruyama, Y., Cochrane, C.J., & Rossman, G.R. (2016) Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array. Applied Optics, 55, 739748.Google Scholar
Buback, M. & Schulz, K.R. (1976) Raman scattering of pure ammonia at high pressures and temperatures. Journal of Physical Chemistry, 80, 24782482.Google Scholar
Carter, J.C., Scaffidi, J., Burnett, S., Vasser, B., Sharma, S.K., & Angel, S.M. (2005) Stand-off Raman detection using dispersive and tunable filter based systems. Spectrochimica Acta, A61, 22882298.Google Scholar
Chase, D.B (1986) Fourier transform Raman spectroscopy. Journal of the American Chemical Society, 108, 74857488.Google Scholar
Colthup, N.B., Daly, L.H., & Wiberley, S.E. (1975) Introduction to infrared and Raman spectroscopy, 2nd edn. Academic Press, New York.Google Scholar
Cooney, T.F. & Sharma, S.K. (1990) Structure of glasses in the system Mg2SiO4-Fe2SiO4, Mn2SiO4-Fe2SiO4, Mg2SiO4-CaMgSiO4 and Mn2SiO4-CaMnSiO4. Journal of Non-Crystalline Solids, 122, 1032.Google Scholar
Cooney, T.F., Skinner, H.T., & Angel, S.M. (1995) Evaluation of external-cavity diode lasers for Raman spectroscopy. Applied Spectroscopy, 49, 1846–1851.Google Scholar
Cooper, J.B., Flecher, P.E., Albin, S., Vess, T.M., & Welch, W.T. (1995) Elimination of mode hopping and frequency hysteresis in diode laser Raman spectroscopy: The advantages of a distributed Bragg reflector diode laser for Raman excitation. Applied Spectroscopy, 49, 16921698.Google Scholar
Cornell, R.M. & Schwertmann, U. (2003) The iron oxides: Structure, reactions, occurrences and uses, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.Google Scholar
Cotton, F.A. (1963) Chemical applications of group theory. Wiley-Interscience, New York.Google Scholar
Damen, T.C., Porto, S.P.S., & Tell, B. (1966) Raman effect in zinc oxide. Physical Review, 142, 570574.Google Scholar
DeAngeles, B.A., Newnham, R.E., & White, W.B. (1972) Factor group analysis of the vibrational spectra of crystals: A review and consolidation. American Mineralogist, 57, 255268.Google Scholar
de Faria, D.L.A., Venâncio Silva, S., & de Oliveira, M.T. (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, 28, 873878.Google Scholar
De La Pierre, M., Carteret, C., Maschio, L., André, E., Orlando, R., & Dovesi, R. (2014) The Raman spectrum of CaCO3 polymorphs calcite and aragonite: A combined experimental and computational study. Journal of Chemical Physics, 140, 164509/1–12.Google Scholar
Delhaye, M. & Dhamelincourt, P. (1975), Raman microprobe and microscope with laser excitation. Journal of Raman Spectroscopy, 3, 3343.Google Scholar
Denson, S.C., Pommier, C.J.S., & Denton, M.V. (2007) The impact of array detectors on Raman spectroscopy. Journal of Chemical Education, 84, 6774.Google Scholar
Dhamelincourt, P., Wallart, F., Leclercq, M., N’Guyen, A.T., & Landon, D.O. (1979) Laser Raman molecular microprobe (MOLE). Analytical Chemistry, 51, 414A421A.Google Scholar
Dubessy, J., Caumon, M.-C., Rull, F., & Sharma, S. (2012) Instrumentation in Raman spectroscopy: Elementary theory and practice. In: Applications of Raman spectroscopy to Earth sciences and cultural heritage (Dubessy, J., Rull, F., & Caumon, M.-C., eds.). EMU Notes in Mineralogy, 12. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, 83172.Google Scholar
Edwards, H.G.M., Wynn-Williams, D.D., & Jorge Villar, S.E. (2004) Biological modification of haematite in Antarctic cryptoendolithic communities. Journal of Raman Spectroscopy, 35, 470474.Google Scholar
Egan, M.J., Angel, S.M., & Sharma, S.K. (2017) Standoff spatial heterodyne Raman spectrometer for mineralogical analysis. Journal of Raman Spectroscopy, 48, 16131617, DOI:10.1002/jrs.5121.Google Scholar
Elman, B.S., Dresselhaus, M.S., Dresselhaus, G., Maby, E.W., & Mazurek, H. (1981) Raman scattering from ion-implanted graphite. Physical Review B, 24, 10271034.Google Scholar
Fateley, W.G., Dollish, F.R., McDevitt, N.T., & Bentley, F.F. (1972) Infrared and Raman selection rules for molecular and lattice modes. Wiley-Interscience, New York.Google Scholar
Ferigle, S.M. & Meister, A.G. (1952) Selection rules for vibrational spectra of linear molecules. American Journal of Physics, 20, 421428.Google Scholar
Ferini, G., Baratta, G.A., & Palumbo, M.E. (2004) A Raman study of ion irradiated icy mixtures. Astronomy & Astrophysics, 414, 757766.Google Scholar
Ferraro, J.R. (1975) Factor group analysis for some common minerals. Applied Spectroscopy, 29, 418420.Google Scholar
Ferraro, J.R. & Ziomek, J.S. (1969) Introductory group theory and its application to molecular structure. Plenum Press, New York.Google Scholar
Freeman, J.R., Wang, A., Kuebler, K.E., Jolliff, B.L., & Haskin, L.A. (2008) Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Canadian Mineralogist, 46, 14771500.Google Scholar
Frezzotti, M.L., Tecce, F., & Casagli, A. (2012) Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 120.Google Scholar
Fries, M. & Steele, A. (2011) Raman spectroscopy and confocal Raman imaging in mineralogy and petrography. In: Confocal Raman microscopy (Dieing, T., Hollricher, O., & Toporski, J., eds.). Springer Series in Optical Sciences, 158. Springer-Verlag, Berlin and Heidelberg, 111133.Google Scholar
Gaft, M. & Nagli, L. (2009) Time-resolved laser based spectroscopies for mineralogical research and applications. In: Micro-Raman spectroscopy and luminescence studies in the Earth and planetary sciences (Gucsik, A., ed.). Mainz, Germany, April 2–4, 2009, American Institute of Physics (AIP) Conference Proceedings, 1163, 3–14.Google Scholar
Gaft, M., Reinsfeld, R., & Panczer, G. (2005) Modern luminescence spectroscopy of minerals and materials. Springer-Verlag, Berlin and Heidelberg.Google Scholar
Galeener, F.L. (1982a) Planner rings in glasses. Solid State Communication, 44, 10371040.Google Scholar
Galeener, F.L. (1982b) Planner rings in vitreous silica. Journal of Non-Crystalline Solids, 49, 5362.Google Scholar
Gasda, P.J., Acosta-Maeda, T.E., Lucey, P.G., Misra, A.K., Sharma, S.K., & Taylor, G.J. (2015) Next generation laser-based standoff spectroscopy techniques for Mars exploration. Applied Spectroscopy, 69, 173192.Google Scholar
Gillet, P. (1993) Stability of magnesite (MgCO3) at mantle pressure and temperature: A Raman spectroscopic study. American Mineralogist, 78, 13281331.Google Scholar
Gillet, P., Daniel, I., Guyot, F., Matas, J., & Chervin, J.C. (2000) A thermodynamic model for MgSiO3-perovskite derived from pressure and temperature and volume dependence of the Raman mode frequencies. Physics of the Earth and Planetary Interiors, 117, 361384.Google Scholar
Gomer, N., Gordon, C., Lucey, P., Sharma, S., Carter, J., & Angel, S. (2011) Raman spectroscopy using a spatial heterodyne spectrometer: Proof of concept. Applied Spectroscopy, 65, 849857.Google Scholar
Goncharov, A.F. (2012) Raman spectroscopy at high pressures. International Journal of Spectroscopy, 2012, 617528/1–16.Google Scholar
Götze, J., Nasdala, L. Kleeberg, R., & Wenzel, M. (1998) Occurrence and distribution of “moganite” in agate/chalcedony: A micro-Raman, Rietfeld, and cathodoluminescence study. Contribution to Mineralogy and Petrology, 133, 96105.Google Scholar
Halford, R.S. (1946) Motions of molecules in condensed systems: I. Selection rules, relative intensities, and orientation effects for Raman and infrared spectra. Journal of Chemical Physics, 74, 815.Google Scholar
Haskin, L.A., Wang, A., Rockow, K.M., Jolliff, B.L., Korotev, R.L., & Viskupic, K.M. (1997) Raman spectroscopy for mineral identification and quantification for in situ planetary surface analysis: A point count method. Journal of Geophysical Research, 102, 1929319306.Google Scholar
Hemley, R.J., Bell, P.M., & Mao, H.K. (1987) Laser techniques in high-pressure geophysics. Science, 237, 605612.Google Scholar
Herzberg, G. (1945) Molecular spectra and molecular structure. II. Infrared and Raman spectra of polyatomic molecules. Van Nostrand Reinhold, New York.Google Scholar
Hirschfeld, T. & Chase, B. (1986) FT-Raman spectroscopy: Development and justification. Applied Spectroscopy, 40, 133137.Google Scholar
Hornig, D.F. (1948) The vibrational spectra of molecules and complex ions in crystals. I. General theory. Journal of Chemical Physics, 16, 10631076.Google Scholar
Hu, G., Xiong, W., Shi, H., Li, Z., Shen, J., & Fang, X. (2015) Raman spectroscopic detection for liquid and solid targets using a spatial heterodyne spectrometer. Journal of Raman Spectroscopy, 47, 289298.Google Scholar
Jennings, D.E., Weber, A., & Brault, J.W. (1986) Raman spectroscopy of gases with a Fourier transform spectrometer: The spectrum of D2. Applied Optics, 25, 284290.Google Scholar
Kaszowska, Z., Malek, K., Staniszewska-Slezak, E., & Niedzielska, K. (2016) Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials. Spectrochimica Acta, A169, 715.Google Scholar
Kingma, K.J. & Hemley, R.J. (1994) Raman spectroscopic study of microcrystalline silica. American Mineralogist, 79, 269273.Google Scholar
Kittel, C. (1976) Introduction to solid state physics, 5th edn. John Wiley & Sons, New York.Google Scholar
Kuebler, K.E., Jolliff, B.L., Wang, A., & Haskin, L.A. (2006) Extracting olivine (Fo-Fa) compositions from Raman spectral peak positions. Geochimica et Cosmochimica Acta, 70, 62016222.Google Scholar
Lamsal, N., Sharma, S.K., Acosta, T.E., & Angel, S.M. (2016) UV standoff Raman measurements using a gated spatial heterodyne Raman spectrometer. Applied Spectroscopy, 70, 666675.Google Scholar
Lebedkin, S., Blum, C., Stürzl, N., Hennrich, F., & Kappes, M.M. (2011) A low wavenumber extended confocal Raman microscope with very high laser excitation line discrimination. Review of Scientific Instruments, 82, 013705/1–6.Google Scholar
Li, Z. & Deen, M.J. (2014) Towards a portable Raman spectrometer using a concave grating and a time-gated CMOS SPAD. Optics Express, 22, 1873618747.Google Scholar
Lopez-Reyes, G., Rull, F., Venegas, G., et al. (2014) Analysis of the scientific capabilities of the ExoMars Raman laser spectrometer instrument. European Journal of Mineralogy, 25, 721733.Google Scholar
Lucey, P.G., Cooney, T.F., & Sharma, S.K. (1998) A remote Raman analysis system for planetary landers. 29th Lunar Planet. Sci. Conf., Abstract #1354.Google Scholar
Maraduddin, A.A. & Vosko, S.H. (1968) Symmetry properties of the normal vibrations of a crystal. Reviews of Modern Physics, 40, 137.Google Scholar
Matousek, P., Towrie, M., Stanley, A., & Parker, A.W. (1999) Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating. Applied Spectroscopy, 53, 14851489.Google Scholar
Matson, D.W., Sharma, S.K., & Philpotts, J.A. (1983) The structure of high-silica alkali-silicate glasses: A Raman spectroscopic investigation. Journal of Non-Crystalline Solids, 58, 323352.Google Scholar
Matson, D.W., Sharma, S.K., & Philpotts, J.A. (1986) Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins. American Mineralogist, 71, 694704.Google Scholar
McCreery, R.L. (2000) Raman spectroscopy for chemical analysis. John Wiley & Sons, New York.Google Scholar
McKeown, D.A. (2005) Raman spectroscopy and vibrational analyses of albite: From 25°C through the melting temperature. American Mineralogist, 90, 15061517.Google Scholar
McMillan, P. (1985) Vibrational spectroscopy in the mineral sciences. In: Microscopic to macroscopic: Atomic environments to thermodynamic properties (Kieffer, S.W. & Navrotsky, A., eds.). Reviews in Mineralogy, 14. Mineralogical Society of America, Washington, DC, 963.Google Scholar
McMillan, P.F. & Hofmeister, A.M. (1988) Infrared and Raman spectroscopy. In: Spectroscopic methods in mineralogy and geochemistry (Hawthorne, F.C., ed.). Reviews in Mineralogy, 18. Mineralogical Society of America, Washington, DC, 99159.Google Scholar
McMillan, P.F. & Wolf, G.H. (1995) Vibrational spectroscopy of silicate liquids. In: Structure, dynamics and properties of silicate melts (Stebbins, J.F, McMillan, P.F. & Dingwell, D.B., eds.), Reviews in Mineralogy, 32. Mineralogical Society of America, Washington, DC, 247314.Google Scholar
McMillan, P.F., Dubessy, J., & Hemley, R. (1996) Applications in Earth, planetary and environmental sciences. In: Raman microscopy: Developments and applications (Turrell, G. & Corset, J., eds.). Academic Press, New York, 289365.Google Scholar
Misra, A.K., Sharma, S.K., Chio, C.H., Lucey, P.G., & Lienert, B. (2005) Pulsed remote Raman system for daytime measurements of mineral spectra. Spectrochimica Acta, A61, 22812287.Google Scholar
Mysen, B.O. & Richet, P. (2005) Silicate glasses & melts: Properties and structure. Elsevier, New York.Google Scholar
Nadungadi, T.M.K. (1939) Effect of crystal orientation on the Raman spectrum of sodium nitrate. Proceedings of the Indian Academy of Sciences, A10, 197212.Google Scholar
Nasdala, L., Smith, D.C., Kaindl, R., & Ziemann, M.A. (2004) Raman spectroscopy: Analytical perspectives in mineralogical research. In: Spectroscopic Methods in mineralogy (Beran, A. & Libowitzky, E., eds.). EMU Notes in Mineralogy, 6. European Mineralogical Union and Mineralogical Society of Great Britain and Ireland, 281343.Google Scholar
Nieuwoudt, M.K., Comins, J.D., & Cukrowski, I. (2011) The growth of the passive film on iron in 0.05 MNaOH studied in situ by Raman micro-spectroscopy and electrochemical polarisation. Part I: near-resonance enhancement of the Raman spectra of iron oxide and oxyhydroxide compounds. Journal of Raman Spectroscopy, 42, 13351339.Google Scholar
Owen, H. (2007) The impact of volume phase holographic filters and gratings on the development of Raman instrumentation. Journal of Chemical Education, 84, 6166.Google Scholar
Panczer, G., De Ligny, D., Mendoza, C., Gaft, M., Seydoux-Guillaume, A.-M., & Wang, X. (2012) Raman and fluorescence. In: Applications of Raman spectroscopy to Earth sciences and cultural heritage (Dubessy, J., Rull, F., & Caumon, M.-C., eds.). EMU Notes in Mineralogy, 12. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, 122.Google Scholar
Pandya, N., Sharma, S.K., & Muenow, D.W. (1988) Calibration of a multichannel micro-Raman spectrograph with plasma lines of argon and krypton ion lasers. Microbeam analysis – 1988: Proceedings of the 23rd Annual Conference of the Microbeam Analysis Society, Milwaukee, Wisconsin, August 8–12, 1988 (Newbury, D. E., ed.). San Francisco Press, San Francisco, 171174.Google Scholar
Pasteris, J.D., Kuehn, C.A., & Bodnar, R.J. (1986) Applications of the laser Raman microprobe Ramanor U-1000 to hydrothermal ore deposits: Carlin as an example. Economic Geology, 81, 915930.Google Scholar
Porto, S.P.S., Giordmaine, J.A., & Damen, T.C. (1966) Depolarization of Raman scattering in calcite. Physical Review, 147, 608611.Google Scholar
Rai, C.S., Sharma, S.K., Muenow, D.W., Matson, D.W., & Byers, C.D. (1983) Temperature dependence of CO2 solubility in high-pressure quenched glasses of diopside composition. Geochimica et Cosmochimica Acta, 47, 953958.Google Scholar
Raman, C.V. (1928) A change of wave-length in light scattering. Nature, 121, 619–619.Google Scholar
Raman, C.V. & Krishnan, K.S. (1928) A new type of secondary radiation. Nature, 121, 501502.Google Scholar
Reynard, B., Montagnac, G., & Cardon, H. (2012) Raman spectroscopy at high pressure and temperature for study of the Earth’s mantle and planetary minerals. In: Applications of Raman spectroscopy to Earth sciences and cultural heritage (Dubessy, J., Rull, F., & Caumon, M.-C., eds.). EMU Notes in Mineralogy, 12, European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, 367390.Google Scholar
Roedder, E. (1984) Nondestructive methods of determination of inclusion composition. In: Fluid inclusions (Roedder, E., ed.). Reviews in Mineralogy, 12, Mineralogical Society of America, Washington, DC, 79108.Google Scholar
Rosasco, G.J., Etz, E.S., & Cassatt, W.A. (1975) The analysis of discrete fine particles by Raman spectroscopy. Applied Spectroscopy, 29, 396404.Google Scholar
Rossano, S. & Mysen, B.O. (2012) Raman spectroscopy of silicate glasses and melts in geological systems. Applications of Raman spectroscopy to Earth sciences and cultural heritage (Dubessy, J., Rull, F., & Caumon, M.-C., editors). EMU Notes in Mineralogy, 12. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, 321366.Google Scholar
Rull, F. (2012) The Raman effect and the vibrational dynamics of molecules and crystalline solids. In: Applications of Raman spectroscopy to Earth sciences and cultural heritage (Dubessy, J., Rull, F. & Caumon, M.-C., eds.). EMU Notes in Mineralogy, 12. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, 160.Google Scholar
Salthouse, J.A. & Ware, M.J. (1972) Point group character tables and related data. Cambridge University Press, Cambridge.Google Scholar
Sharma, S.K. (1979) Raman spectroscopy at very high pressure. Carnegie Institution of Washington Year Book, 78, 660665.Google Scholar
Sharma, S.K. (1989) Applications of advanced Raman techniques in Earth sciences. Vibrational Spectra and Structure, 17B, 513 568.Google Scholar
Sharma, S.K. (2007) New trends in telescopic remote Raman spectroscopic instrumentation. Spectrochimica Acta, A68, 10081022.Google Scholar
Sharma, S.K. & Simons, B. (1981) Raman study of crystalline polymorphs and glasses of spodumene (LiAlSi2O6) composition quenched from various pressure. American Mineralogist, 66, 118126.Google Scholar
Sharma, S.K., Hoering, T.C., & Yoder, H.S., Jr. (1979a) Quenched melts of akermanite compositions with and without CO2-characterization by Raman spectroscopy and gas chromatography. Carnegie Institution Washington Year Book, 78, 537542.Google Scholar
Sharma, S.K., Virgo, D., & Mysen, B.O. (1979b) Raman study of the coordination of aluminum in jadeite melts as function of pressure. American Mineralogist, 64, 779787.Google Scholar
Sharma, S.K., Mammone, J.F., & Nicol, M.F. (1981) Ring configurations in vitreous silica: A Raman spectroscopic investigation. Nature, 292, 140141.Google Scholar
Sharma, S.K., Philpotts, J.A., & Matson, D.W. (1985) Ring distributions in alkali- and alkaline-earth alumino-silicate framework glasses: A Raman spectroscopic study. Journal of Non-Crystalline Solids, 71, 403410.Google Scholar
Sharma, S.K., Yoder, H.S., Jr., & Matson, D.W. (1988) Raman study of some melilites in crystalline and glassy states. Geochimica et Cosmochimica Acta, 52, 19611967.Google Scholar
Sharma, S.K., Wang, Z., & van der Laan, S. (1996) Raman spectroscopy of oxide glasses at high pressure and high temperature. Journal of Raman Spectroscopy, 27, 739746.Google Scholar
Sharma, S.K., Cooney, T.F., Wang, Z., & van der Laan, S. (1997) Raman band assignments of silicate and germanate glasses in light of high pressure and high temperature spectral data. Journal of Raman Spectroscopy, 28, 679709.Google Scholar
Sharma, S.K., Misra, A.K., & Sharma, B. (2005) Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment. Spectrochimica Acta, A61, 24042412.Google Scholar
Sonwalker, N., Sunder, S.S., & Sharma, S.K. (1991) Raman microprobe spectroscopy of icing on metal surfaces. Journal of Raman Spectroscopy, 22, 551557.Google Scholar
Spinella, F., Barrata, G.A., & Strazzulla, G. (1991) An apparatus for in situ Raman spectroscopy of ion-irradiated frozen target. Review of Scientific Instruments, 62, 17431745.Google Scholar
Storrie-Lombardi, M.C., Hug, W.F., McDonald, G.D., Tsapin, A.I., & Nealson, K.H. (2011) Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging. Review of Scientific Instruments, 72, 44524459.Google Scholar
Strazzulla, G. & Baratta, G.A. (1992) Carbonaceous material by ion irradiation in space. Astronomy and Astrophysics, 266, 434438.Google Scholar
Strazzulla, G., Baratta, G.A., & Palumbo, M.E. (2001) Vibrational spectroscopy of ion-irradiated ices. Spectrochimica Acta, A57, 825842.Google Scholar
Taran, M., Koch-Müller, M., Wirth, R., Abs-Wurmbach, I., Rhede, D., & Greshake, A. (2009) Spectroscopic studies of synthetic and natural ringwoodite, γ-(Mg, Fe)2SiO4. Physics and Chemistry of Minerals, 36, 217232.Google Scholar
Urmos, J.P., Sharma, S.K., & Mackenzie, F.T. (1991) Characterization of some biogenic carbonates with Raman spectroscopy. American Mineralogist, 76, 641646.Google Scholar
Wang, Z., Cooney, T.F., & Sharma, S.K. (1993) High-temperature structural investigation of iron-bearing glasses and melts. Contributions to Mineralogy & Petrology, 115, 112122.Google Scholar
Wang, Z., Cooney, T.F., & Sharma, S.K. (1995) In situ structural investigation of iron-containing silicate melts and glasses. Geochimica Cosmochimica Acta, 59, 15711577.Google Scholar
Wang, A., Haskin, L.A., & Cortez, E. (1998) Prototype Raman spectroscopic sensor for in situ mineral characterization on planetary surfaces. Applied Spectroscopy, 52, 477487.Google Scholar
Wang, A., Jolliff, B.L., Haskin, L.A., Kuebler, K.E., & Viskupic, K.M. (2001) Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. American Mineralogist, 86, 790806.Google Scholar
Wang, A., Haskin, L.A., Lane, A.L., et al. (2003) Development of the Mars Microbeam Raman Spectrometer (MMRS). Journal of Geophysical Research, 108 E1, 5005/1–18.Google Scholar
Wang, W., Major, A., & Paliwal, J. (2012) Grating-stabilized external cavity diode lasers for Raman spectroscopy: A review. Applied Spectroscopy Reviews, 47, 116143.Google Scholar
Warren, J.L. (1968) Further considerations on the symmetry properties of the normal vibrations of a crystal. Reviews of Modern Physics, 40, 3876.Google Scholar
White, W.B. (1975) Structural interpretation of lunar and terrestrial minerals by Raman spectroscopy. In: Infrared and Raman spectroscopy of lunar and terrestrial minerals (Karr, C., Jr., ed.). Academic Press, New York, 325358.Google Scholar
White, W.B. & De Angelis, B.A. (1967) Interpretation of the vibrational spectra of spinels. Spectrochimica Acta, A23, 985995.Google Scholar
Wiens, R.C., Maurice, S., McCabe, K., et al. (2016) The SUPERCAM remote sensing instrument suite for Mars 2020. 47th Lunar and Planetary Sci. Conf., Abstract #1332.Google Scholar
Winston, H. & Halford, R.S. (1949) Motions of molecules in condensed systems: V. Classification of motions and selection rules for spectra according to space symmetry. Journal of Chemical Physics, 17, 607616.Google Scholar
Zhao, J. & McCreery, R.L. (1996) Multichannel Fourier transform Raman spectroscopy: Combining the advantages of CCDs with interferometry. Applied Spectroscopy, 50, 12091214.Google Scholar
Zhao, J. & McCreery, R.L. (1997) Multichannel FT-Raman spectroscopy: Noise analysis and performance assessment. Applied Spectroscopy, 51, 16871697.Google Scholar

References

Afanas’ev, A.M., Chuev, M.A., & Hesse, J. (1999) Mössbauer spectra of Stoner-Wohlfarth particles in rf fields in a modified relaxation model. Journal of Experimental and Theoretical Physics, 89, 533546.Google Scholar
Alp, E.E., Sturhahn, W., & Toellner, T. (1995) Synchrotron Mössbauer-spectroscopy of powder samples. Nuclear Instruments and Methods in Physics Research B, 97, 526529.Google Scholar
Annersten, H. (1975) Mössbauer study of iron in natural and synthetic biotites. Fortschritte der Mineralogie, 52, 583590.Google Scholar
Bancroft, G.M. (1970) Quantitative site populations in silicate minerals by the Mössbauer effect. Chemical Geology, 5, 255258.Google Scholar
Bancroft, G.M. (1973) Mössbauer spectroscopy: An introduction for inorganic chemists and geochemists. McGraw Hill, New York.Google Scholar
Bancroft, G.M. & Brown, J.R. (1975) A Mössbauer study of coexisting hornblendes and biotites: Quantitative Fe3+/Fe2+ ratios. American Mineralogist, 60, 265272.Google Scholar
Blume, M. & Tjon, J.A. (1968) Mössbauer spectra in a fluctuating environment. Physics Reviews, 165, 446456.Google Scholar
Burns, R.G. & Solberg, T.C. (1988) 57Fe-bearing oxide, silicate, and aluminosilicate minerals. In: Spectroscopic characterization of minerals and their surfaces (Coyne, L.M., Blake, D.F., & McKeever, S.W.S., eds.). American Chemical Society, Symposium Series. Oxford University Press, Los Angeles, 263282.Google Scholar
Carmichael, I.S.E. (1991) The oxidation state of basic magmas: A reflection of their source region? Contributions to Mineralogy and Petrology, 106, 129142.Google Scholar
Chandra, R. & Lokanathan, S. (1977) Electric field gradient in biotite mica. Physica Status Solidi, 83, 273280.Google Scholar
Clark, M.G., Bancroft, G.M., & Stone, A.J. (1967) Mössbauer spectrum of Fe2+ in a square planar environment. Journal of Chemical Physics, 47, 42504261.Google Scholar
Cottenier, S. (2016) www.hyperfinecourse.org : an open on-line course on hyperfine interaction methods by S. Cottenier (spring 2016 edition).Google Scholar
De Grave, E. & Van Alboom, A. (1991) Evaluation of ferrous and ferric Mössbauer fractions. Physics and Chemistry of Minerals, 18, 337342.Google Scholar
De Grave, E., Verbeeck, A.E., & Chambaere, D.G. (1985) Influence of small aluminum substitutions on the hematite lattice. Physics Letters, A107, 181184.Google Scholar
De Grave, E., Vandenberghe, R.E., & Dauwe, C. (2005) ILEEMS: Methodology and applications to iron oxides. Hyperfine Interactions, 161, 147160.Google Scholar
Delattre, J.L., Stacy, A.M., Young, V.G., Long, G.J., Hermann, R., & Grandjean, F. (2002) Study of the structural, electronic, and magnetic properties of the barium-rich iron(IV) iron(IV) oxides, Ba2FeO4 and Ba3FeO5. Inorganic Chemistry, 41, 28342838.Google Scholar
Dyar, M.D. (1984) Precision and interlaboratory reproducibility of measurements of the Mössbauer effect in minerals. American Mineralogist, 69, 11271144.Google Scholar
Dyar, M.D. (1986) Practical application of Mössbauer goodness-of-fit parameters for evaluation of real experimental results: A reply. American Mineralogist, 71, 12661267.Google Scholar
Dyar, M.D. (1989) Applications of Mössbauer goodness-of-fit parameters to experimental spectra: Further discussion. American Mineralogist, 74, 688689.Google Scholar
Dyar, M.D. (1990) Mössbauer spectra of biotites from metapelites. American Mineralogist, 75, 656666.Google Scholar
Dyar, M.D., Mackwell, S.J., McGuire, A.V., Cross, L.R., & Robertson, J.D. (1993) Crystal chemistry of Fe3+ and H+ in mantle kaersutite: Implications for mantle metasomatism. American Mineralogist, 78, 968979.Google Scholar
Dyar, M.D., Agresti, D.G., Schaefer, M., Grant, C.A., & Sklute, E.C. (2006) Mössbauer spectroscopy of earth and planetary materials. Annual Reviews in Earth and Planetary Science, 34, 83125.Google Scholar
Dyar, M.D., Klima, R.L., & Pieters, C.M. (2007a) Effects of differential recoil-free fraction on ordering and site occupancies in Mössbauer spectroscopy of orthopyroxenes. American Mineralogist, 92, 424428.Google Scholar
Dyar, M.D., Schaefer, M.W., Sklute, E.C., & Bishop, J.L. (2007b) Mössbauer spectroscopy of phyllosilicates: Effects of fitting models on recoil-free fractions and redox ratios. Clay Minerals, 43, 131.Google Scholar
Dyar, M.D., Breves, E.A., Jawin, E., et al. (2013a) Mössbauer parameters of iron in sulfate minerals. American Mineralogist, 98, 19431965.Google Scholar
Dyar, M.D., Klima, R.L., Fleagle, A., & Peel, S.E. (2013b) Fundamental Mössbauer parameters of synthetic Ca-Mg-Fe pyroxenes. American Mineralogist, 98, 11721186.Google Scholar
Dyar, M.D., Jawin, E., Breves, E.A., et al. (2014) Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of martian data. American Mineralogist, 99, 914942.Google Scholar
Ericsson, T. & Wäppling, R. (1976) Texture effects in 3/2–1/2 Mössbauer spectra. Journal de Physique Colloques, 37, C6-719–C6-723.Google Scholar
Frauenfelder, H. (1962) The Mössbauer effect. W.A. Benjamin, New York.Google Scholar
Gee, L.B., Lin, C.Y., Jenney, F.E., et al. (2016) Synchrotron-based nickel Mössbauer spectroscopy. Inorganic Chemistry, 55, 68666872.Google Scholar
Gibb, T.C. (1976) Principles of Mössbauer spectroscopy. Springer-Verlag, Dordrecht.Google Scholar
Greenwood, N.B. & Gibb, T.C. (1971) Mössbauer spectroscopy. Chapman and Hall, London.Google Scholar
Gütlich, P., Eckhard, B., & Trautwein, A.X. (2011) Mössbauer spectroscopy and transition metal chemistry. Springer-Verlag, Berlin and Heidelberg.Google Scholar
Handke, B., Kozlowski, A., Parlinski, K., Przewoznik, J., & Slezak, T. (2005) Experimental and theoretical studies of vibrational density of states in Fe3O4 single-crystalline thin films. Physical Review B: Condensed Matter and Materials Physics, 71, 144301.Google Scholar
Herber, R.H. (1984) Chemical Mössbauer spectroscopy. Plenum, New York.Google Scholar
Herber, R.H. & Johnson, D. (1979) Lattice dynamics and hyperfine interactions in M2FeO4 (M = K+, Rb+, Cs+) and M`FeO4 (M`=Sr2+, Ba2+). Inorganic Chemistry, 18, 27862790.Google Scholar
Herberle, J. (1971) The Debye integrals, the thermal shift, and the Mössbauer fraction. In: Mössbauer effect methodology (Gruverman, I.J., ed.). Plenum, New York.Google Scholar
Herd, C.D.K., Papike, J.J., & Brearley, A.J. (2001) Oxygen fugacity of martian basalts from electron microprobe oxygen and TEM-EELS analyses of Fe-Ti oxides. American Mineralogist, 86, 10151024.Google Scholar
Herd, C.D.K., Borg, L.E., Jones, J.H., & Papike, J.J. (2002) Oxygen fugacity and geochemical variations in the martian basalts: Implications for Martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochimica et Cosmochimica Acta, 66, 20252036.Google Scholar
Klingelhöfer, G. (1998) In-situ analysis of planetary surfaces by Mössbauer spectroscopy. Hyperfine Interactions, 113, 369374.Google Scholar
Klingelhöfer, G., Morris, R.V., Bernhardt, B., et al. (2003) Athena MIMOS II Mössbauer spectrometer investigation. Journal of Geophysical Research, 108, 8067.Google Scholar
Kojima, N., Ikeda, K., Kobayashi, Y., et al. (2012) Study of the structure and electronic state of thiolate-protected gold clusters by means of Au-197 Mössbauer spectroscopy. Hyperfine Interactions, 207, 127131.Google Scholar
Ladrière, J., Meykens, A., Coussement, R., et al. (1979) Isomer shift calibration of 57Fe by life-time variations in the electron capture decay of 57Fe. Journal de Physique Colloques, 40, C2-20–C2-22.Google Scholar
LaFleur, L.D. & Goodman, C. (1971) Characteristic temperatures of the Mössbauer fraction and thermal-shift measurements in iron and iron salts. Physics Reviews B, 4, 29152920.Google Scholar
Lindsley, D.H., Frost, B.R, Ghiorso, M.S., & Sack, R.O. (1991) Oxides lie; the Bishop Tuff did not erupt from a thermally zoned magma body (abstr.). Eos, Transactions AGU, 72, 312.Google Scholar
Long, G.J., Cranshaw, T.E., & Longworth, G. (1983) The ideal Mössbauer effect absorber thicknesses. Mössbauer Effect Reference Data Journal, 6, 4249.Google Scholar
Masai, H., Matsumoto, S., Ueda, Y., & Koreeda, A. (2016) Correlation between valence state of tin and elastic modulus of Sn-doped Li2O-B2O3-SiO2 glasses. Journal of Applied Physics, 119, 185104, DOI:10.1063/1.4948685.Google Scholar
McCammon, C.A. (1994) A Mössbauer milliprobe: Practical considerations. Hyperfine Interactions, 92, 12351239.Google Scholar
McCanta, M.C., Rutherford, M.J., & Muselwhite, D.S. (2002) An experimental study of REE partitioning between a dry shergottite melt and pigeonite as a function of fO(2): Implications for the martian interior. Meteoritics and Planetary Science, 37, A97–A97.Google Scholar
McCanta, M.C., Rutherford, M.J., & Jones, J.H. (2004) An experimental study of rare earth element partitioning between a shergottite melt and pigeonite: Implications for the oxygen fugacity of the martian interior. Geochimica et Cosmochimica Acta, 68, 19431952.Google Scholar
McCanta, M.C., Elkins-Tanton, L., & Rutherford, M.J. (2009) Expanding the application of the Eu oxybarometer to the lherzolitic shergottites and nakhlites: Implications for the oxidation state heterogeneity of the martian interior. Meteoritics and Planetary Science, 44, 725745.Google Scholar
Menil, F. (1985) Systematic trends of the 57Fe Mossbauer isomer shifts in (FeOn) and (FeFn) polyhedra: Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (→Fe) (where X is O or F and T any element with a formal positive charge. Journal of Physics and Chemistry of Solids, 46, 763789.Google Scholar
Moon, N., Coffin, C.T., Steinke, D.C., Sands, R.H., & Dunham, W.R. (1996) A high-sensitivity Mössbauer spectrometer facilitates the study of iron proteins at natural abundance. Nuclear Instruments and Methods in Physics Research B, 119, 555564.Google Scholar
Mørup, S. (2011) Magnetic relaxation phenomena. In: Mössbauer spectroscopy and transition metal chemistry (Bill Gutlich, P.E. & Trautwein, A.X., eds.). Springer-Verlag, Berlin, 201234.Google Scholar
Mössbauer, R.L. (1958) Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Zeitschrift für Physik, 151, 124143.Google Scholar
Munck, E., Groves, J.L., Tumolillo, T.A., & Debrunner, P.G. (1973) Computer simulations of Mössbauer-spectra for an effective spin S = 1/2 Hamiltonian. Computer Physics Communications, 5, 225238.Google Scholar
Murad, E. & Cashion, J. (2004) Mössbauer spectroscopy of environmental materials and their industrial utilization. Kluwer, Dordrecht.Google Scholar
Neese, F. & Petrenko, T. (2011) Quantum chemistry and Mössbauer spectroscopy. In: Mössbauer spectroscopy and transition metal chemistry: Fundamentals and Applications (Gütlich, P., Bill, E., & Trautwein, A.X., eds.). Springer, Berlin and Heidelberg, 137199.Google Scholar
Oosterhuis, W.T. & Spartalian, K. (1976) Biological iron transport and storage compounds. In: Applications of Mossbauer spectroscopy, 1 (Cohen, R.L., ed.). Elsevier, New York, 142170.Google Scholar
Parkinson, I.J. & Arculus, R.J. (1999) The redox state of subduction zones: Insights from arc-peridotites. Chemical Geology, 160, 409423.Google Scholar
Perfiliev, Y.D. & Sharma, V.K. (2008) Higher oxidation states of iron in solid state: Synthesis and their Mössbauer characterization. In: Ferrates: Synthesis, properties, and applications in water and wastewater treatment (Sharma, V.K., ed.). ACS Symposium Series. Oxford University Press, Los Angeles, 112123.Google Scholar
Ping, J.Y. & Rancourt, D.G. (1992) Thickness effects with intrinsically broad absorption. Hyperfine Interactions, 71, 14331436.Google Scholar
Popa, T, Fan, M. Argyle, M.D., et al. (2013) H2 and COx generation from coal gasification catalyzed by a cost-effective iron catalyst. Applied Catalysis, 464465, 207217.Google Scholar
Prisecaru, I. & Kent, T.A. (2012) Manual for WMOSS4, www.wmoss.org/downloads/ WMOSS4F_Letter.pdfGoogle Scholar
Rancourt, D.G. (1994a) Mössbauer spectroscopy of minerals I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from quadrupole splitting distributions. Physics and Chemistry of Minerals, 21, 244249.Google Scholar
Rancourt, D.G. (1994b) Mössbauer spectroscopy of minerals II. Problem of resolving cis and trans octahedral Fe2+ sites. Physics and Chemistry of Minerals, 21, 250257.Google Scholar
Rancourt, D.G., McDonald, A.M., Lalonde, A.E., & Ping, J.Y. (1993) Mössbauer absorber thickness for accurate site populations in Fe-bearing minerals. American Mineralogist, 78, 17.Google Scholar
Rancourt, D.G., Ping, J.Y., & Berman, R.G. (1994) Mössbauer spectroscopy of minerals III. Octahedral-site Fe2+ quadrupole splitting distributions in the phlogopite-annite series. Physics and Chemistry of Minerals, 21, 258267.Google Scholar
Reiff, W.M. (1984) Zero and high field Mössbauer spectroscopy studies of the magnetic ordering behavior of one, two, and three dimensional systems. In: Chemical Mössbauer spectroscopy (Herber, R.H., ed.). Plenum Press, New York, 6594.Google Scholar
Sarma, P.R., Prakash, V., & Tripathi, K.C. (1980) Optimization of the absorber thickness for improving the quality of a Mössbauer spectrum. Nuclear Instruments and Methods in Physics Research B, 178, 167171.Google Scholar
Scepaniak, J.J., Vogel, C.S., Khusniyarov, M.M., Heinemann, F.W., Meyer, K., & Smith, J.M. (2011) Synthesis, structure, and reactivity of an iron(V) nitride. Science, 331, 10491052.Google Scholar
Shimony, U. (1965) Condition for maximum single-line Mössbauer absorption. Nuclear Instruments and Methods in Physics Research B, 37, 348350.Google Scholar
Shinjo, T., Ichida, T., & Takada, T. (1970) Fe57 Mössbauer effect and magnetic susceptibility of hexavalent iron compounds – K2FeO4, SrFeO4, and BaFeO4. Journal of the Physical Society of Japan, 29, 111115.Google Scholar
Sklute, E.C., Dyar, M.D., Kashyap, S., & Holden, J. (2016) The challenge of dist8inguishing iron (hydr)oxides and what it means for Mars (abstr.). Geological Society of America National Meeting, Denver, CO, #197–10.Google Scholar
Sturhahn, W. (2004) Nuclear resonant spectroscopy. Journal of Physics – Condensed Matter, 16, S497S530.Google Scholar
Sturhahn, W., Alp, E.E., Toellner, T.S., Hession, P., Hu, M., & Sutter, J. (1998) Introduction to nuclear resonant scattering with synchrotron radiation. Hyperfine Interactions, 113, 4758.Google Scholar
Treiman, A.H., McCanta, M., Dyar, M.D., et al. (2006) Brown and clear olivine in Chassignite NWA 2737: water and deformation (abstr.). 37th Lunar Planet. Sci. Conf., Abstract #1314.Google Scholar
Van Alboom, A. & De Grave, E. (2016) Temperature dependences of the hyperfine parameters of Fe2+ in FeTiO3 as determined by 57Fe-Mössbauer spectroscopy. American Mineralogist, 101, 735743.Google Scholar
Van Alboom, A., De Resende, V.G., De Grave, E., & Gomez, J.M. (2009) Hyperfine interactions in szomolnokite (FeSO₄∙H₂O). Journal of Molecular Structure, 924926, 448456.Google Scholar
Van Alboom, A., De Grave, E., & Wohlfahrt-Mehrens, M. (2011) Temperature dependence of the Fe2+ Mössbauer parameters in triphylite (LiFePO4). American Mineralogist, 96, 408416.Google Scholar
Van Alboom, A., De Resende, V.G., da Costa, G.M., & De Grave, E. (2015) Mössbauer spectroscopic study of natural eosphorite, [(Mn, Fe)AlPO4(OH)2H2O]. American Mineralogist, 100, 580587.Google Scholar
Visscher, W.M. (1960) Study of lattice vibrations by resonance absorption of nuclear gamma rays. Annals of Physics, 9, 194210.Google Scholar
Voigt, W. (1912) On the intensity distribution within lines of a gaseous spectrum, Sitzungsberichte der Königlich Bayerischen Akademie der Wissenschaften zu München, 1912, 603620.Google Scholar
Wadhwa, M. (2001) Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science, 291, 15271530.Google Scholar
Waychunas, G.A. (1986) Performance and use of Mössbauer goodness of fit parameters: Response to spectra of various signal/noise ratios and possible misinterpretations. American Mineralogist, 71, 12611265Google Scholar
Waychunas, G.A. (1989) Applications of Mössbauer goodness-of-fit parameters to experimental spectra: A discussion of random noise versus systematic effects. American Mineralogist, 74, 685687.Google Scholar
Whipple, E.R. (1968) Quantitative Mössbauer spectra and chemistry of iron. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
Yan, L., Zhao, J., Toellner, T.S., et al. (2012) Exploration of synchrotron Mössbauer microscopy with micrometer resolution: Forward and a new backscattering modality on natural samples. Journal of Synchrotron Radiation, 19, 814820.Google Scholar

References

Abdi, H. (2003) Partial least square regression (PLS regression). Encyclopedia for Research Methods for the Social Sciences, 6, 792795.Google Scholar
Abrahamsson, C., Johansson, J., Sparén, A., & Lindgren, F. (2003) Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets. Chemometrics and Intelligent Laboratory Systems, 69, 312.Google Scholar
Anderson, R.B., Morris, R., Clegg, S., Bell, J. III, Humphries, S., & Wiens, R. (2011a) A comparison of multivariate and pre-processing methods for quantitative Laser-Induced Breakdown Spectroscopy of geologic samples. 42nd Lunar Planet. Sci. Conf., Abstract #1308.Google Scholar
Anderson, R.B., Morris, R.V., Clegg, S.M., et al. (2011b) The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy. Icarus, 215, 608627.Google Scholar
Anderson, R.B., Bell, J.F. III, Wiens, R.C., Morris, R.V., & Clegg, S.M. (2012) Clustering and training set selection methods for improving the accuracy of quantitative laser induced breakdown spectroscopy. Spectrochimica Acta B: Atomic Spectroscopy, 70, 2432.Google Scholar
Anderson, R.B., Clegg, S.M., Frydenvang, J., et al. (2016) Improved accuracy in quantitative Laser-Induced Breakdown Spectroscopy using sub-model partial least squares. Spectrochimica Acta B: Atomic Spectroscopy, 129, 4957.Google Scholar
Balabin, R.M. & Smirnov, S.V. (2011) Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data. Analytica Chimica Acta, 692, 6372.Google Scholar
Blaney, D.L., Wiens, R.C., Maurice, S., et al. (2014) Chemistry and texture of the rocks at Rocknest, Gale crater: Evidence for sedimentary origin and diagenetic alteration. Journal of Geophysical Research, 119, 21092131.Google Scholar
Boucher, T., Carey, C.J., Dyar, M.D., Mahadevan, S., Clegg, S., & Wiens, R. (2015a) Manifold preprocessing for Laser-Induced Breakdown Spectroscopy under Mars conditions. Journal of Chemometrics, 29, 484491.Google Scholar
Boucher, T., Dyar, M.D., Carey, C.J., et al. (2015b) Calibration transfer of LIBS spectra to correct for Mars-Earth lab differences. 46th Lunar Planet. Sci. Conf., Abstract #2773.Google Scholar
Carroll, P. & Kennedy, E. (1981) Laser-produced plasmas. Contemporary Physics, 22, 6196.Google Scholar
Chaleard, C., Mauchien, P., Andre, N., Uebbing, J., Lacour, J., & Geertsen, C. (1997) Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 12, 183188.Google Scholar
Ciucci, A., Corsi, M., Palleschi, V., Rastelli, S., Salvetti, A., & Tognoni, E. (1999) New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Applied Spectroscopy, 53, 960964.Google Scholar
Clegg, S.M., Sklute, E., Dyar, M.D., Barefield, J.E., & Wiens, R.C. (2009) Multivariate analysis of remote Laser-Induced Breakdown Spectroscopy spectra using partial least squares, principal component analysis, and related techniques. Spectrochimica Acta B: Atomic Spectroscopy, 64, 7988.Google Scholar
Clegg, S.M., Wiens, R., Misra, A.K., et al. (2014) Planetary geochemical investigations using Raman and Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 68, 925936.Google Scholar
Clegg, S.M., Wiens, R.C., Anderson, R., et al. (2017) Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database. Spectrochimica Acta B: Atomic Spectroscopy, 129, 6485.Google Scholar
Cleveland, W.S. & Devlin, S.J. (1988) Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association, 83, 596610.Google Scholar
Cohen, B.A., Miller, J.S., Li, Z.-H., Swindle, T.D., & French, R.A. (2014) The potassium-argon laser experiment (KArLE): In situ geochronology for planetary robotic missions. Geostandards and Geoanalytical Research, 38, 421439.Google Scholar
Colgan, J., Judge, E.J., Johns, H.M., et al. (2015) Theoretical modeling and analysis of the emission spectra of a ChemCam standard: Basalt BIR-1A. Spectrochimica Acta B: Atomic Spectroscopy, 110, 2030.Google Scholar
Colgan, J., Barefield, J., Judge, E.J., et al. (2016) Experimental and theoretical studies of Laser-Induced Breakdown Spectroscopy emission from iron oxide: Studies of atmospheric effects. Spectrochimica Acta B: Atomic Spectroscopy, 122, 8592.Google Scholar
Cremers, D. & Radziemski, L.J. (2013) Handbook of Laser-Induced Breakdown Spectroscopy. John Wiley & Sons, Oxford.Google Scholar
Dyar, M.D., Tucker, J., Humphries, S., Clegg, S.M., Wiens, R.C., & Lane, M.D. (2011) Strategies for Mars remote Laser-Induced Breakdown Spectroscopy analysis of sulfur in geological samples. Spectrochimica Acta B: Atomic Spectroscopy, 66, 3956.Google Scholar
Dyar, M.D., Carmosino, M.L., Breves, E.A., Ozanne, M.V., Clegg, S.M., & Wiens, R.C. (2012a) Comparison of partial least squares and lasso regression techniques as applied to Laser-Induced Breakdown Spectroscopy of geological samples. Spectrochimica Acta B: Atomic Spectroscopy, 70, 5167.Google Scholar
Dyar, M.D., Carmosino, M.L., Tucker, J.M., et al. (2012b) Remote Laser-Induced Breakdown Spectroscopy analysis of East African Rift sedimentary samples under Mars conditions. Chemical Geology, 294295, 135151.Google Scholar
Dyar, M.D., Fassett, C.I., Giguere, S., et al. (2016) Comparison of univariate and multivariate models for prediction of major and minor elements from laser-induced breakdown spectra with and without masking. Spectrochimica Acta B: Atomic Spectroscopy, 123, 93104.Google Scholar
Eppler, A.S., Cremers, D.A., Hickmott, D.D., Ferris, M.J., & Koskelo, A.C. (1996) Matrix effects in the detection of Pb and Ba in soils using Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 50, 11751181.Google Scholar
Fabre, C., Cousin, A., Wiens, R., et al. (2014) In situ calibration using univariate analyses based on the onboard ChemCam targets: First prediction of martian rock and soil compositions. Spectrochimica Acta B: Atomic Spectroscopy, 99, 3451.Google Scholar
Ferreira, E.C., Milori, D.M., Ferreira, E.J., Da Silva, R.M., & Martin-Neto, L. (2008) Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system. Spectrochimica Acta B: Atomic Spectroscopy, 63, 12161220.Google Scholar
Feudale, R.N., Woody, N.A., Tan, H., Myles, A.J., Brown, S.D., & Ferré, J. (2002) Transfer of multivariate calibration models: A review. Chemometrics and Intelligent Laboratory Systems, 64, 181192.Google Scholar
Forni, O., Maurice, S., Gasnault, O., et al. (2013) Independent component analysis classification of Laser-Induced Breakdown Spectroscopy spectra. Spectrochimica Acta B: Atomic Spectroscopy, 86, 3141.Google Scholar
Forni, O., Gaft, M., Toplis, M.J., et al. (2015) First detection of fluorine on Mars: Implications for Gale crater’s geochemistry. Geophysical Research Letters, 42, 10201028.Google Scholar
Giguere, S., Carey, C.J., Boucher, T., Mahadevan, S., & Dyar, M.D. (2015) An optimization perspective on baseline removal for spectroscopy. Proceedings of the 5th IJCAI Workshop on Artificial Intelligence in Space.Google Scholar
Giguere, S., Boucher, T., Carey, C.J., Mahadevan, S., & Dyar, M.D. (2017) A fully customized baseline removal framework for spectroscopic applications. Applied Spectroscopy, 71, 14571470.Google Scholar
Gonzalez, J.J., Chirinos, J.R., Dong, M., et al. (2013) Simultaneous Laser Ablation Molecular Isotopic Spectrometry (LAMIS), Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Spectrometry (LA-ICP-MS) for elemental analysis of geological samples. Mineralogical Magazine, 77(5), Abstract #1193.Google Scholar
Hahn, D.W. & Omenetto, N. (2010) Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of basic diagnostics and plasma–particle interactions: still-challenging issues within the analytical plasma community. Applied Spectroscopy, 64, 335A366A.Google Scholar
Jain, A.K., Murty, M.N., & Flynn, P.J. (1999) Data clustering: A review. ACM Computing Surveys (CSUR), 31, 264323.Google Scholar
Johns, H., Kilcrease, D., Colgan, J., et al. (2015) Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 224009.Google Scholar
Jolliffe, I.T. (1982) A note on the use of principal components in regression. Applied Statistics, 31, 300303.Google Scholar
King, B. (1967) Step-wise clustering procedures. Journal of the American Statistical Association, 62, 86101.Google Scholar
Knight, A.K., Scherbarth, N.L., Cremers, D.A., & Ferris, M.J. (2000) Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for application to space exploration. Applied Spectroscopy, 54, 331340.Google Scholar
Kochelek, K.A., McMillan, N.J., McManus, C.E., & Daniel, D.L. (2015) Provenance determination of sapphires and rubies using Laser-Induced Breakdown Spectroscopy and multivariate analysis. American Mineralogist, 100, 19211931.Google Scholar
Labutin, T.A., Lednev, V.N., Ilyin, A.A., & Popov, A.M. (2016) Femtosecond Laser-Induced Breakdown Spectroscopy. Journal of Analytical Atomic Spedctrometry, 31, 90118.Google Scholar
Lasue, J., Wiens, R., Clegg, S., et al. (2012) Remote Laser‐Induced Breakdown Spectroscopy (LIBS) for lunar exploration. Journal of Geophysical Research, 117, DOI:10.1029/2011JE003898.Google Scholar
Lasue, J., Clegg, S.M., Forni, O., et al. (2016) Observation of >5 wt % zinc at the Kimberley outcrop, Gale crater, Mars. Journal of Geophysical Research, 121, 338352.Google Scholar
Leardi, R. & Gonzalez, A.L. (1998) Genetic algorithms applied to feature selection in PLS regression: How and when to use them. Chemometrics and Intelligent Laboratory Systems, 41, 195207.Google Scholar
MacKay, D.J.C. (2003) Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge.Google Scholar
Maurice, S., Wiens, R., Saccoccio, M., et al. (2012) The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) rover: Science objectives and mast unit description. Space Science Reviews, 170, 95166.Google Scholar
Melikechi, N., Mezzacappa, A., Cousin, A., et al. (2014) Correcting for variable laser-target distances of Laser-Induced Breakdown Spectroscopy measurements with ChemCam using emission lines of martian dust spectra. Spectrochimica Acta B: Atomic Spectroscopy, 96, 5160.Google Scholar
Mezzacappa, A., Melikechi, N., Cousin, A., et al. (2016) Application of distance correction to ChemCam Laser-Induced Breakdown Spectroscopy measurements. Spectrochimica Acta B: Atomic Spectroscopy, 120, 1929.Google Scholar
Miziolek, A.W., Palleschi, V., & Schechter, I. (2006) Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and applications. Cambridge University Press, Cambridge.Google Scholar
Ollila, A.M., Newsom, H.E., Clark, B., et al. (2014) Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity’s ChemCam: Early results for Gale crater from Bradbury Landing Site to Rocknest. Journal of Geophysical Research, 119, 255285.Google Scholar
Pokrajac, D., Lazarevic, A., Kecman, V., et al. (2014) Automatic classification of Laser-Induced Breakdown Spectroscopy (LIBS) data of protein biomarker solutions. Applied Spectroscopy, 68, 10671075.Google Scholar
Radziemski, L.J., Loree, T.R., & Cremers, D.A. (1983) Laser-Induced Breakdown Spectroscopy (LIBS): A new spectrochemical technique. In: Optical and laser remote sensing (Killinger, D.K. & Mooradian, A., eds.). Springer-Verlag, Berlin and Heidelberg, 303307.Google Scholar
Rosipal, R. & Krämer, N. (2006) Overview and recent advances in partial least squares. In: Subspace, latent structure and feature selection (Saunders, C., Grobelnik, M., Gunn, S., & Shawe-Taylor, J., eds.). SLSFS 2005. Lecture Notes in Computer Science, 3940. Springer-Verlag, Berlin and Heidelberg, 34–51.Google Scholar
Russo, R.E., Mao, X.L., Bol’shakov, A.A., & Yoo, J. (2012) Real-time elemental and isotopic analysis at atmospheric pressure in a laser ablation plasma. Goldschmidt, 76, 2308.Google Scholar
Sarle, W.S. (1994) Neural networks and statistical models. Proceedings of the 19th Annual SAS Users Group International Conference, 1538–1550.Google Scholar
Schlenke, J., Hildebrand, L., Moros, J., & Laserna, J.J. (2012) Adaptive approach for variable noise suppression on Laser-Induced Breakdown Spectroscopy responses using stationary wavelet transform. Analytica Chimica Acta, 754, 819.Google Scholar
Schröder, S., Meslin, P.-Y., Gasnault, O., et al. (2015) Hydrogen detection with ChemCam at Gale crater. Icarus, 249, 4361.Google Scholar
Shenk, J.S., Westerhaus, M.O., & Berzaghi, P. (1997) Investigation of a LOCAL calibration procedure for near infrared instruments. Journal of Near Infrared Spectroscopy, 5, 223232.Google Scholar
Shi, Q., Niu, G., Lin, Q., Xu, T., Li, F., & Duan, Y. (2015) Quantitative analysis of sedimentary rocks using Laser-Induced Breakdown Spectroscopy: Comparison of support vector regression and partial least squares regression chemometric methods. Journal of Analytical Atomic Spectrometry, 30, 23842393.Google Scholar
Singh, J.P. & Thakur, S. (2007) Laser-Induced Breakdown Spectroscopy. Elsevier, Philadelphia.Google Scholar
Sirven, J.B., Bousquet, B., Canioni, L., & Sarger, L. (2006) Laser-Induced Breakdown Spectroscopy of composite samples: Comparison of advanced chemometrics methods. Analytical Chemistry, 78, 14621469.Google Scholar
Sivakumar, P., Taleh, L., Markushin, Y., Melikechi, N., & Lasue, J. (2013) An experimental observation of the different behavior of ionic and neutral lines of iron as a function of number density in a binary carbon–iron mixture. Spectrochimica Acta B: Atomic Spectroscopy, 82, 7682.Google Scholar
Sivakumar, P., Taleh, L., Markushin, Y., & Melikechi, N. (2014) Packing density effects on the fluctuations of the emission lines in Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta B: Atomic Spectroscopy, 92, 8489.Google Scholar
Smola, A.J. & Schölkopf, B. (2004) A tutorial on support vector regression. Statistics and Computing, 14, 199222.Google Scholar
Sneath, P.H. & Sokal, R.R. (1973) Numerical taxonomy: The principles and practice of numerical classification. W.H. Freeman, New York.Google Scholar
Starck, J.L., Pantin, E., & Murtagh, F. (2002) Deconvolution in astronomy: A review. Publications of the Astronomical Society of the Pacific, 114, 1051.Google Scholar
Tognoni, E., Cristoforetti, G., Legnaioli, S., & Palleschi, V. (2010) Calibration-Free Laser-Induced Breakdown Spectroscopy: State of the art. Spectrochimica Acta B: Atomic Spectroscopy, 65, 114.Google Scholar
Tucker, J., Dyar, M., Schaefer, M., Clegg, S., & Wiens, R. (2010) Optimization of Laser-Induced Breakdown Spectroscopy for rapid geochemical analysis. Chemical Geology, 277, 137148.Google Scholar
Vance, T., Pokrajac, D., Lazarevic, A., et al. (2010) Classification of LIBS protein spectra using multilayer perceptrons. Transactions on Mass-Data Analysis of Images and Signals, 2, 96111.Google Scholar
Wang, Y., Lysaght, M.J., & Kowalski, B.R. (1992) Improvement of multivariate calibration through instrument standardization. Analytical Chemistry, 64, 562564.Google Scholar
Ward, J.H. Jr. (1963) Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236244.Google Scholar
Wiens, R., Maurice, S., Barraclough, B., et al. (2012) The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) rover: Body unit and combined system tests. Space Science Reviews, 170, 167227.Google Scholar
Wiens, R.C., Maurice, S., Lasue, J., et al. (2013) Pre-flight calibration and initial data processing for the ChemCam Laser-Induced Breakdown Spectroscopy instrument on the Mars Science Laboratory Rover. Spectrochimica Acta B: Atomic Spectroscopy, 82, 127.Google Scholar
Wisbrun, R., Schechter, I., Niessner, R., Schroeder, H., & Kompa, K.L. (1994) Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy. Analytical Chemistry, 66, 29642975.Google Scholar
Wold, S. & Sjöström, M. (1977) Method for analyzing chemical data in terms of similarity and analogy. Chemometrics: Theory and application. (Kowalski, B.R., ed.). ACS Symposium Series. American Chemical Society, Washington, DC, 243282.Google Scholar
Wold, S., Sjöström, M., & Eriksson, L. (2001) PLS-regression: A basic tool of chemometrics. In: Chemometrics and Intelligent Laboratory Systems, 58, 109130.Google Scholar
Yaroshchyk, P., Death, D., & Spencer, S. (2012) Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS. Journal of Analytical Atomic Spectrometry, 27, 9298.Google Scholar
Zhang, B., Sun, L., Yu, H., Xin, Y., & Cong, Z. (2013) Wavelet denoising method for Laser-Induced Breakdown Spectroscopy. Journal of Analytical Atomic Spectrometry, 28, 18841893.Google Scholar
Zhang, P. (1993) Model selection via multifold cross validation. The Annals of Statistics, 21(1), 299313.Google Scholar

References

Adler, I. & Trombka, J. (1970) Geochemical exploration of the Moon and planets. Springer-Verlag, New York.Google Scholar
Adler, I., Trombka, J., Gerard, J., et al. (1972a) Apollo 15 geochemical X-ray fluorescence experiment: Preliminary report. Science, 175, 436440.Google Scholar
Adler, I., Trombka, J., Gerard, J., et al. (1972b) Apollo 16 geochemical X-ray fluorescence experiment: Preliminary report. Science, 177, 256259.Google Scholar
Adler, I., Trombka, J.I., Yin, L.I., Gorenstein, P., Bjorkholm, P., & Gerard, J. (1973a) Lunar composition from Apollo orbital measurements. Naturwissenschaften, 60, 231242.Google Scholar
Adler, I., Trombka, J.I., Lowman, P., et al. (1973b) Apollo 15 and 16 results of the integrated geochemical experiment. The Moon, 7, 487504.Google Scholar
Agostinelli, S., Allison, J., Amako, K., et al. (2003) Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250303.Google Scholar
Alha, L., Huovelin, J., Nygård, K., et al. (2009) Ground calibration of the Chandrayaan-1 X-ray Solar Monitor (XSM). Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 607, 544553.Google Scholar
Arai, T., Okada, T., Yamamoto, Y., Ogawa, K., Shirai, K., & Kato, M. (2008) Sulfur abundance of asteroid 25143 Itokawa observed by X-ray fluorescence spectrometer onboard Hayabusa. Earth, Planets and Space, 60, 2131.Google Scholar
Athiray, P.S., Sudhakar, M., Tiwari, M.K., et al. (2013) Experimental validation of XRF inversion code for Chandrayaan-1. Planetary and Space Science, 89, 183187.Google Scholar
Athiray, P.S., Narendranath, S., Sreekumar, P., & Grande, M. (2014) C1XS results—First measurement of enhanced sodium on the lunar surface. Planetary and Space Science, 104, 279287.Google Scholar
Battistoni, G., Cerutti, F., Fasso, A., Ferrari, A., & Muraro, S. (2007) The FLUKA code: Description and benchmarking. AIP Conference Proceedings, 896, 3149.Google Scholar
Beck, A.W., Lawrence, D.J., Peplowski, P.N., et al. (2015) Using HED meteorites to interpret neutron and gamma-ray data from asteroid 4 Vesta. Meteoritics and Planetary Science, 50, 13111337.Google Scholar
Bevington, P.R. & Robinson, D.K. (1992) Data reduction and error analysis for the physical sciences, 2nd edn. McGraw-Hill, New York.Google Scholar
Bielefeld, M.J., Andre, C.G., Clark, P.E., Adler, I., Eliason, E., & Trombka, J. (1977) Imaging of lunar surface chemistry from orbital X-ray data. 8th Lunar Planet Sci. Conf.Google Scholar
Birks, J.B. (1964) Theory and practice of scintillation counting. Pergamon Press, Oxford.Google Scholar
Boynton, W., Feldman, W., Squyres, S., et al. (2002) Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science, 297, 8185.Google Scholar
Boynton, W., Feldman, W., Mitrofanov, I., et al. (2004) The Mars Odyssey gamma-ray spectrometer instrument suite. Space Science Reviews, 110, 3783.Google Scholar
Boynton, W.V., Taylor, G.J., Evans, L.G., et al. (2007) Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. Journal of Geophysical Research, 112, E12S99, DOI:10.1029/2007JE002887.Google Scholar
Brown, E. & Firestone, R.B. (1986) Table of radioactive isotopes (Shirley, V.S, ed.). John Wiley & Sons, New York.Google Scholar
Brückner, J., Korfer, M., Wanke, H., et al. (1991) Proton-induced radiation damage in germanium detectors. IEEE Transactions on Nuclear Science, 38, 209217.CrossRefGoogle Scholar
Cherepy, N.J., Hull, G., Drobshoff, A.D., et al. (2008) Strontium and barium iodide high light yield scintillators. Applied Physics Letters, 92, 083508.Google Scholar
Cherepy, N.J., Payne, S.A., Sturm, B.W., et al. (2013) Instrument development and gamma spectroscopy with strontium iodide. IEEE Transactions on Nuclear Science, 60, 955958.Google Scholar
Clark, B.C., Baird, A.K., Rose, H.J., et al. (1977) The Viking X Ray Fluorescence Experiment: Analytical methods and early results. Journal of Geophysical Research, 82, 45774594.Google Scholar
Clark, P.E. & Adler, I. (1978) Utilization of independent solar flux measurements to eliminate nongeochemical variation in X-ray fluorescence data. 9th Lunar Planet. Sci. Conf., 3029–3036.Google Scholar
Clark, P.E. & Hawke, B.R. (1981) Compositional variation in the Hadley Apennine region. 12th Lunar Planet. Sci. Conf., 727–749.Google Scholar
Clark, P.E. & Hawke, B.R. (1991) The lunar farside: The nature of highlands east of Mare Smythii. Earth, Moon, and Planets, 53, 93107.Google Scholar
Clark, P.E. & Rilee, M.L. (2010) Remote sensing tools for exploration: Observing and interpreting the electromagnetic spectrum. Springer Science+Business Media, New York.Google Scholar
Clark, P.E. & Trombka, J.I. (1997) Remote X-ray spectrometry for NEAR and future missions: Modeling and analyzing X-ray production from source to surface. Journal of Geophysical Research, 102, 1636116384.Google Scholar
Crawford, I.A., Joy, K.H., Kellett, B.J., et al., (2009) The scientific rationale for the C1XS X-ray spectrometer on India’s Chandrayaan-1 mission to the moon. Planetary and Space Science, 57, 725734.CrossRefGoogle Scholar
Del Zanna, G., Dere, K.P., Young, P.R., Landi, E., & Mason, H.E. (2015) CHIANTI – An atomic database for emission lines. Version 8. A&A, 582, A56.Google Scholar
Dere, K.P., Landi, E., Young, P.R., Del Zanna, G., Landini, M., & Mason, H.E. (2009) CHIANTI – an atomic database for emission lines. A&A, 498, 915929.Google Scholar
Donnelly, J., Thompson, A., O’Sullivan, D., et al. (2012) Actinide and ultra-heavy abundances in the local galactic cosmic rays: an analysis of the results from the LDEF ultra-heavy cosmic-ray experiment. The Astrophysical Journal, 747(1), DOI:10.1088/0004-637X/747/1/40.Google Scholar
Duderstadt, J.J. & Hamilton, L.J. (1976) Nuclear reactor analysis. John Wiley & Sons, New York.Google Scholar
Elphic, R.C., Lawrence, D.J., Feldman, W.C., et al. (1998) Lunar Fe and Ti abundances: Comparison of Lunar Prospector and Clementine data. Science, 281, 14931496.Google Scholar
Elphic, R.C., Lawrence, D.J., Feldman, W.C., et al. (2000) Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations. Journal of Geophysical Research, 105, 2033320345.Google Scholar
Elphic, R., Lawrence, D., Feldman, W., et al. (2005) Using models of permanent shadow to constrain lunar polar water ice abundances. 36th Lunar Planet. Sci. Conf., Abstract #2297.Google Scholar
Elphic, R.C., Eke, V.R., Teodoro, L.F.A., Lawrence, D.J., & Bussey, D.B.J. (2007) Models of the distribution and abundance of hydrogen at the lunar south pole. Geophysical Research Letters, 34, L13204, DOI:10.1029/2007GL029954.Google Scholar
Evans, L.G., Starr, R.D., Brückner, J., et al. (2001) Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros. Meteoritics and Planetary Science, 36, 16391660.Google Scholar
Evans, R.D. (1955) The atomic nucleus. McGraw-Hill, New York.Google Scholar
Feldman, W.C., Auchampaugh, G.F., & Byrd, R.C. (1991) A novel fast-neutron detector for space applications. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 306, 350365.Google Scholar
Feldman, W.C., Lawrence, D.J., Elphic, R.C., Vaniman, D.T., Thomsen, D.R., & Barraclough, B.L. (2000) Chemical information content of lunar thermal and epithermal neutrons. Journal of Geophysical Research, 105, 20,34720,363.Google Scholar
Feldman, W.C., Maurice, S., Lawrence, D.J., et al. (2001) Evidence for water ice near the lunar poles. Journal of Geophysical Research, 106, 2323123251.Google Scholar
Feldman, W., Prettyman, T., Tokar, R., et al. (2002) Fast neutron flux spectrum aboard Mars Odyssey during cruise. Journal of Geophysical Research, 107, DOI:10.1029/2001JA000295.Google Scholar
Feldman, W., Prettyman, T., Maurice, S., et al. (2004a) Global distribution of near-surface hydrogen on Mars. Journal of Geophysical Research, 109, E09006, DOI:10.1029/2003JE002160.Google Scholar
Feldman, W.C., Ahola, K., Barraclough, B.L., et al. (2004b) Gamma-ray, neutron, and alpha-particle spectrometers for the Lunar Prospector mission. Journal of Geophysical Research, 109, E07S06, DOI:10.1029/2003JE002207.Google Scholar
Feldman, W.C., Pathare, A., Maurice, S., et al. (2011) Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars. Journal of Geophysical Research, 116, E11009.CrossRefGoogle Scholar
Fermi, E. (1950) Nuclear Physics: A course given by Enrico Fermi at the University of Chicago. Notes compiled by Jay Orear, A.H. Rosenfeld, and R.A. Schluter. University of Chicago Press, Chicago.Google Scholar
Floyd, S.R., Trombka, J.I., Leidecker, H.W., et al. (1999) Radiation effects on the proportional counter X-ray detectors on board the NEAR spacecraft. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 422, 577581.Google Scholar
Gaskell, R.W., Barnouin-Jha, O.S., Scheeres, D.J., et al. (2008) Characterizing and navigating small bodies with imaging data. Meteoritics and Planetary Science, 43, 10491061.Google Scholar
Gasnault, O., Feldman, W.C., Maurice, S., et al. (2001) Composition from fast neutrons: Application to the Moon. Geophysical Research Letters, 28, 37973800.Google Scholar
Gleeson, L.J. & Axford, W.I. (1968) Solar modulation of galactic cosmic rays. The Astrophysical Journal, 154, 10111026.Google Scholar
Glodo, J., Higgins, W.M., van Loef, E.V.D., & Shah, K.S. (2008) Scintillation properties of 1 Inch Cs2LiYCl6: CeCrystals. Nuclear Science, IEEE Transactions on, 55, 12061209.Google Scholar
Goldsten, J.O., Mcnutt, R.L., Gold, R.E., et al. (1997) The X-ray/gamma-ray spectrometer on the Near Earth Asteroid Rendezvous Mission. In: The near Earth asteroid rendezvous mission (Russell, C.T., ed.). Springer, Dordrecht, 169216.Google Scholar
Goldsten, J.O., Rhodes, E.A., Boynton, W.V., et al. (2007) The MESSENGER gamma-ray and neutron spectrometer. Space Science Reviews, 131, 339391.CrossRefGoogle Scholar
Goorley, J.T., James, M.R., Booth, T.E., et al. (2013) Initial MCNP6 release overview: MCNP6 version 1.0. Los Alamos National Laboratory document LA-UR-13–22934.Google Scholar
Grande, M. (2001) The D-CIXS X-ray spectrometer on Esa’s Smart-1 Mission to the Moon. In: Earth–moon relationships (Barbieri, C. & Rampazzi, F., eds.). Springer, Dordrecht, 143152.Google Scholar
Grande, M., Dunkin, S., Heather, D., et al. (2002) The D-CIXS X-ray spectrometer, and its capabilities for lunar science. Advances in Space Research, 30, 19011907.Google Scholar
Grande, M., Browning, R., Waltham, N., et al. (2003) The D-CIXS X-ray mapping spectrometer on SMART-1. Planetary and Space Science, 51, 427433.Google Scholar
Grande, M., Kellett, B.J., Howe, C., et al. (2007) The D-CIXS X-ray spectrometer on the SMART-1 mission to the Moon: First results. Planetary and Space Science, 55, 494502.Google Scholar
Grande, M., Maddison, B., Sreekumar, P., et al. (2009) The Chandrayaan-1 X-ray spectrometer. Current Science, 96, 517519.Google Scholar
Hagerty, J.J., Lawrence, D.J., Hawke, B.R., Vaniman, D.T., Elphic, R.C., & Feldman, W.C. (2006) Refined thorium abundances for lunar red spots: Implications for evolved, nonmare volcanism on the Moon. Journal of Geophysical Research, 111, E06002, DOI:10.1029/2005JE002592.Google Scholar
Hardgrove, C., Moersch, J., & Drake, D. (2011) Effects of geochemical composition on neutron die-away measurements: Implications for Mars Science Laboratory’s Dynamic Albedo of Neutrons experiment. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 659, 442455.Google Scholar
Hauser, W. & Feshbach, H. (1952) The inelastic scattering of neutrons. Physical Review, 87, 366373.Google Scholar
Howe, C.J., Drummond, D., Edeson, R., et al. (2009) Chandrayaan-1 X-ray Spectrometer (C1XS)—Instrument design and technical details. Planetary and Space Science, 57, 735743.Google Scholar
Huovelin, J., Alha, L., Andersson, H., et al. (2002) The SMART-1 X-ray solar monitor (XSM): Calibrations for D-CIXS and independent coronal science. Planetary and Space Science, 50, 13451353.Google Scholar
Jenkins, R. (1999) X-ray fluorescence spectrometry. Wiley-Interscience, New York.Google Scholar
Knoll, G.F. (1989) Radiation detection and measurement. John Wiley & Sons, New York.Google Scholar
Kobayashi, M., Hasebe, N., Miyachi, T., et al. (2013) The Kaguya gamma-ray spectrometer: Instrumentation and in-flight performances. Journal of Instrumentation, 8, P04010–P04010.Google Scholar
Lawrence, D., Feldman, W., Barraclough, B., et al. (2000) Thorium abundances on the lunar surface. Journal of Geophysical Research, 105, 20307–20331.Google Scholar
Lawrence, D., Feldman, W., Elphic, R., et al. (2002) Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. Journal of Geophysical Research, 107, 5130, DOI: 10.1029/2001JE001530.Google Scholar
Lawrence, D.J., Elphic, R.C., Feldman, W.C., Prettyman, T.H., Gasnault, O., & Maurice, S. (2003) Small-area thorium features on the lunar surface. Journal of Geophysical Research, 108, 5102, DOI:10.1029/2003JE002050, E9.Google Scholar
Lawrence, D.J., Maurice, S., & Feldman, W.C. (2004) Gamma-ray measurements from Lunar Prospector: Time series data reduction for the gamma-ray spectrometer. Journal of Geophysical Research, 109, E07S05, DOI:10.1029/2003JE002206.Google Scholar
Lawrence, D.J., Feldman, W.C., Elphic, R.C., et al. (2006) Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles. Journal of Geophysical Research, 111, E08001, DOI:10.1029/2005JE002637.CrossRefGoogle Scholar
Lawrence, D.J., Puetter, R.C., Elphic, R.C., et al. (2007) Global spatial deconvolution of Lunar Prospector Th abundances. Geophysical Research Letters, 34, L03201, DOI:10.1029/2006GL028530.Google Scholar
Lawrence, D.J., Feldman, W.C., Goldsten, J.O., et al. (2010) Identification and measurement of neutron-absorbing elements on Mercury’s surface. Icarus, 209, 195209.Google Scholar
Lawrence, D., Feldman, W., Evans, L., et al. (2012) Hydrogen at Mercury’s north pole? Update on MESSENGER Neutron Measurements, 1802.Google Scholar
Lawrence, D.J., Peplowski, P.N., Prettyman, T.H., et al. (2013a) Constraints on Vesta’s elemental composition: Fast neutron measurements by Dawn’s gamma ray and neutron detector. Meteoritics and Planetary Science, 48, 22712288.Google Scholar
Lawrence, D.J., Feldman, W.C., Goldsten, W.C., et al. (2013b) Evidence for water ice near Mercury’s north pole from MESSENGER neutron spectrometer measurements. Science, 339, 292296.Google Scholar
Lewis, E.E. & Miller, W.F. (1984) Computational methods of neutron transport. John Wiley & Sons, New York.Google Scholar
Lingenfelter, R.E., Canfield, E.H., & Hess, W.N. (1961) The lunar neutron flux. Journal of Geophysical Research, 66, 26652671.Google Scholar
Lingenfelter, R.E., Canfield, E.H., & Hampel, V.E. (1972) The lunar neutron flux revisited. Earth and Planetary Science Letters, 16, 355369.Google Scholar
Little, R.C., Feldman, W.C., Maurice, S., et al. (2003) Latitude variation of the subsurface lunar temperature: Lunar Prospector thermal neutrons. Journal of Geophysical Research, 108, 5046, DOI:10.1029/2001JE001497, E5.Google Scholar
Litvak, M.L., Mitrofanov, I.G., Barmakov, Y.N., et al. (2008) The Dynamic Albedo of Neutrons (DAN) Experiment for NASA’s 2009 Mars Science Laboratory. Astrobiology, 8, 605612.Google Scholar
Litvak, M.L., Mitrofanov, I.G., Hardgrove, C., et al. (2016) Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover. Journal of Geophysical Research, 121, 836845.Google Scholar
Lodders, K. & Fegley, B., Jr. (1998) The planetary scientist’s companion. Oxford University Press on Demand.Google Scholar
Mandel’shtam, S.L., Tindo, I.P., Cheremukhin, G.S., Sorokin, L.S., & Dmitriev, A.B. (1968) X radiation of the Moon and X-ray cosmic background in the lunar Sputnik Luna-12. Kosmicheskie Issledovaniia, 6, 119127.Google Scholar
Maurice, S., Lawrence, D.J., Feldman, W.C., Elphic, R.C., & Gasnault, O. (2004) Reduction of neutron data from Lunar Prospector. Journal of Geophysical Research, 109, E07S04, DOI:10.1029/2003JE002208.Google Scholar
Maurice, S., Feldman, W., Prettyman, T., Diez, B., & Gasnault, O. (2007) Reduction of Mars Odyssey neutron data, 38th Lunar Planet. Sci. Conf., Abstract #2036.Google Scholar
McKinney, G.W., Lawrence, D.J., Prettyman, T.H., et al. (2006) MCNPX benchmark for cosmic ray interactions with the Moon.Journal of Geophysical Research, 111, E06004, DOI:10.1029/2005je002551.Google Scholar
Metropolis, N. & Ulam, S. (1949) The Monte Carlo method. Journal of the American Statistical Association, 44, 335341.Google Scholar
Metzger, A.E., Trombka, J.I., Peterson, L.E., Reedy, R.C., & Arnold, J.R. (1973) Lunar surface radioactivity: Preliminary results of the Apollo 15 and Apollo 16 gamma-ray spectrometer experiments. Science, 179, 800803.CrossRefGoogle ScholarPubMed
Murty, R.C. (1965) Effective atomic numbers of heterogeneous materials. Nature, 207, 398.Google Scholar
Näränen, J., Carpenter, J., Parviainen, H., et al. (2009) Regolith effects in planetary X-ray fluorescence spectroscopy: Laboratory studies at 1.7–6.4keV. Advances in Space Research, 44, 313322.Google Scholar
Narendranath, S., Sreekumar, P., Maddison, B.J., et al. (2010) Calibration of the C1XS instrument on Chandrayaan-1. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 621, 344353.Google Scholar
Narendranath, S., Athiray, P.S., Sreekumar, P., et al. (2011) Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray Spectrometer (C1XS): Results from the nearside southern highlands. Icarus, 214, 5366.CrossRefGoogle Scholar
Nittler, L.R., Starr, R.D., Lev, L., et al. (2001) X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteoritics and Planetary Science, 36, 16731695.Google Scholar
Nittler, L.R., Starr, R.D., Weider, S.Z., et al. (2011) The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 1847–1850.Google Scholar
Okada, T. (2004) Particle size effect in X-ray fluorescence at a large phase angle: Importance on elemental analysis of asteroid Eros (433). 35th Lunar Planet. Sci. Conf., Abstract #1927.Google Scholar
Okada, T., Kato, M., Shirai, K., et al. (2002a) Elemental mapping of asteroid 1989ML from MUSES-C orbiter. Advances in Space Research, 29, 12371242.Google Scholar
Okada, T., Kato, M., Yamashita, Y., et al. (2002b) Lunar X-ray spectrometer experiment on the SELENE mission. Advances in Space Research, 30, 1909–1914.Google Scholar
Okada, T., Shiraishi, H., Shirai, K., et al. (2009a) X-Ray Fluorescence Spectrometer (XRS) on Kaguya: Current status and results. 40th Lunar Planet. Sci. Conf., Abstract #1897.Google Scholar
Okada, T., Shirai, K., Yamamoto, Y., et al. (2009b) X-Ray fluorescence spectrometry of Lunar surface by XRS onboard SELENE (Kaguya). Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 7, Tk_39–Tk_42.Google Scholar
O’Neill, P.M. (2010) Badhwar–O’Neill 2010 galactic cosmic ray flux model—revised. IEEE Transactions on Nuclear Science, 6, 31483153.Google Scholar
Ouyang, Z., Jiang, J., Li, C., et al. (2008) Preliminary scientific results of Chang’E-1 Lunar Orbiter: Based on payloads detection data in the first phase. Chinese Journal of Space Science, 28, 361369.Google Scholar
Ouyang, Z., Li, C., Zou, Y., et al. (2010a) Chang’E-1 lunar mission: An overview and primary science results. Chinese Journal of Space Science, 30, 392.Google Scholar
Ouyang, Z., Li, C., Zou, Y., et al. (2010b) Primary scientific results of Chang’E-1 Lunar mission. Science China Earth Sciences, 53, 15651581.Google Scholar
Parviainen, H., Näränen, J., & Muinonen, K. (2011) Soft X-ray fluorescence from particulate media: Numerical simulations. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 19071918.Google Scholar
Payne, S.A., Cherepy, N.J., Hull, G., Valentine, J.D., Moses, W.W., & Choong, W.-S. (2009) Nonproportionality of scintillator detectors: Theory and experiment. IEEE Transactions on Nuclear Science, 56, 25062512.Google Scholar
Peng, W.-X., Wang, H., Zhang, C.-M., et al. (2009) Calibration of CE-1 X-ray spectrometer. Nuclear Electronics and Detection Technology, 29, 235239.Google Scholar
Peplowski, P.N., Evans, L.G., Hauck, S.A., et al. (2011) Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852.Google Scholar
Peplowski, P.N., Lawrence, D.J., Rhodes, E.A., et al. (2012) Variations in the abundances of potassium and thorium on the surface of Mercury: Results from the MESSENGER Gamma‐Ray Spectrometer. Journal of Geophysical Research, 117, E00L04, DOI:10.1029/2012JE004141.Google Scholar
Peplowski, P.N., Lawrence, D.J., Feldman, W.C., et al. (2015) Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements. Icarus, 253, 346363.Google Scholar
Peplowski, P.N., Beck, A.W., & Lawrence, D.J. (2016) Geochemistry of the lunar highlands as revealed by measurements of thermal neutrons. Journal of Geophysical Research, 121, 388401.Google Scholar
Prettyman, T. (1999) Method for mapping charge pulses in semiconductor radiation detectors. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 422, 232237.Google Scholar
Prettyman, T.H. (2014) Remote sensing of chemical elements using nuclear spectroscopy. In: Encyclopedia of the Solar System, 3rd edn (Spohn, T., Johnson, T., & Breuer, D., eds.). Elsevier, Philadelphia, 11611183.Google Scholar
Prettyman, T.H., Feldman, W., Mellon, M., et al. (2004) Composition and structure of the martian surface at high southern latitudes from neutron spectroscopy. Journal of Geophysical Research, 109, E05001, DOI:10.1029/2003je002139.Google Scholar
Prettyman, T.H., Hagerty, J.J., Elphic, R.C., et al. (2006) Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. Journal of Geophysical Research, 111, E12007, DOI:10.1029/2005JE002656.Google Scholar
Prettyman, T.H., Feldman, W.C., & Titus, T.N. (2009) Characterization of Mars’ seasonal caps using neutron spectroscopy. Journal of Geophysical Research, 114, E08005, DOI:10.1029/2008je003275.Google Scholar
Prettyman, T.H., Feldman, W.C., McSween, H.Y., Jr., et al. (2011) Dawn’s gamma ray and neutron detector. Space Science Reviews, 163, 371459.Google Scholar
Prettyman, T.H., Mittlefehldt, D.W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242–6.Google Scholar
Prettyman, T.H., Mittlefehldt, D.W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics and Planetary Science, 48, 22112236.Google Scholar
Prettyman, T.H., Yamashita, N., Reedy, R.C., et al. (2015) Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 259, 3952.Google Scholar
Prettyman, T.H., Yamashita, N., Toplis, M.J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Prettyman, T.H., Yamashita, N., Ammannito, E., et al. (2019) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.Google Scholar
Reedy, R.C. (1978) Planetary gamma-ray spectroscopy. 9th Lunar Planet. Sci. Conf., Abstract, 2961–2984.Google Scholar
Reedy, R.C., Arnold, J.R., & Lal, D. (1983) Cosmic-ray record in Solar System matter. Science, 219, 127135.Google Scholar
Rieder, R., Economou, T., Wänke, H., et al. (1997) The chemical composition of martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: Preliminary results from the X-ray mode. Science, 278, 17711774.Google Scholar
Shirai, K., Okada, T., Yamamoto, Y., et al. (2008) Instrumentation and performance evaluation of the XRS on SELENE orbiter. Earth, Planets and Space, 60, 277281.Google Scholar
Shiraiwa, T. & Fujino, N. (1966) Theoretical calculation of fluorescent X-ray intensities in fluorescent X-ray spectrochemical analysis. Japanese Journal of Applied Physics, 5, 886–899.Google Scholar
Starr, R., Clark, P.E., Murphy, M.E., et al. (2000) Instrument calibrations and data analysis procedures for the NEAR X-ray spectrometer. Icarus, 147, 498519.Google Scholar
Starr, R.D., Schlemm, Ii C.E., Ho, G.C., Nittler, L.R., Gold, R.E., & Solomon, S.C. (2016) Calibration of the MESSENGER X-ray spectrometer. Planetary and Space Science, 122, 1325.Google Scholar
Surkov, Yu A., Barsukov, V.L., Moskalyeva, L.P., Kharyukova, V.P., & Kemurdzhian, A.L. (1984) New data on the composition, structure, and properties of Venus rock obtained by Venera 13 and Venera 14. Journal of Geophysical Research, 89, B393B402.Google Scholar
Surkov, Y.A., Kirnozov, F.F., Glazov, V.N., Dunchenko, A.G., Tatsy, L.P., & Sobornov, O.P. (1987) Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega 1 and 2. Journal of Geophysical Research, 92, E537E540.Google Scholar
Trombka, J.I., Floyd, S.R., Boynton, W.V., et al. (1997) Compositional mapping with the NEAR X ray/gamma ray spectrometer. Journal of Geophysical Research, 102, 2372923750.Google Scholar
Trombka, J.I., Squyres, S.W., Brückner, J., et al. (2000) The elemental composition of Asteroid 433 Eros: Results of the NEAR-Shoemaker X-ray spectrometer. Science, 289, 21012105.Google Scholar
Weider, S.Z., Swinyard, B.M., Kellett, B.J., et al. (2011) Planetary X-ray fluorescence analogue laboratory experiments and an elemental abundance algorithm for C1XS. Planetary and Space Science, 59, 13931407.Google Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., et al. (2012a) Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. Journal of Geophysical Research, 117, E00L05, DOI:10.1029/2012je004153.Google Scholar
Weider, S.Z., Kellett, B.J., Swinyard, B., et al. (2012b) The Chandrayaan-1 X-ray spectrometer: First results. Planetary and Space Science, 60, 217228.Google Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., et al. (2015) Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-ray spectrometer. Earth and Planetary Science Letters, 416, 109120.Google Scholar
Wilson, J.T., Lawrence, D.J., Peplowski, P.N., et al. (2018) Image reconstruction techniques in neutron and gamma‐ray spectroscopy: Improving Lunar Prospector data. Journal of Geophysical Research, 123, 18041822.Google Scholar
Yamashita, N., Hasebe, N., Reedy, R.C., et al. (2010) Uranium on the Moon: Global distribution and U/Th ratio. Geophysical Research Letters, 37, L10201, DOI:10.1029/2010gl043061.Google Scholar
Yamashita, N., Prettyman, T.H., Mittlefehldt, D.W., et al. (2013) Distribution of iron on Vesta. Meteoritics and Planetary Science, 48, 22372251.Google Scholar
Yin, L.I., Trombka, J.I., Adler, I., & Bielefeld, M. (1993) X-ray remote sensing techniques for geochemical analysis of planetary surfaces. In: Remote geochemical analysis: Elemental and mineralogical composition (Pieters, C.M. & Englert, P.A.J., eds.). Cambridge University Press, Cambridge, 99–212.Google Scholar
Zhu, M.H., Chang, J., Ma, T., et al. (2013) Potassium map from Chang’E-2 constraints the impact of Crisium and Orientale basin on the Moon. Science Reports, 3, 1611, DOI:10.1038/srep01611.Google Scholar

References

Dobson, M.C., Ulaby, F.T., Hallikainen, M.T., & El-Rayes, M.A. (1985) Microwave dielectric behavior of wet soil. Part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, 3546.Google Scholar
Farr, T.G. (1992) Microtopographic evolution of lava flows at Cima Volcanic Field, Mojave Desert, California. Journal of Geophysical Research, 97, 1517115179.Google Scholar
Farr, T.G. & Kobrick, M. (2000) Shuttle radar topography mission produces a wealth of data. Eos, Transactions American Geophysical Union, 81, 583585.Google Scholar
Ford, J.P., Plaut, J.J., Weitz, C.M., et al. (1993) Guide to Magellan image interpretation. Jet Propulsion Laboratory Publications, Pasadena, CA.Google Scholar
Freeman, A., Krieger, G., Rosen, P., et al. (2009) SweepSAR: Beam-forming on receive using a reflector-phased array feed combination for spaceborne SAR. Proceedings of the 2009 IEEE Radar Conference, 19.Google Scholar
Fung, A.K., Li, Z., & Chen, K.S. (1992) Backscattering from a randomly rough dielectric surface. IEEE Transactions on Geoscience and Remote Sensing, 30, 356369.Google Scholar
Gabriel, A.K., Goldstein, R.M., & Zebker, H.A. (1989) Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research, 94, 91839191.Google Scholar
Harmon, J.K., Slade, M.A., Vélez, R.A., Crespo, A., Dryer, M.J., & Johnson, J.M. (1994) Radar mapping of Mercury’s polar anomalies. Nature, 369, 213215.Google Scholar
Le Gall, A., Malaska, M.J., Lorenz, R.D., et al. (2016) Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission. Journal of Geophysical Research, 121, 233251.Google Scholar
Ostro, S.J., Campbell, D.B., Simpson, R.A., et al. (1992) Europa, Ganymede, and Callisto: New radar results from Arecibo and Goldstone. Journal of Geophysical Research, 97, 1822718244.Google Scholar
Peltzer, G. & Rosen, P. (1995) Surface displacement of the 17 May 1993 Eureka Valley, California, earthquake observed by SAR interferometry. Science, 268, 13331336.Google Scholar
Peplinski, N.R., Ulaby, F.T., & Dobson, M.C. (1995) Dielectric properties of soils in the 0.3–1.3-GHz range. IEEE Transactions on Geoscience and Remote Sensing, 33, 803807.Google Scholar
Pettengill, G.H., Eliason, E., Ford, P.G., Loriot, G.B., Masursky, H., & McGill, G.E. (1980) Pioneer Venus Radar results altimetry and surface properties. Journal of Geophysical Research, 85, 82618270.Google Scholar
Plaut, J.J., Safaeinili, A., Holt, J.W., et al. (2009) Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophysical Research Letters, 36, L02203, DOI:10.1029/2008GL036379.Google Scholar
Rosen, P.A., Hensley, S., Joughin, I.R., et al. (2000) Synthetic aperture radar interferometry. Proceedings of the IEEE, 88, 333382.Google Scholar
Saunders, R.S., Spear, A.J., Allin, P.C., et al. (1992) Magellan mission summary. Journal of Geophysical Research, 97, 1306713090.Google Scholar
Shi, J., Wang, J., Hsu, A.Y., O’Neill, P.E., & Engman, E.T. (1997) Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Transactions on Geoscience and Remote Sensing, 35, 12541266.Google Scholar
Ulaby, F.T. & Elachi, C.E. (1990) Radar polarimetry for geoscience applications. Artech House, London.Google Scholar
Ulaby, F.T. & Long, D. (2014) Microwave radar and radiometric remote sensing. University of Michigan Press, Ann Arbor, MI.Google Scholar
Valenzuela, G. (1967) Depolarization of EM waves by slightly rough surfaces. IEEE Transactions on Antennas and Propagation, 15, 552557.Google Scholar
van Zyl, J.J. & Kim, Y. (2011) Synthetic aperture radar polarimetry. John Wiley & Sons, Hoboken, NJ.Google Scholar
Zebker, H.A. & Goldstein, R.M. (1986) Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research, 91, 49934999.Google Scholar
Zebker, H.A., van Zyl, J.J., & Held, D.N. (1987) Imaging radar polarimetry from wave synthesis. Journal of Geophysical Research, 92, 683701.Google Scholar
Zisk, S.H., Pettengill, G.H., & Catuna, G.W. (1974) High-resolution radar maps of the lunar surface at 3.8-cm wavelength. The Moon, 10, 1750.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×