Skip to main content Accessibility help
×
Hostname: page-component-5db6c4db9b-s6gjx Total loading time: 0 Render date: 2023-03-26T07:28:21.329Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Section III - Care of the Elderly by Organ System

Published online by Cambridge University Press:  30 June 2022

Jan Busby-Whitehead
Affiliation:
University of North Carolina, Chapel Hill
Samuel C. Durso
Affiliation:
The Johns Hopkins University, Maryland
Christine Arenson
Affiliation:
Thomas Jefferson University, Philadelphia
Rebecca Elon
Affiliation:
The Johns Hopkins University School of Medicine
Mary H. Palmer
Affiliation:
University of North Carolina, Chapel Hill
William Reichel
Affiliation:
Georgetown University Medical Center
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Reichel's Care of the Elderly
Clinical Aspects of Aging
, pp. 139 - 568
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Moran, AE, Forouzanfar, MH, Roth, GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980–2010: The Global Burden of Disease 2010 Study. Circulation. 2014; 129:14831492.CrossRefGoogle Scholar
Virani, SS, Alonso, A, Benjamin, EJ, et al. Heart disease and stroke statistics – 2020 update: A report from the American Heart Association. Circulation. 2020; 141:e139e596.CrossRefGoogle ScholarPubMed
Lakatta, EG. Age-associated cardiovascular changes in health: Impact on cardiovascular disease in older persons. Heart Failure Reviews. 2002; 7:2949.CrossRefGoogle ScholarPubMed
Rich, MW. Heart disease in the elderly. In: Rosendorff, C, ed. Essential Cardiology: Principles and Practice, 3rd edition. New York: Springer, 2013, pp. 669686.CrossRefGoogle Scholar
D’Agostino, RB, Vasan, RS, Pencina, MJ, et al. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation. 2008; 117:743753.CrossRefGoogle ScholarPubMed
Haffner, SM, Lehto, S, Ronnemaa, T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New Engl J Med. 1998; 339:229234.CrossRefGoogle ScholarPubMed
Kuller, LH, Arnold, AM, Psaty, BM, et al. Ten-year follow-up of subclinical cardiovascular disease and risk of coronary heart disease in the Cardiovascular Health Study. Arch Int Med. 2006; 166:7178.CrossRefGoogle Scholar
White, HD, Barbash, GI, Califf, RM, et al. Age and outcome with contemporary thrombolytic therapy: Results from the GUSTO-I trial. Circulation. 1996; 94:18261833.CrossRefGoogle ScholarPubMed
Thygesen, K, Alpert, JS, Jaffe, AS, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol. 2018; 72:22312264.CrossRefGoogle ScholarPubMed
Scirica, BM. Acute coronary syndrome: Emerging tools for diagnosis and risk assessment. J Am Coll Cardiol. 2010; 55:14031415.CrossRefGoogle ScholarPubMed
Eggers, KM, Venge, P, Lindahl, B, Lind, L. Cardiac troponin I levels measured with a high-sensitivity assay increase over time and are strong predictors of mortality in an elderly population. J Am Coll Cardiol. 2013; 61:19061913.CrossRefGoogle Scholar
O’Gara, PT, Kushner, FG, Ascheim, DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. J Am Coll Cardiol. 2013; 61:e78140.CrossRefGoogle ScholarPubMed
Amsterdam, EA, Wenger, NK, Brindis, RG, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes. Circulation. 2014; 130:e344e426.Google ScholarPubMed
Levine, GN, Bates, ER, Bittl, JA, et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease. J Am Coll Cardiol. 2016; 68:10821115.CrossRefGoogle ScholarPubMed
ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17187 cases of suspected acute myocardial infarction: ISIS-2. Lancet. 1988; 332:349360.CrossRefGoogle Scholar
The Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial Investigators. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001; 345:494502.CrossRefGoogle Scholar
Wiviott, SD, Braunwald, E, McCabe, CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007; 357:2001–2015.CrossRefGoogle ScholarPubMed
Wallentin, L, Becker, RC, Budaj, A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009; 361:10451057.CrossRefGoogle ScholarPubMed
Steen, H, James, S, Becker, RC, et al. Ticagrelor versus clopidogrel in elderly patients with acute coronary syndromes: A substudy from the Prospective Randomized PLATelet Inhibition and Patient Outcomes (PLATO) trial. Circ Cardiovasc Qual Outcomes. 2012; 680688.CrossRefGoogle Scholar
Mauri, L, Kereiakes, DJ, Yeh, RW, et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N Engl J Med. 2014; 371:21552166.CrossRefGoogle ScholarPubMed
Bonaca, MP, Bhatt, DL, Cohen, M, et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med. 2015; 372:17911800.CrossRefGoogle ScholarPubMed
The PURSUIT Trial Investigators. Inhibition of platelet glycoprotein IIb/IIIa with eptifibatide in patients with acute coronary syndromes. N Engl J Med. 1998; 339:436443.CrossRefGoogle Scholar
Bhatt, DL, Stone, GW, Mahaffey, KW, et al. Effect of platelet inhibition with cangrelor during PCI on ischemic events. N Engl J Med. 2013; 368:13031313.CrossRefGoogle ScholarPubMed
Antman, EM, Cohen, M, Radley, D, et al. Assessment of the treatment effect of enoxaparin for unstable angina/non-Q-wave myocardial infarction: TIMI 11B-ESSENCE meta-analysis. Circulation. 1999; 100:16021608.CrossRefGoogle ScholarPubMed
FRagmin and Fast Revascularization during InStability in Coronary artery disease (FRISC II) Investigators. Long-term low-molecular-mass heparin in unstable coronary-artery disease: FRISC II prospective randomised multicentre study. Lancet. 1999; 354:701707.CrossRefGoogle Scholar
Dewilde, WJ, Oirbans, T, Verheugt, FW, et al. Use of clopidogrel with or without aspirin in patients taking oral anticoagulant therapy and undergoing percutaneous coronary intervention: An open-label, randomized, controlled trial. Lancet. 2013; 381:11071115.CrossRefGoogle ScholarPubMed
Khan, SU, Osman, M, Khan, MU. Dual versus triple therapy for atrial fibrillation after percutaneous coronary intervention: A systematic review and meta-analysis. Ann Intern Med. 2020; 172:474483.CrossRefGoogle ScholarPubMed
Mehran, R, Baber, U, Sharma, SK, et al. Ticagrelor with or without aspirin in high-risk patients after PCI. N Engl J Med. 2019; 381:20322042.CrossRefGoogle ScholarPubMed
Watanabe, H, Domei, T, Morimoto, T, et al. Effect of 1-month dual antiplatelet therapy followed by clopidogrel vs 12-month dual antiplatelet therapy on cardiovascular and bleeding events in patients receiving PCI. JAMA. 2019; 321:24142427.CrossRefGoogle Scholar
COMMIT collaborative group. Early intravenous then oral metoprolol in 45852 patients with acute myocardial infarction: Randomised placebo-controlled trial. Lancet. 2005; 366:16221632.CrossRefGoogle Scholar
ACE Inhibitor Myocardial Infarction Collaborative Group. Indications for ACE inhibitors in the early treatment of acute myocardial infarction: Systematic overview of individual data from 100,000 patients in randomized trials. Circulation. 1998; 97:22022212.CrossRefGoogle Scholar
Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico. GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet. 1994; 343:11151122.Google Scholar
Ambrosioni, E, Borghi, C, Magnani, B, for the Survival of Myocardial Infarction Long-Term Evaluation (SMILE) Study Investigators. The effect of the angiotensin-converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction. N Engl J Med. 1995; 332:8085.CrossRefGoogle ScholarPubMed
The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet. 1993; 342:821828.Google Scholar
Dickstein, K, Kjekshus, J. Effects of losartan and captopril on mortality and morbidity in high-risk patients after acute myocardial infarction: The OPTIMAAL randomised trial. Lancet. 2002; 360:752760.CrossRefGoogle ScholarPubMed
Pitt, B, Remme, W, Zannad, F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003; 348:13091321.CrossRefGoogle ScholarPubMed
Miettinen, TA, Pyorala, K, Olsson, AG, et al. Cholesterol-lowering therapy in women and elderly patients with myocardial infarction or angina pectoris: Findings from the Scandinavian Simvastatin Survival Study (4S). Circulation. 1997; 96:42114218.CrossRefGoogle ScholarPubMed
Lewis, SJ, Moye, LA, Sacks, FM, et al. Effect of pravastatin on cardiovascular events in older patients with myocardial infarction and cholesterol levels in the average range: Results of the Cholesterol and Recurrent Events (CARE) trial. Ann Intern Med. 1998; 129:681689.CrossRefGoogle ScholarPubMed
The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998; 339:13491357.CrossRefGoogle Scholar
Shepherd, J, Blauw, GJ, Murphy, MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): A randomised controlled trial. Lancet. 2002; 360:16231630.CrossRefGoogle Scholar
Stone, NJ, Intwala, S, Katz, D. Statins in very elderly adults. J Am Geriatr Soc. 2014; 62:943945.CrossRefGoogle ScholarPubMed
Rich, MW. Aggressive lipid management in very elderly adults: Less is more. J Am Geriatr Soc. 2014; 62:945947.CrossRefGoogle ScholarPubMed
Sathasivam, S, Lecky, B. Statin induced myopathy. BMJ. 2008; 337:a2286.CrossRefGoogle ScholarPubMed
Lee, DS, Markwardt, S, Goeres, L, et al. Statins and physical activity in older men: The osteoporotic fractures in men study. JAMA Intern Med. 2014; 174:12631270.CrossRefGoogle ScholarPubMed
Golomb, BA, Evans, MA, Dimsdale, JE, et al. Effects of statins on energy and fatigue with exertion: Results from a randomized controlled trial. Arch Intern Med. 2012; 172:11801182.CrossRefGoogle ScholarPubMed
Grundy, SM, Stone, NJ, Bailey, AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. J Am Coll Cardiol. 2019; 73:e285e350.CrossRefGoogle ScholarPubMed
The Global Use of Strategies to Open Occluded Coronary Arteries in Acute Coronary Syndromes (GUSTO IIb) Angioplasty Substudy Investigators. A clinical trial comparing primary coronary angioplasty with tissue plasminogen activator for acute myocardial infarction. N Engl J Med. 1997; 336:16211628.CrossRefGoogle Scholar
de Boer, MJ, Ottervanger, JP, van’t Hof, AW, et al. Reperfusion therapy in elderly patients with acute myocardial infarction: A randomized comparison of primary angioplasty and thrombolytic therapy. J Am Coll Cardiol. 2002; 39:17231728.CrossRefGoogle ScholarPubMed
Levine, GN, Bates, ER, Blankenship, JC, et al. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction. J Am Coll Cardiol. 2016; 67:12351250.CrossRefGoogle ScholarPubMed
Antman, EM, Cohen, M, Bernink, PJLM, et al. The TIMI risk score for unstable angina/non-ST elevation MI: A method for prognostication and therapeutic decision making. JAMA. 2000; 284:835842.CrossRefGoogle Scholar
Granger, CB, Goldberg, RJ, Dabbous, O, et al. Predictors of hospital mortality in the Global Registry of Acute Coronary Events (GRACE). Arch Intern Med. 2003; 163:23452353.CrossRefGoogle Scholar
FRagmin and Fast Revascularization during InStability in Coronary artery disease (FRISC II) Investigators. Invasive compared with non-invasive treatment in unstable coronary-artery disease: FRISC II prospective randomised multicentre study. Lancet. 1999; 354:708715.CrossRefGoogle Scholar
Hochman, JS. Cardiogenic shock complicating acute myocardial infarction: Expanding the paradigm. Circulation. 2003; 107:29983002.CrossRefGoogle ScholarPubMed
Hochman, JS, Sleeper, LA, White, HD, et al. for the SHOCK Investigators. One-year survival following early revascularization for cardiogenic shock. JAMA. 2001; 285:190192.CrossRefGoogle ScholarPubMed
Dzavik, V, Sleeper, LA, Cocke, TP, et al. for the SHOCK Investigators. Early revascularization is associated with improved survival in elderly patients with acute myocardial infarction complicated by cardiogenic shock: A report from the SHOCK Trial Registry. Eur Heart J. 2003; 24:828837.CrossRefGoogle ScholarPubMed
Bueno, H, Lopez-Palop, R, Perez-David, E, et al. Combined effect of age and right ventricular involvement on acute inferior myocardial infarction prognosis. Circulation. 1998; 98:17141720.CrossRefGoogle ScholarPubMed
Robinson, AA, Trankle, CR, Eubanks, G, et al. Off-label use of direct oral anticoagulants compared with warfarin for left ventricular thrombi. JAMA Cardiol. 2020; 5:685692.CrossRefGoogle ScholarPubMed
Hasdai, D, Topol, EJ, Califf, RM, et al. Cardiogenic shock complicating acute coronary syndromes. Lancet. 2000; 356:749756.CrossRefGoogle ScholarPubMed
Olgin, JE, Pletcher, MJ, Vittinghoff, E, et al. Wearable cardioverter-defibrillator after myocardial infarction. N Engl J Med. 2018; 379:12051215.CrossRefGoogle ScholarPubMed
Al-Khatib, SM, Stevenson, WG, Ackerman, MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. J Am Coll Cardiol. 2018; 72:e91e220.CrossRefGoogle ScholarPubMed
Fihn, SD, Gardin, JM, Abrams, J, et al. 2012 ACCF/AHA/ACP/ AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease. J Am Coll Cardiol. 2012; 60:e44164.CrossRefGoogle ScholarPubMed
Whelton, PK, Carey, RM, Aronow, WS, et al. 2017 ACC/AHA/AAPA/ABC/ ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. J Am Coll Cardiol. 2018; 71:e127e248.Google Scholar
Grundy, SM, Stone, NJ, Bailey, AL, et al. 2018 ACC/AHA/ACCVPR/AAPA/ ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. J Am Coll Cardiol. 2019; 73:e285e350.CrossRefGoogle ScholarPubMed
American Diabetes Association. Older adults: Standards of medical care in diabetes – 2020. Diabetes Care. 2020; 43(suppl. 1):S152S162.CrossRefGoogle Scholar
Witt, BJ, Jacobsen, SJ, Weston, SA, et al. Cardiac rehabilitation after myocardial infarction in the community. J Am Coll Cardiol. 2004; 44:988996.CrossRefGoogle ScholarPubMed
Garber, AJ, Handelsman, Y, Grunberger, G, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2020 executive summary. Endocr Pract. 2020; 26:107139.CrossRefGoogle Scholar
Das, SR, Everett, BM, Birtcher, KK, et al. 2020 expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes. J Am Coll Cardiol. 2020; 76:11171145.CrossRefGoogle ScholarPubMed
Zinman, B, Wanner, C, Lachin, JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373:21172128.CrossRefGoogle ScholarPubMed
Neal, B, Perkovic, V, Mahaffey, KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377:644657.CrossRefGoogle ScholarPubMed
Wiviott, SD, Raz, I, Bonaca, MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380:347357.CrossRefGoogle ScholarPubMed
McMurray, JJV, Solomon, SD, Inzucchi, SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381:19952008.CrossRefGoogle ScholarPubMed
Packer, M, Anker, SD, Butler, J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure, for the EMPEROR-Reduced Trial Investigators. N Engl J Med. 2020; 383:14131424. doi: 10.1056/NEJMoa2022190.CrossRefGoogle Scholar
Marso, SP, Daniels, GH, Brown-Frandsen, K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016; 375:311322.CrossRefGoogle ScholarPubMed
Marso, SP, Bain, SC, Consoli, A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; 375:18341844.CrossRefGoogle ScholarPubMed
Husain, M, Birkenfeld, AL, Donsmark, M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019; 381(9):841851.CrossRefGoogle ScholarPubMed
Gerstein, HC, Colhoun, HM, Dagenais, GR, et al. Dulaglitide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trials. Lancet. 2019; 394:121130.CrossRefGoogle Scholar
American College of Cardiology/American Heart Association Task Force on Practice Guidelines. ACC/AHA 2002 guidelines update for exercise testing. Circulation. 2002; 106:18831892.Google Scholar
Douglas, PS, Hoffmann, U, Patel, MR, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015; 372:12911300.CrossRefGoogle ScholarPubMed
Boden, WE, O’Rourke, RA, Teo, KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007; 356:15031516.CrossRefGoogle ScholarPubMed
Maron, DJ, Hochman, JS, Reynolds, HR, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020; 382:13951407.CrossRefGoogle ScholarPubMed
Steg, PG, Bhatt, DL, Simon, T, et al. Ticagrelor in patients with stable coronary disease and diabetes. N Engl J Med. 2019; 381:13091320.CrossRefGoogle ScholarPubMed
Eikelboom, JW, Connolly, SJ, Bosch, J, et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med. 2017; 377:13191330.CrossRefGoogle ScholarPubMed
The TIME Investigators. Trial of invasive versus medical therapy in elderly patients with chronic symptomatic coronary-artery disease (TIME): A randomised trial. Lancet. 2001; 358:951957.CrossRefGoogle Scholar
Newman, MF, Kirchner, JL, Phillips-Bute, B, et al. for the Neurological Outcome Research Groups and the Cardiothoracic Anesthesiology Research Endeavors Investigators. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001; 344:395402.CrossRefGoogle ScholarPubMed
Yancy, CW, Jessup, M, Bozkurt, B, et al. 2013 ACCF/AHA guideline for the management of heart failure. Circulation. 2013; 128:e240327.Google ScholarPubMed
The ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker versus diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002; 288:29812997.CrossRefGoogle Scholar
The SPRINT research group. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015; 373:21032116.CrossRefGoogle Scholar
Yancy, CW, Jessup, M, Bozkurt, B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure. J Am Coll Cardiol. 2017; 70:776803.CrossRefGoogle ScholarPubMed
Okin, PM, Devereux, RB, Jern, S, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA. 2004; 292:23432349.CrossRefGoogle ScholarPubMed
Goldman, L, Hashimoto, B, Cook, EF, Loscalzo, A. Comparative reproducibility and validity of systems for assessing cardiovascular functional class: Advantages of a new specific activity scale. Circulation. 1981; 64:12271234.CrossRefGoogle ScholarPubMed
Maisel, AS, Krishnaswamy, P, Nowak, RM, et al. for the Breathing Not Properly Multinational Study Investigators. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002; 347:161167.CrossRefGoogle ScholarPubMed
Gaggin, HK, Mohammed, AA, Bhardwaj, A, et al. Heart failure outcomes and benefits of NT-proBNP-guided management in the elderly: Results from the Prospective, Randomized ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT Study). J Cardiac Fail. 2012; 18:626634.CrossRefGoogle ScholarPubMed
Redfield, MM, Rodeheffer, RJ, Jacobsen, SJ, et al. Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol. 2002; 40:976982.CrossRefGoogle ScholarPubMed
Wang, TJ, Larson, MG, Levy, D, et al. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am J Cardiol. 2002; 90:254258.CrossRefGoogle ScholarPubMed
Januzzi, JL, Chen-Tournoux, AA, Christenson, RH, et al. N-terminal pro-B-type natriuretic peptide in the emergency department: The ICON-RELOADED study. J Am Coll Cardiol. 2018; 71:11911200.CrossRefGoogle ScholarPubMed
Heiat, A, Gross, CP, Krumholz, HM. Representation of the elderly, women, and minorities in heart failure clinical trials. Arch Intern Med. 2002; 162:16821688.CrossRefGoogle ScholarPubMed
Rich, MW, Beckham, V, Wittenberg, C, et al. A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure. N Engl J Med. 1995; 333:11901195.CrossRefGoogle ScholarPubMed
Whellan, DJ, Hasselblad, V, Peterson, E, et al. Meta-analysis and review of heart failure disease management randomized controlled clinical trials. Am Heart J. 2005; 149:722729.CrossRefGoogle ScholarPubMed
Ades, PA, Keteyian, SJ, Balady, GJ, et al. Cardiac rehabilitation exercise and self-care for chronic heart failure. JACC Heart Fail. 2013; 1:540547.CrossRefGoogle ScholarPubMed
Faris, R, Flather, M, Purcell, H, et al. Current evidence supporting the role of diuretics in heart failure: A meta analysis of randomised controlled trials. Int J Cardiol. 2002; 82:149158.CrossRefGoogle ScholarPubMed
Domanski, M, Norman, J, Pitt, B, et al. Diuretic use, progressive heart failure, and death in patients in the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol. 2003; 42:705708.CrossRefGoogle ScholarPubMed
Neuberg, GW, Miller, AB, O’Connor, CM, et al. Diuretic resistance predicts mortality in patients with advanced heart failure. Am Heart J. 2002; 144:3138.CrossRefGoogle ScholarPubMed
Gheorghiade, M, Zannad, F, Sopko, G, et al. Acute heart failure syndromes: current state and framework for future research. Circulation. 2005; 112:39583968.CrossRefGoogle ScholarPubMed
Gupta, D, Georgiopoulou, VV, Kalogeropoulos, AP, et al. Dietary sodium intake in heart failure. Circulation. 2012; 126:479485.CrossRefGoogle ScholarPubMed
Flather, MD, Yusuf, S, Kober, L, et al. Long-term ACEI-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. Lancet. 2000; 355:15751581.CrossRefGoogle ScholarPubMed
Garg, R, Yusuf, S for the Collaborative Group on ACE Inhibitor Trials. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA. 1995; 273:14501456.CrossRefGoogle ScholarPubMed
The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fraction. N Engl J Med. 1992; 327:685691.CrossRefGoogle Scholar
Maggioni, AP, Anand, I, Gottlieb, SO, et al. Effects of valsartan on morbidity and mortality in patients with heart failure not receiving angiotensin-converting enzyme inhibitors. J Am Coll Cardiol. 2002; 40:14141421.CrossRefGoogle Scholar
Granger, CB, McMurray, JJV, Yusuf, S, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet. 2003; 362:772776.CrossRefGoogle ScholarPubMed
Pfeffer, MA, Swedberg, K, Granger, CB, et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet. 2003; 362:759766.CrossRefGoogle ScholarPubMed
Kuenzli, A, Bucher, HC, Anand, I, et al. Meta-analysis of combined therapy with angiotensin receptor antagonists versus ACE inhibitors alone in patients with heart failure. PloS One. 2010; 5:e9946.CrossRefGoogle ScholarPubMed
McMurray, JJV, Packer, M, Desai, AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014; 371:9931004.CrossRefGoogle ScholarPubMed
Cohn, JN, Archibald, DG, Ziesche, S, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure: Results of a Veterans Administration Cooperative Study. N Engl J Med. 1986; 314:15471552.CrossRefGoogle Scholar
Cohn, JN, Johnson, G, Ziesche, S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991; 325:303310.CrossRefGoogle ScholarPubMed
Taylor, AL, Ziesche, S, Yancy, C, et al. for the African-American Heart Failure Trial Investigators. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004; 351:20492057.CrossRefGoogle ScholarPubMed
MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999; 353:20012007.CrossRefGoogle Scholar
Packer, M, Coats, AJS, Fowler, MB, et al. for the Carvedilol Prospective Randomized Cumulative Survival Study Group. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001; 344:16511658.CrossRefGoogle ScholarPubMed
The Cardiac Insufficiency Bisoprolol Study II (CIBIS II): A randomised trial. Lancet. 1999; 353:913.CrossRefGoogle Scholar
Deedwania, PC, Gottlieb, S, Ghali, JK, et al. Efficacy, safety and tolerability of beta-adrenergic blockade with metoprolol CR/XL in elderly patients with heart failure. Eur Heart J. 2004; 25:13001309.CrossRefGoogle ScholarPubMed
Swedberg, K, Komajda, M, Bohm, M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo-controlled study. Lancet. 2010; 376:875885.CrossRefGoogle ScholarPubMed
Pitt, B, Zannad, F, Remme, WJ, et al. for the Randomized Aldactone Evaluation Study Investigators. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999; 341:709717.CrossRefGoogle ScholarPubMed
Zannad, F, McMurray, JJV, Krum, H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011; 364:1121.CrossRefGoogle ScholarPubMed
Juurlink, DN, Mamdani, MM, Lee, DS, et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N Engl J Med. 2004; 351:543551.CrossRefGoogle ScholarPubMed
The Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997; 336:525533.CrossRefGoogle Scholar
Rich, MW, McSherry, F, Williford, WO, Yusuf, S for the Digitalis Investigation Group. Effect of age on mortality, hospitalizations and response to digoxin in patients with heart failure: The DIG study. J Am Coll Cardiol. 2001; 38:806813.CrossRefGoogle ScholarPubMed
Ahmed, A, Rich, MW, Love, TE, et al. Digoxin and reduction in mortality and hospitalization in heart failure: A comprehensive post hoc analysis of the DIG trial. Eur Heart J. 2006; 27:178186.CrossRefGoogle ScholarPubMed
Massie, BN, Collins, JF, Ammon, SE, et al. Randomized trial of warfarin, aspirin, and clopidogrel in patients with chronic heart failure: The Warfarin and Antiplatelet Therapy in Chronic Heart Failure (WATCH) Trial. Circulation. 2009; 119:16161624.CrossRefGoogle ScholarPubMed
Homma, S, Thompson, JLP, Pullicino, PM, et al. Warfarin and aspirin in patients with heart failure and sinus rhythm. N Engl J Med. 2012; 366:18591869.CrossRefGoogle ScholarPubMed
O’Connor, CM, Gattis, WA, Uretsky, BF, et al. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: Insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1999; 138:7886.CrossRefGoogle ScholarPubMed
Cuffe, MS, Califf, RM, Adams, KFJ, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: A randomized controlled trial. JAMA. 2002; 287:15411547.CrossRefGoogle ScholarPubMed
Publication Committee for the VMAC Investigators (Vasodilation in the Management of Acute CHF). Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA. 2002; 287:15311540.Google Scholar
O’Connor, CM, Starling, RC, Hernandez, AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011; 365:3243.CrossRefGoogle ScholarPubMed
Daneshvar, DA, Czer, LS, Phan, A, et al. Heart transplantation in the elderly: why cardiac transplantation does not need to be limited to younger patients but can be safely performed in patients above 65 years of age. Ann Transplant. 2010; 15:110119.Google Scholar
Atluri, P, Goldstone, AB, Kobrin, DM, et al. Ventricular assist device implant in the elderly is associated with increased, but respectable risk: A multi-institutional study. Ann Thorac Surg.2013; 96:141147.CrossRefGoogle Scholar
DeFilippis, EM, Nakagawa, S, Maurer, MS, Topkara, VK. Left ventricular assist device therapy in older adults: Addressing common clinical questions. J Am Geriatr Soc. 2019; 67:24102419.CrossRefGoogle ScholarPubMed
Upadhya, B, Kitzman, DW. Heart failure with preserved ejection fraction: new approaches to diagnosis and management. Clin Cardiol. 2020; 43:145155.CrossRefGoogle ScholarPubMed
Kitzman, DW, Gardin, JM, Gottdiener, JS, et al. for the Cardiovascular Health Study Research Group. Importance of heart failure with preserved systolic function in patients > or = 65 years of age. Am J Cardiol. 2001; 87:413419.CrossRefGoogle ScholarPubMed
Owan, TE, Hodge, DO, Herges, RM, Jacobsen, SJ, Roger, VL, Redfield, MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006; 355:251259.CrossRefGoogle ScholarPubMed
Bhatia, RS, Tu, JV, Lee, DS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. New Engl J Med. 2006; 355:260269.CrossRefGoogle ScholarPubMed
Owan, TE, Hodge, DO, Herges, RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. New Engl J Med. 2006; 355:251259.CrossRefGoogle ScholarPubMed
Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: An individual patient data meta-analysis. Eur Heart J. 2012; 33:17501757.CrossRefGoogle Scholar
Yusuf, S, Pfeffer, MA, Swedberg, K, et al. for the CHARM investigators and Committees. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: The CHARM-Preserved Trial. Lancet. 2003; 362:777781.CrossRefGoogle ScholarPubMed
Ahmed, A, Rich, MW, Fleg, JL, et al. Effects of digoxin on morbidity and mortality in diastolic heart failure: the Ancillary Digitalis Investigation Group Trial. Circulation. 2006; 114:397403.CrossRefGoogle ScholarPubMed
Cleland, JGF, Tendera, M, Adamus, J, et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006; 27:23382345.CrossRefGoogle ScholarPubMed
Massie, BM, Carson, PE, McMurray, JJ, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008; 359:24562467.CrossRefGoogle ScholarPubMed
Van Veldhuisen, DJ, Cohen-Solal, A, Bohm, M, et al. Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2009; 53:21502158.CrossRefGoogle ScholarPubMed
Pitt, B, Pfeffer, MA, Assmann, SF, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014; 370:13831392.CrossRefGoogle ScholarPubMed
Edelmann, F, Wachter, R, Schmidt, AG, et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: The Aldo-DHF randomized controlled trial. JAMA. 2013; 309:781791.CrossRefGoogle ScholarPubMed
Redfield, MM, Chen, HH, Borlaug, BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013; 309:12681277.CrossRefGoogle ScholarPubMed
Zile, MR, Bourge, RC, Redfield, MM, Zhou, D, Baicu, CF, Little, WC. Randomized, double-blind, placebo-controlled study of sitaxsentan to improve impaired exercise tolerance in patients with heart failure and a preserved ejection fraction. J Am Coll Cardiol HF. 2014; 2:123130.Google Scholar
Conraads, VM, Metra, M, Kamp, O, et al. Effects of long-term administration of nebivolol on the clinical symptoms, exercise capacity, and left ventricular function of patients with diastolic dysfunction: Results of the ELANDD study. Eur J Heart Fail. 2012; 14:219225.CrossRefGoogle ScholarPubMed
Solomon, SD, McMurray, JJV, Anand, IS, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019; 381:16091620.CrossRefGoogle ScholarPubMed
Ruberg, FL, Grogan, M, Hanna, M, et al. Transthyretin amyloid cardiomyopathy. J Am Coll Cardiol. 2019; 73:28722891.CrossRefGoogle ScholarPubMed
Maurer, MS, Schwartz, JH, Gundapaneni, B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018; 379:10071016.CrossRefGoogle ScholarPubMed
Bristow, MR, Saxon, LA, Boehmer, J, et al. for the Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure (COMPANION) Investigators. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004; 350:21402150.CrossRefGoogle ScholarPubMed
Cleland, JGF, Daubert, JC, Erdmann, E, et al. for the Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. New Engl J Med. 2005; 352:15391549.CrossRefGoogle ScholarPubMed
Kusumoto, FM, Schoenfeld, MH, Barrett, CN, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay. J Am Coll Cardiol. 2019; 74:e51e156.CrossRefGoogle ScholarPubMed
Cheng, YJ, Zhang, J, Li, WJ, et al. More favorable response to cardiac resynchronization therapy in women than in men. Circ Arrhythm Electrophysiol. 2014; 7:807815.CrossRefGoogle ScholarPubMed
Zusterzeel, R, Selzman, KA, Sanders, WE, et al. Cardiac resynchronization therapy in women: US Food and Drug Administration meta-analysis of patient-level data. JAMA Intern Med. 2014; 174:13401348.CrossRefGoogle ScholarPubMed
Verbrugge, FH, Dupont, M, De Vusser, P, et al. Response to cardiac resynchronization therapy in elderly patients (≥70 years) and octogenarians. Eur J Heart Fail. 2013; 15:203210.CrossRefGoogle ScholarPubMed
Sandhu, A, Levy, A, Varosy, PD, Matlock, D. Implantable cardioverter-defibrillators and cardiac resynchronization therapy in older adults with heart failure. J Am Geriatr Soc. 2019; 67:21932199.CrossRefGoogle ScholarPubMed
Moss, AJ, Zareba, W, Hall, WJ, et al. for the Multicenter Automatic Defibrillator Implantation Trial II Investigators. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002; 346:877883.CrossRefGoogle ScholarPubMed
Bardy, GH, Lee, KL, Mark, DB, et al. for the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) Investigators. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005; 352:225237.CrossRefGoogle ScholarPubMed
Santangeli, P, Di Biase, L, Dello Russo, A, et al. Meta-analysis: Age and effectiveness of prophylactic implantable cardioverter-defibrillators. Ann Intern Med. 2010; 153:592599.CrossRefGoogle ScholarPubMed
Lampert, R, Hayes, DL, Annas, GJ, et al. HRS Expert Consensus Statement on the Management of Cardiovascular Implantable Electronic Devices (CIEDs) in patients nearing end of life or requesting withdrawal of therapy. Heart Rhythm. 2010; 7:10081026.CrossRefGoogle ScholarPubMed
Takeda, A, Martin, N, Taylor, RS, Taylor, SJC. Disease management interventions for heart failure. Cochrane Database Syst Rev. 2019; 1:CD002752.Google ScholarPubMed
Huynh, BC, Rovner, A, Rich, MW. Long-term survival in elderly patients hospitalized for heart failure: 14 year follow-up from a prospective randomized trial. Arch Intern Med. 2006; 166:18921898.CrossRefGoogle ScholarPubMed
Whellan, DJ, Goodlin, SJ, Dickinson, MG, et al. End-of-life care in patients with heart failure. J Card Fail. 2014; 20:121134.CrossRefGoogle ScholarPubMed
Otto, CM, Prendergast, B. Aortic-valve stenosis: From patients at risk to severe valve obstruction. N Engl J Med. 2014; 371:744756.CrossRefGoogle ScholarPubMed
Nishimura, RA, Otto, CM, Ronow, RO, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease. J Am Coll Cardiol. 2017; 70:252289.CrossRefGoogle ScholarPubMed
Leon, MB, Smith, CR, Mack, M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010; 363:15971607.CrossRefGoogle ScholarPubMed
Smith, CR, Leon, MB, Mack, MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011; 364:21872198.CrossRefGoogle ScholarPubMed
Kodali, SK, Williams, MR, Smith, CR, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med. 2012; 366:16861695.CrossRefGoogle ScholarPubMed
Reynolds, MR, Magnuson, EA, Lei, Y, et al. Health-related quality of life after transcatheter aortic valve replacement in inoperable patients with severe aortic stenosis. Circulation. 2011; 124:19641972.CrossRefGoogle ScholarPubMed
Mack, MJ, Leon, MB, Thourani, VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019; 380:16951705.CrossRefGoogle ScholarPubMed
Popma, JJ, Deeb, GM, Yakubov, SJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019; 380:17061715.CrossRefGoogle ScholarPubMed
Lindman, BR, Alexander, KP, O’Gara, PT, Afilalo, J. Futility, benefit, and transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2014; 7:707716.CrossRefGoogle ScholarPubMed
Scognamiglio, R, Rahimtoola, SH, Fasoli, G, et al. Nifedipine in asymptomatic patients with severe aortic regurgitation and normal left ventricular function. N Engl J Med. 1994; 331:689694.CrossRefGoogle ScholarPubMed
Evangelista, A, Tornos, P, Sambola, A, et al. Long-term vasodilator therapy in patients with severe aortic regurgitation. N Engl J Med. 2005; 353:13421349.CrossRefGoogle ScholarPubMed
Rawasia, WF, Khan, MS, Usman, MS, et al. Safety and efficacy of transcatheter aortic valve replacement for native aortic valve regurgitation: A systematic review and meta-analysis. Catheter Cardiovasc Interv. 2019; 93:345353.CrossRefGoogle ScholarPubMed
Mathew, JP, Fontes, ML, Tudor, IC, et al. A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA. 2004; 291:17201729.CrossRefGoogle ScholarPubMed
Crystal, E, Connolly, SJ, Sleik, K, et al. Interventions on prevention of postoperative atrial fibrillation in patients undergoing heart surgery: A meta-analysis. Circulation. 2002; 106:7580.CrossRefGoogle ScholarPubMed
Mitchell, LB, Exner, DV, Wyse, DG, et al. Prophylactic oral amiodarone for the prevention of arrhythmias that begin early after revascularization, valve replacement, or repair – PAPABEAR: A randomized controlled trial. JAMA. 2005; 294:30933100.CrossRefGoogle ScholarPubMed
Enriquez-Sarano, M, Avierinos, JF, Messika-Zeitoun, D, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med. 2005; 352:875883.CrossRefGoogle ScholarPubMed
Feldman, T, Foster, E, Glower, DD, et al. Percutaneous repair or surgery for mitral regurgitation. N Engl J Med. 2011; 364:13951406.CrossRefGoogle ScholarPubMed
Wan, B, Rahnvavardi, M, Tian, DH, et al. A meta-analysis of MitraClip system versus surgery for treatment of severe mitral regurgitation. Ann Cardiothorac Surg. 2013; 2:683692.Google ScholarPubMed
Stone, GW, Lindenfeld, J, Abraham, WT, et al. Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med. 2018; 379:23072318.CrossRefGoogle ScholarPubMed
Lamas, GA, Lee, KL, Silverman, R, et al. Ventricular pacing or dual-chamber pacing for sinus-node dysfunction. N Engl J Med. 2002; 346:18541862.CrossRefGoogle ScholarPubMed
Dewland, TA, Olgin, JE, Vittinghoff, E, Marcus, GM. Incident atrial fibrillation among Asians, Hispanics, Blacks, and Whites. Circulation. 2013; 128:24702477.CrossRefGoogle ScholarPubMed
January, CT, Wann, LS, Calkins, H, et al. 2019 ACC/AHA/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation. J Am Coll Cardiol. 2019; 74:104132.CrossRefGoogle Scholar
Coleman, CI, Perkerson, KA, Gillespie, EL, et al. Impact of prophylactic beta blockade on post-cardiothoracic surgery length of stay and atrial fibrillation. Ann Phamacother. 2004; 38:20122016.CrossRefGoogle ScholarPubMed
Kluger, J, White, CM. Amiodarone prevents symptomatic atrial fibrillation and reduces the risk of cerebrovascular events and ventricular tachycardia after open heart surgery: Results of the Atrial Fibrillation Suppression Trial (AFIST). Card Electrophysiol Rev. 2003; 7:165167.CrossRefGoogle Scholar
Wyse, DG, Waldo, AL, DiMarco, JP, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002; 347:18251833.Google ScholarPubMed
The AFFIRM Investigators. Quality of life in atrial fibrillation: The Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Am Heart J. 2005; 149:112120.CrossRefGoogle Scholar
Packer, DL, Mark, DB, Robb, RA, et al. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation (the CABANA randomized clinical trial). JAMA. 2019; 321:12611274.CrossRefGoogle Scholar
Wolf, PA, Abbott, RD, Kannel, WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991; 22:983988.CrossRefGoogle ScholarPubMed
Gage, BF, Waterman, AD, Shannon, W, et al. Validation of clinical classification schemes for predicting stroke: Results from the National Registry of Atrial Fibrillation. JAMA. 2001; 285:28642870.CrossRefGoogle Scholar
Lip, GY, Nieuwlaat, R, Pisters, R, et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The Euro Heart Survey on Atrial Fibrillation. Chest. 2010; 137:263272.CrossRefGoogle ScholarPubMed
SPORTIF III Investigators: Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation. Lancet. 2003; 362:16911698.CrossRefGoogle Scholar
SPORTIF V Investigators. Ximelagatran vs warfarin for stroke prevention in patients with nonvalvular atrial fibrillation. JAMA. 2005; 293:690698.CrossRefGoogle Scholar
Connolly, SJ, Ezekowitz, MD, Yusuf, S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009; 361:11391151.CrossRefGoogle ScholarPubMed
Patel, MR, Mahaffey, KW, Garg, J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011; 365:883891.CrossRefGoogle ScholarPubMed
Granger, CB, Alexander, JH, McMurray, JJV, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011; 365:981992.CrossRefGoogle ScholarPubMed
Sardar, P, Chatterjee, S, Chaudhari, S, Lip, GYH. New oral anticoagulants in elderly adults: Evidence from a meta-analysis of randomized trials. J Am Geriatr Soc. 2014; 62:857864.CrossRefGoogle ScholarPubMed
Pisters, R, Lane, DA, Nieuwlaat, R, et al. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: The Euro Heart Survey. Chest. 2010; 138:10931100.CrossRefGoogle ScholarPubMed
Lane, DA, Lip, GYH. Clinician update: Use of the CHA2DS2-VASc and HAS-BLED scores to aid decision making for thromboprophylaxis in nonvalvular atrial fibrillation. Circulation. 2012; 126:860865.CrossRefGoogle Scholar
Gage, BF, Birman-Deych, E, Kerzner, R, et al. Incidence of intracranial hemorrhage in patients with atrial fibrillation who are prone to fall. Am J Med. 2005; 118:612617.CrossRefGoogle ScholarPubMed
Donze, J, Clair, C, Hug, B, et al. Risk of falls and major bleeds in patients on oral anticoagulation therapy. Am J Med. 2012; 125:773778.CrossRefGoogle ScholarPubMed
Reddy, VY, Sievert, H, Halperin, J, et al. Percutaneous left atrial appendage closure vs warfarin for atrial fibrillation: A randomized clinical trial. JAMA. 2014; 312:19881998.CrossRefGoogle ScholarPubMed
Boersma, LV, Ince, H, Kische, S, et al. Evaluating real-world clinical outcomes in atrial fibrillation patients receiving the Watchman left atrial appendage closure technology. Circ Arrhythm Electrophysiol. 2019; 12:e006841.CrossRefGoogle ScholarPubMed
Freeman, JV, Varosy, P, Price, MJ, et al. The NCDR left atrial appendage occlusion registry. J Am Coll Cardiol. 2020; 75:15031518.CrossRefGoogle ScholarPubMed
Buxton, AE, Lee, KL, Fisher, JD, et al. For the Multicenter Unsustained Tachycardia Trial Investigators. A randomized study of the prevention of sudden death in patients with coronary artery disease. N Engl J Med. 1999; 341:18821890.CrossRefGoogle Scholar

References

Benjamin, E, Virani, S, Callaway, C, et al. Heart disease and stroke statistics – 2018 update: A report from the American Heart Association. Circulation. 2018; 137(12):e67e492. doi: 10.1161/cir.0000000000000558.CrossRefGoogle ScholarPubMed
Kirkland, EB, Heincelman, M, Bishu, KG, Schumann, SO, Schreiner, A, et al. Trends in healthcare expenditures among US adults with hypertension: National estimates, 2003–2014. Journal of the American Heart Association. 2018; 7(11):e008731.CrossRefGoogle ScholarPubMed
GBD 2017 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392:19231994.CrossRefGoogle Scholar
Muntner, P, Carey, R M, Gidding, S, et al. Potential US population impact of the 2017 ACC/AHA High Blood Pressure Guideline. Circulation. 2018; 137(2):109118.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. High blood pressure facts, 2019. www.cdc.gov/bloodpressure/facts.htm.Google Scholar
Muntner, P, Shimbo, D, Carey, RM, et al. Measurement of blood pressure in humans: A scientific statement from the American Heart Association. Hypertension. 2019; 73(5):3566. doi: 10.1161/hyp.0000000000000087.CrossRefGoogle ScholarPubMed
Whelton, P, Carey, R, Aronow, W, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018; 71(6):e13e115. doi: 10.1161/hyp.0000000000000065.Google Scholar
The Sprint Research Group, Williamson, JD, Pajewski, NM, Auchus, AP, Bryan, RN, Chelune, G, Cheung, AK, et al. Effect of intensive vs standard blood pressure control on probable dementia: A randomized clinical trial. JAMA. 2019; 321:553561. doi: 10.1001/jama.2018.21442.Google ScholarPubMed
Gottesman, RF, Schneider, ALC, Albert, M, Alonso, A, Bandeen-Roche, K. Midlife hypertension and 20-year cognitive change. JAMA Neurology. 2014; 71(10):1218.CrossRefGoogle ScholarPubMed
Perry, Jr HM, Davis, BR, Price, TR, et al. Effect of treating isolated systolic hypertension on the risk of developing various types and subtypes of stroke: The Systolic Hypertension in the Elderly Program (SHEP). JAMA. 2000; 284(4):465.CrossRefGoogle ScholarPubMed
Beckett, NS, Peters, R, Fletcher, AE, Staessen, JA, Liu, L, et al. Treatment of hypertension in patients 80 years of age or older. New England Journal of Medicine. 2008; 358(18):18871898.CrossRefGoogle ScholarPubMed
The SPRINT Research Group, Wright, JT, Williamson, JD, Whelton, PK, Snyder, JK, Sink, KM, Rocco, MV, et al. A randomized trial of intensive versus standard blood pressure control. N Engl J Med. 2015; 373:21032116. doi: 10.1056/NEJMoa1511939.Google ScholarPubMed
Pajewski, NM, Berlowitz, DR, Bress, AP, Callahan, KE, Cheung, AK, et al. Intensive vs standard blood pressure control in adults 80 years or older: A secondary analysis of the Systolic Blood Pressure Intervention Trial. Journal of the American Geriatrics Society. 2019; 68(3):496504.CrossRefGoogle ScholarPubMed
Sobieraj, P, Lewandowski, J, Siński, M, et al. Low diastolic blood pressure is not related to risk of first episode of stroke in a high‐risk population: A secondary analysis of SPRINT. Journal of the American Heart Association. 2019; 8(4):e010811.CrossRefGoogle ScholarPubMed
James, PA, Oparil, S, Carter, BL, et al. Evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the eighth Joint National Committee (JNC 8). JAMA. 2014; 311(5):507520.CrossRefGoogle Scholar

References

Hirsch, AT, Hiatt, WR. PAD Awareness, risk, and treatment: New resources for survival – the USA PARTNERS program. Vasc Med. 2001; 6:912.CrossRefGoogle ScholarPubMed
Fowkes, FGR, Rudan, D, Rudan, I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet. 2013; 382:13291340.CrossRefGoogle ScholarPubMed
Schramm, K, Rochon, PJ. Gender differences in peripheral vascular disease. Semin Intervent Radiol. 2018; 35(1):916.CrossRefGoogle ScholarPubMed
Gerhard-Herman, MD, Gornik, HL, Barrett, C, et al. 2016 AHA/ACC Guideline on the management of patients with lower extremity peripheral artery disease: Executive summary. Vasc Med. 2017; 22(3):NP1NP43.Google ScholarPubMed
Carmelli, D, Fabsitz, RR, Swan, GE, Reed, T, Miller, B, Wolf, PA. Contribution of genetic and environmental influences to ankle-brachial blood pressure index in the NHLBI Twin Study. Am J Epidemiol. 2000; 151:452.CrossRefGoogle ScholarPubMed
Wahlgren, CM, Magnusson, PK. Genetic influences on peripheral arterial disease in a twin population. Anterioscler Thromb Vasc Biol. 2011; 31:678.CrossRefGoogle Scholar
Chen, Q, Shi, Y, Wang, Y, Li, X. Patterns of disease distribution of lower extremity peripheral arterial disease. Angiology. 2015; 66(3):211218.CrossRefGoogle ScholarPubMed
Norgren, L, Hiatt, WR, Dormandy, JA, Nehler, MR, Harris, KA, Fowkes, FGR. Inter-Society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007; 45:S5.CrossRefGoogle ScholarPubMed
Vainas, T, Stassen, FR, de Graaf, R, et al. C-reactive protein in peripheral arterial disease: Relation to severity of the disease and to future cardiovascular events. J Vasc Surg. 2005; 42(2):243251.CrossRefGoogle ScholarPubMed
Ferket, BS, Spronk, S, Colkesen, EB, Hunink, MM. Systematic review of guidelines on peripheral artery disease screening. Am J Med. 2012; 125:198.CrossRefGoogle ScholarPubMed
Services, UP, Force, T, Curry, SJ, et al. Screening for peripheral artery disease and cardiovascular disease risk assessment with the ankle-brachial index: US Preventive Services Task Force Recommendation Statement. JAMA. 2018; 320:177.Google Scholar
Guirguis-Blake, JM, Evans, CV, Redmond, N, Lin, JS. Screening for peripheral artery disease using the ankle-brachial index: Updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2018; 320:184.CrossRefGoogle ScholarPubMed
McDermott, MM, Greenland, P, Liu, K, et al. Leg symptoms in peripheral arterial disease: associated clinical characteristics and functional impairment. JAMA. 2001; 286:1599.CrossRefGoogle ScholarPubMed
Khan, NA, Rahim, SA, Anand, SS, Simel, DL, Panju, A. Does the clinical examination predict lower extremity peripheral arterial disease? JAMA. 2006; 295:536.CrossRefGoogle ScholarPubMed
Hirsch, AT, Haskal, ZJ, Hertzer, NR, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): A collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006; 113:e463.Google Scholar
Haigh, KJ, Bingley, J, Golledge, J, Walker, PJ. Barriers to screening and diagnosis of peripheral artery disease by general practitioners. Vasc Med. 2013; 18(6):325330.CrossRefGoogle ScholarPubMed
Mills, JLS, Conte, MS, Armstrong, DG, et al. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: Risk stratification based on wound, ischemia, and foot infection (WIfI). J Vasc Surg. 2014; 59:220.CrossRefGoogle Scholar
Morris, DR, Rodriguez, AJ, Moxon, JV, et al. Association of lower extremity performance with cardiovascular and all-cause mortality in patients with peripheral artery disease: A systematic review and meta-analysis. J Am Heart Assoc. 2014; 3:e001105.CrossRefGoogle ScholarPubMed
Low Wang, CC, Blomster, JI, Heizer, G, et al. Cardiovascular and limb outcomes in patients with diabetes and peripheral artery disease: The EUCLID trial. J Am Coll Cardiol. 2018; 72:3274.CrossRefGoogle ScholarPubMed
Whelton, PK, Carey, RM, Aronow, WS. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018; 71(19):21772188.CrossRefGoogle Scholar
SPRINT Research Group. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015; 373:21032116.CrossRefGoogle Scholar
Willigendael, EM, Teijink, JA, Bartelink, ML, et al. Influence of smoking on incidence and prevalence of peripheral arterial disease. J Vasc Surg. 2004; 40:1158.CrossRefGoogle ScholarPubMed
Lane, R, Harwood, A, Watson, L, Leng, GC. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2017; 12:CD000990.Google ScholarPubMed
Garg, PK, Tian, L, Criqui, MH. Physical activity during daily life and mortality in patients with peripheral arterial disease. Circulation. 2006; 114:242.CrossRefGoogle ScholarPubMed
Watson, L, Ellis, B, Leng, GC. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2008:CD000990.CrossRefGoogle Scholar
Vemulapalli, S, Dolor, RJ, Hasselblad, V, et al. Supervised vs unsupervised exercise for intermittent claudication: A systematic review and meta-analysis. Am Heart J. 2015; 169:924.CrossRefGoogle ScholarPubMed
Mazari, FAK, Khan, JA, Carradice, D, et al. Randomized clinical trial of percutaneous transluminal angioplasty, supervised exercise and combined treatment for intermittent claudication due to femoropopliteal arterial disease. Br J Surg. 2012; 99:39.CrossRefGoogle ScholarPubMed
Nylaende, M, Abdelnoor, M, Stranden, E, et al. The Oslo balloon angioplasty versus conservative treatment study (OBACT): The 2-years results of a single centre, prospective, randomised study in patients with intermittent claudication. Eur J Vasc Endovasc Surg. 2007; 33:3.CrossRefGoogle ScholarPubMed
Conte, MS, Pomposelli, FB, Clair, DG, et al. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: Management of asymptomatic disease and claudication. J Vasc Surg. 2015; 61:2S.CrossRefGoogle ScholarPubMed
Morrow, DA, Braunwald, E, Bonaca, MP, et al. Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med. 2012; 366:1404.CrossRefGoogle ScholarPubMed
Thompson, PD, Zimet, R, Forbes, WP, Zhang, P. Meta-analysis of results from eight randomized, placebo-controlled trials on the effect of cilostazol on patients with intermittent claudication. Am J Cardiol. 2002; 90:1314.CrossRefGoogle ScholarPubMed
Pande, RL, Hiatt, WR, Zhang, P, Hittel, N, Creager, MA. A pooled analysis of the durability and predictors of treatment response of cilostazol in patients with intermittent claudication. Vasc Med. 2010; 15:181.CrossRefGoogle ScholarPubMed
Beebe, HG, Dawson, DL, Cutler, BS, et al. A new pharmacological treatment for intermittent claudication: Results of a randomized, multicenter trial. Arch Intern Med. 1999; 159(17):2041.CrossRefGoogle ScholarPubMed
O’Donnell, ME, Badger, SA, Sharif, MA, Young, IS, Lee, B, Soong, CV. The vascular and biochemical effects of cilostazol in patients with peripheral arterial disease. J Vasc Surg. 2009; 49:1226.CrossRefGoogle ScholarPubMed
Gardner, AW, Afaq, A. Management of lower extremity peripheral arterial disease. J Cardiopulm Rehabil Prev. 2008; 28(6):349357.CrossRefGoogle ScholarPubMed
Rooke, TW, Hirsch, AT, Misra, S, et al. ACCF/AHA focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005 guideline). J Am Coll Cardiol. 2011; 58(19):20202045.CrossRefGoogle ScholarPubMed
Lewis, SR, Pritchard, MW, Schofield‐Robinson, OJ, Alderson, P, Smith, AF. Continuation versus discontinuation of antiplatelet therapy for bleeding and ischaemic events in adults undergoing non-cardiac surgery. Cochrane Database Syst Rev. 2018; 7:CD012584.Google ScholarPubMed
Devereaux, PJ, Mrkobrada, M, Sessler, DI, et al. Aspirin in patients undergoing noncardiac surgery. N Engl J Med. 2014; 370:1494.CrossRefGoogle ScholarPubMed
Biccard, BM, Sigamani, A, Chan, MTV, et al. Effect of aspirin in vascular surgery in patients from a randomized clinical trial (POISE‐2). Br J Surg. 2018; 105:1591.CrossRefGoogle ScholarPubMed
Goodney, PP, Schanzer, A, DeMartino, RR, et al. Validation of the Society for Vascular Surgery’s objective performance goals for critical limb ischemia in everyday vascular surgery practice. J Vasc Surg. 2011; 54:100.CrossRefGoogle Scholar
Leithead, C, Novak, Z, Spangler, E, et al. Importance of postprocedural wound, ischemia, and foot infection (WIfI) restaging in predicting limb salvage. J Vasc Surg. 2018; 67:498.CrossRefGoogle ScholarPubMed
Stoner, MC, Calligaro, KD, Chaer, RA, et al. Reporting standards of the Society for Vascular Surgery for endovascular treatment of chronic lower extremity peripheral artery disease. J Vasc Surg. 2016; 64:e1.CrossRefGoogle Scholar
Albäck, A, Biancari, F, Schmidt, S, et al. Haemodynamic results of femoropopliteal percutaneous transluminal angioplasty. Eur J Vasc Endovasc Surg. 1998; 16:7.CrossRefGoogle ScholarPubMed
Criqui, MH, Langer, RD, Fronek, A, et al. Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med. 1992; 326:381.CrossRefGoogle Scholar
Teraa, M, Conte, MS, Moll, FL, Verhaar, MC. Critical limb ischemia: Current trends and future directions. J Am Heart Assoc. 2016; 5:e002938.CrossRefGoogle ScholarPubMed
Welten, GM, Schouten, O, Hoeks, SE, et al. Long-term prognosis of patients with peripheral arterial disease: A comparison in patients with coronary artery disease. J Am Coll Cardiol. 2008; 51:1588.CrossRefGoogle ScholarPubMed

References

Drachman, DA, Swearer, JM. Neurological evaluation of the elderly patient. In: Albert, ML, Knoefel, JE, eds. Clinical Neurology of Aging, 3rd edition. New York: Oxford University Press, 2011, pp. 4153.Google Scholar
Manini, TM, Hong, SL, Clark, BC. Aging and muscle: A neuron’s perspective. Curr Opin Clini Nutr Metab Care. 2013; 16(1):110.Google ScholarPubMed
Sirven, JI, Mancall, EL. Neurological examination of the older adult. In: Sirven, JI, Malamut, BL, eds. Clinical Neurology of the Older Adult, 2nd edition. Philadelphia, PA: Lippincott Williams and Wilkins, 2008, pp. 57.Google Scholar
Chitnus, T, Weiner, HL. Multiple sclerosis in the elderly. In: Albert, ML, Knoefel, JE, eds. Clinical Neurology of Aging, 3rd edition. New York: Oxford University Press, 2011, pp. 536543.Google Scholar
Scalfari, A, Knappertz, V, Cutter, G, et al. Mortality in patients with multiple sclerosis. Neurology. 2013; 81:184192.CrossRefGoogle ScholarPubMed
Ciotti, JR, Cross, AH. Disease modifying treatment in progressive multiple sclerosis. Curr Treat Options Neurol. 2018; 20:12.CrossRefGoogle ScholarPubMed
Hughes, RA, Rees, JH. Clinical and epidemiologic features of Guillain-Barré syndrome. The Journal of Infectious Diseases. 1997; 176:S9298.CrossRefGoogle ScholarPubMed
Yuki, N, Hartung, HP. Guillain-Barré syndrome. N Engl J Med. 2012; 366:22942304.CrossRefGoogle ScholarPubMed
William, HJ, Jacobs, BC, Van Doorn, PA. Guillain-Barre syndrome. Lancet. 2016; 388:717727.Google Scholar
Cao-Lormeau, VM, et al. Guillain-Barre syndrome outbreak caused by Zika virus infection in French Polynesia. Lancet. 2016; 387(100027):15311539.CrossRefGoogle Scholar
Vellozzi, C, et al. Guillain-Barre syndrome, influenza and influenza vaccination: The epidemiologic evidence. Clinical Infectious Disease. 2014; 58(8):11491155.CrossRefGoogle ScholarPubMed
Worms, PM. The epidemiology of motor neuron disease: A review of recent studies. Journal of the Neurological Sciences. 2001; 191:39.CrossRefGoogle ScholarPubMed
Rowland, LP, Shneider, NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001; 344:16881700.CrossRefGoogle ScholarPubMed
Voelker, R. Antioxidant drug approved for ALS. JAMA. 2017; 317(23):23472460.CrossRefGoogle ScholarPubMed
Donaghy, M. Classification and clinical features of motor neuron diseases and motor neuropathies in adults. J. Neurol. 1999; 246:331333.CrossRefGoogle ScholarPubMed
Sieb, JP. Myasthenia gravis: An update for the clinician. Clinical and Experimental Immunology. 2013; 175:408418.CrossRefGoogle Scholar
Drachman, DB. Myasthenia gravis. N Engl J Med. 1994; 330:17971810.CrossRefGoogle ScholarPubMed
Mold, JW, Vesely, SK, Keyl, BA. The prevalence, predictors, and consequences of peripheral sensory neuropathy in older patients. J Am Board Fam Pract. 2004; 17:309318.CrossRefGoogle ScholarPubMed
Hoffman Snyder, CR, Smith, BE. Common peripheral neuropathies in the older adult. In: Sirven, JI, Malamut, BL, eds. Clinical Neurology of the Older Adult, 2nd edition. Philadelphia, PA: Lippincott Williams and Wilkins, 2008, pp. 402419.Google Scholar
Zawora, M, Liang, TW, Jarra, H. Neurological problems in the elderly. In: Arenson, C, Busby-Whitehead, J, Brummel-Smith, K, et al., eds. Reichel’s Care of the Elderly: Clinical Aspects of Aging, 6th edition. New York: Cambridge University Press, 2009, pp. 140170.Google Scholar
Centers for Disease Control and Prevention. National diabetes statistics report: Estimates of diabetes and its burden in the United States, 2014. Atlanta, GA: U.S. Department of Health and Human Services, 2014. www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf. Accessed on 08/03/2014.Google Scholar
Charnogursky, G, Lee, H, Lopez, N. Diabetic neuropathy. Handbook of Clinical Neurology. 2014; 120:773785.CrossRefGoogle ScholarPubMed
Schmader, KE. Epidemiology and impact on quality of life of postherpetic neuralgia and painful diabetic neuropathy. The Clinical Journal of Pain. 2002; 18:350354.CrossRefGoogle ScholarPubMed
Lacomis, D. Small-fiber neuropathy. Muscle and Nerve. 2002; 26:173188.CrossRefGoogle ScholarPubMed
Brannagan, TH, Weimer, LH, Latov, N. Acquired neuropathies. In: Rowland, LP, ed. Merritt’s Neurology, 11th edition. Philadelphia, PA: Lippincott Williams and Wilkins, 2005, pp. 748767.Google Scholar
Ghaznawi, N, Virdi, A, Dayan, A, et al. Herpes zoster ophthalmicus: Comparison of disease in patients 60 years and older versus younger than 60 years. Ophthalmology. 2011; 118:22422250.CrossRefGoogle ScholarPubMed
Gnann, JW, Whitley, RJ. Herpes zoster. N Engl J Med. 2002; 347:340346.CrossRefGoogle ScholarPubMed
Dooling, KL, et al. Recommendations of the advisory committee on immunization practices for use of herpes zoster vaccines. Center for Disease Control and Prevention, Morbidity and Mortality Weekly Report. 2018; 67(3):103108. www.cdc.gov/mmwr/volumes/67/wr/mm6703a5.htm.CrossRefGoogle ScholarPubMed
Eldar, AH, Chapman, J. Guillain-Barré syndrome and other immune mediated neuropathies: Diagnosis and classification. Autoimmunity Reviews. 2014; 13:525530.CrossRefGoogle ScholarPubMed
Mahdi-Rogers, M, Hughes, RA. Epidemiology of chronic inflammatory neuropathies in southeast England. European Journal of Neurology. 2014; 21:2833.CrossRefGoogle Scholar
Lijima, M, Koike, H, Nattori, N, et al. Prevalence and incidence rates of chronic inflammatory demyelinating polyneuropathy in the Japanese population. J Neurol Neurosurgery Psychiatry. 2008; 79(9):10401043.Google Scholar
Mellion, M, Gilchrist, JM, De La Monte, S. Alcohol-related peripheral neuropathy: nutritional, toxic, or both? Muscle and Nerve. 2011; 43:309316.CrossRefGoogle ScholarPubMed
Kumar, N. Neurologic aspects of cobalamin (B12) deficiency. Handbook of Clinical Neurology. 2014; 120:915926.CrossRefGoogle ScholarPubMed
Nemni, R, Gerosa, E, Piccolo, G, Merlinii, G. Neuropathies associated with monoclonal gammopathies. Haematologica. 1994; 79:557566.Google Scholar
Pop-Busui, R, Roberts, L, Pennathur, S, et al. The management of diabetic neuropathy in CKD. Am J Kidney Dis. 2010; 55:365385.CrossRefGoogle ScholarPubMed
Dworkin, RH, O’Connor, AB, Backonja, M, et al. Pharmacologic management of neuropathic pain: Evidence-based recommendations. Pain. 2007; 132:237251.CrossRefGoogle ScholarPubMed
Laccheo, I, Ablah, E, Heinrichs, R, et al. Assessment of quality of life among the elderly with epilepsy. Epilepsy Behav. 2008; 12:257261.CrossRefGoogle ScholarPubMed
Stephen, LJ, Brodie, MJ. Epilepsy in elderly people. Lancet. 2000; 355:14411446.CrossRefGoogle ScholarPubMed
Leppik, IE, Birnbaum, AK. Epilepsy in the elderly. Annals of the New York Academy of Sciences. 2010; 1184:208224.CrossRefGoogle ScholarPubMed
Ramsay, RE, Rowan, AJ, Pryor, FM. Special considerations in treating the elderly patient with epilepsy. Neurology. 2004; 62:S2429.CrossRefGoogle ScholarPubMed
Huying, F, Limpe, S, Werhahn, KJ. Antiepileptic drug use in nursing home residents: A cross-sectional, regional study. Seizure. 2006; 15:194197.CrossRefGoogle ScholarPubMed
Hardie, NA, Garrard, J, Gross, CR, et al. The validity of epilepsy or seizure documentation in nursing homes. Epilepsy Research. 2007; 74:171175.CrossRefGoogle ScholarPubMed
Brodie, MJ, Kelly, K, Stephen, LJ. Prospective audits with new antiepileptic drugs in focal epilepsy: Insights into population responses? Epilepsy and Behavior. 2014; 31:7376.CrossRefGoogle ScholarPubMed
Wallace, H, Shorwon, S, Tallis, R. Age-specific incidence and prevalence rates of treated epilepsy in an unselected population of 2,052,922 and age-specific fertility rates of women with epilepsy. Lancet. 1998; 352:19701073.CrossRefGoogle Scholar
Bladin, CF, Alexandrov, AV, Bellavance, A, et al. Seizures after stroke: A prospective multicenter study. Arch Neurol. 2000; 57:16171622.CrossRefGoogle ScholarPubMed
Brodie, MJ, Elder, AT, Kwan, P. Epilepsy in later life. Lancet Neurol. 2009; 8:10191030.CrossRefGoogle ScholarPubMed
Imfeld, P, Bodmer, M, Schuerch, M, et al. Seizures in patients with Alzheimer’s disease or vascular dementia: A population-based nested case control analysis. Epilepsia. 2013; 54:700707.CrossRefGoogle ScholarPubMed
Irizarry, MC, Jin, S, He, F, et al. Incidence of new-onset seizures in mild to moderate Alzheimer disease. Arch Neurol. 2012; 69:368372.CrossRefGoogle ScholarPubMed
Sherzai, D, Losey, T, Vega, S, Sherzai, A. Seizures and dementia in the elderly: Nationwide inpatient sample 1999–2008. Epilepsy and Behavior. 2014; 36:5356.CrossRefGoogle ScholarPubMed
Vossel, KA, Beagle, AJ, Rabinovici, GD, et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 2013; 70:11581166.CrossRefGoogle ScholarPubMed
Meierkord, H, Holtkamp, M. Non-convulsive status epilepticus in adults: Clinical forms and treatment. Lancet Neurol. 2007; 6:329339.CrossRefGoogle ScholarPubMed
Jirsch, J, Hirsch, LJ. Nonconvulsive seizures: Developing a rational approach to the diagnosis and management in the critically ill population. Clinical Neurophysiology. 2007; 118:16601670.CrossRefGoogle Scholar
McBride, AE, Shih, TT, Hirsch, LJ. Video-EEG monitoring in the elderly: A review of 94 patients. Epilepsia. 2002; 43:165.CrossRefGoogle ScholarPubMed
Kapoor, J, et al. Randomized trial of three anticonvulsants for Status Epilepticus. New England Journal of Medicine. 2019; 381;22.Google Scholar
Rowan, AJ, Ramsay, RE, Collins, JF, et al. New onset geriatric epilepsy: A randomized study of gabapentin, lamotrigine, and carbamazepine. Neurology. 2005; 64:18681873.CrossRefGoogle ScholarPubMed
Cumbo, E, Ligori, LD. Levitiracetam, lamotrigine, and phenobarbital in patients with epileptic seizures and Alzheimer’s disease. Epilepsy Behavior. 2010; 17:461.CrossRefGoogle Scholar
Lezaic, N, et al. The medical treatment of epilepsy in the elderly: A systematic review and meta-analysis. Epilepsia. 2019; 60(7):1325.CrossRefGoogle ScholarPubMed
Speechio, LM, Tramacere, L, La Neve, A, Beghi, E. Discontinuing antiepileptic drugs in patients who are seizure free on monotherapy. J Neurol, Neurosurg Psychiatry. 2002; 72:2225.CrossRefGoogle Scholar
Robbins, MS, Lipton, RB. Management of headache in the elderly. Drugs Aging. 2010; 27:377398.CrossRefGoogle ScholarPubMed
Walker, RA, Wadman, MC. Headache in the elderly. Clin Geriatr Med. 2007; 23:291305.CrossRefGoogle ScholarPubMed
Prencipe, M, Casini, A, Ferretti, C, et al. Prevalence of headache in an elderly population: Attack frequency, disability and use of medication. J Neurol Neurosurg Psychiatry. 2001; 70:377381.CrossRefGoogle Scholar
Bamford, CC, Mays, M, Tepper, SJ. Unusual headaches in the elderly. Curr Pain Headache Rep. 2011; 15:295301.CrossRefGoogle ScholarPubMed
Özge, A. Chronic daily headache in the elderly. Curr Pain Headache Rep. 2013; 17:382389.CrossRefGoogle ScholarPubMed
Pringsheim, T, Davenport, J, Becker, W. Prophylaxis of migraine headache. CMAJ. 2010; 182:E269276.CrossRefGoogle ScholarPubMed
Charles, A. The evolution of a migraine attack: A review of recent evidence. Headache. 2013; 53:413419.CrossRefGoogle ScholarPubMed
Kristoffersen, ES, Lundqvist, C. Medication-overuse headache: Epidemiology, diagnosis and treatment. Ther Adv Drug Saf. 2014; 5:8799.CrossRefGoogle ScholarPubMed
Dodick, DW, Capobianco, DJ. Headaches. In: Sirven, JI, Malamut, BL, eds. Clinical Neurology of the Older Adult, 2nd edition. Philadelphia, PA: Lippincott Williams and Wilkins, 2008, pp. 197212.Google Scholar
Do, TP, et al. Red and orange flags for secondary headaches in clinical practice: SNNOOP10 list. Neurology. 2019; 92(3):134144. PMID 30587518.CrossRefGoogle ScholarPubMed

References

Virani, SS, Alonso, A, Benjamin, EJ, Bittencourt, MS, Callaway, CW, Carson, AP, et al. Heart disease and stroke statistics – 2020 update: A report from the American Heart Association. Circulation. 2020 (Mar. 3); 141(9):e139596.CrossRefGoogle ScholarPubMed
Sacco, RL, Kasner, SE, Broderick, JP, Caplan, LR, Connors, JJB, Culebras, A, et al. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013 (Jul.); 44(7):20642089.CrossRefGoogle ScholarPubMed
Easton, JD, Saver, JL, Albers, GW, Alberts, MJ, Chaturvedi, S, Feldmann, E, et al. Definition and evaluation of transient ischemic attack: A scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. Stroke. 2009; Jun. 1; 40(6):22762293.CrossRefGoogle ScholarPubMed
Asimos, AW, Johnson, AM, Rosamond, WD, Price, MF, Rose, KM, Catellier, D, et al. A multicenter evaluation of the ABCD2 score’s accuracy for predicting early ischemic stroke in admitted patients with transient ischemic attack. Ann Emerg Med. 2010 (Feb.); 55(2):201210.e5.CrossRefGoogle ScholarPubMed
Girotra, T, Lekoubou, A, Bishu, KG, Ovbiagele, B. A contemporary and comprehensive analysis of the costs of stroke in the United States. J Neurol Sci. 2020 (Mar. 15); 410:116643.CrossRefGoogle ScholarPubMed
Howard, G, Howard, VJ. Twenty years of progress toward understanding the stroke belt. Stroke. 2020 (Feb. 12); 51(3):742750.CrossRefGoogle ScholarPubMed
Furie, K. Epidemiology and primary prevention of stroke. Continuum (Minneap, Minn). 2020 (Apr.); 26(2):260267.Google ScholarPubMed
Powers, WJ, Rabinstein, AA, Ackerson, T, Adeoye, OM, Bambakidis, NC, Becker, K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019 (Oct. 30); 50(12):e344418.CrossRefGoogle Scholar
Barber, PA, Kleinig, TJ. INTERACT2: A reason for optimism with spontaneous intracerebral hemorrhage? International Journal of Stroke. 2014 (Jan.); 9(1):5960.CrossRefGoogle ScholarPubMed
Esenwa, C, Gutierrez, J. Secondary stroke prevention: Challenges and solutions. Vasc Health Risk Manag. 2015 (Aug. 7); 11:437450.Google ScholarPubMed
Yaghi, S, Bernstein, RA, Passman, R, Okin, PM, Furie, KL. Cryptogenic stroke: Research and practice. Circ Res. 2017 (Feb. 3); 120(3):527540.CrossRefGoogle ScholarPubMed
Hart, RG, Diener, H-C, Coutts, SB, Easton, JD, Granger, CB, O’Donnell, MJ, et al. Embolic strokes of undetermined source: The case for a new clinical construct. Lancet Neurol. 2014 (Apr.); 13(4):429438.CrossRefGoogle ScholarPubMed
Dahal, K, Chapagain, B, Maharjan, R, Farah, HW, Nazeer, A, Lootens, RJ, et al. Prolonged cardiac monitoring to detect atrial fibrillation after cryptogenic stroke or transient ischemic attack: A meta-analysis of randomized controlled trials. Ann Noninvasive Electrocardiol. 2016 (Jul.); 21(4):382388.CrossRefGoogle ScholarPubMed
Adams, HP, Bendixen, BH, Kappelle, LJ, Biller, J, Love, BB, Gordon, DL, et al. Classification of subtype of acute ischemic stroke: Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993 (Jan.); 24(1):3541.CrossRefGoogle Scholar
Arsava, EM, Ballabio, E, Benner, T, Cole, JW, Delgado-Martinez, MP, Dichgans, M, et al. The Causative Classification of Stroke system: An international reliability and optimization study. Neurology. 2010 (Oct. 5); 75(14):12771284.CrossRefGoogle ScholarPubMed
Amarenco, P, Bogousslavsky, J, Caplan, LR, Donnan, GA, Hennerici, MG. New approach to stroke subtyping: The A-S-C-O (phenotypic) classification of stroke. Cerebrovasc Dis. 2009 (Apr. 3); 27(5):502508.CrossRefGoogle ScholarPubMed
Coutts, SB. Diagnosis and management of transient ischemic attack. Continuum (Minneap, Minn). 2017; 23(1, Cerebrovascular Disease):8292.Google ScholarPubMed
Rothwell, PM, Giles, MF, Flossmann, E, Lovelock, CE, Redgrave, JNE, Warlow, CP, et al. A simple score (ABCD) to identify individuals at high early risk of stroke after transient ischaemic attack. Lancet. 2005 (Jul. 8); 366(9479):2936.CrossRefGoogle ScholarPubMed
Josephson, SA, Sidney, S, Pham, TN, Bernstein, AL, Johnston, SC. Higher ABCD2 score predicts patients most likely to have true transient ischemic attack. Stroke. 2008 (Nov.); 39(11):30963098.CrossRefGoogle ScholarPubMed
Johnston, SC, Rothwell, PM, Nguyen-Huynh, MN, Giles, MF, Elkins, JS, Bernstein, AL, et al. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet. 2007 (Jan. 27); 369(9558):283292.CrossRefGoogle ScholarPubMed
Johnston, SC, Gress, DR, Browner, WS, Sidney, S. Short-term prognosis after emergency department diagnosis of TIA. JAMA. 2000 (Dec. 13); 284(22):29012906.CrossRefGoogle ScholarPubMed
Jing, J, Meng, X, Zhao, X, Liu, L, Wang, A, Pan, Y, et al. Dual antiplatelet therapy in transient ischemic attack and minor stroke with different infarction patterns: subgroup analysis of the CHANCE randomized clinical trial. JAMA Neurol. 2018 (Jun. 1); 75(6):711719.CrossRefGoogle ScholarPubMed
Burke, JF, Freedman, VA, Lisabeth, LD, Brown, DL, Haggins, A, Skolarus, LE. Racial differences in disability after stroke: results from a nationwide study. Neurology. 2014 (Jul. 29); 83(5):390397.CrossRefGoogle ScholarPubMed
Agyemang, C, van Oeffelen, AAM, Norredam, M, Kappelle, LJ, Klijn, CJM, Bots, ML, et al. Ethnic disparities in ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage incidence in the Netherlands. Stroke. 2014 (Nov.); 45(11):32363242.CrossRefGoogle ScholarPubMed
Yusuf, S, Rangarajan, S, Teo, K, Islam, S, Li, W, Liu, L, et al. Cardiovascular risk and events in 17 low-, middle-, and high-income countries. N Engl J Med. 2014 (Aug. 28); 371(9):818827.CrossRefGoogle ScholarPubMed
Rajashekar, D, Liang, JW. Intracerebral Hemorrhage. Treasure Island, FL: StatPearls Publishing, 2020.Google Scholar
Aronow, WS, Fleg, JL, Pepine, CJ, Artinian, NT, Bakris, G, Brown, AS, et al. ACCF/AHA 2011 expert consensus document on hypertension in the elderly: A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents. Circulation. 2011 (May 31); 123(21):24342506.CrossRefGoogle Scholar
Tinetti, ME, Han, L, Lee, DSH, McAvay, GJ, Peduzzi, P, Gross, CP, et al. Antihypertensive medications and serious fall injuries in a nationally representative sample of older adults. JAMA Intern Med. 2014 (Apr.); 174(4):588595.CrossRefGoogle Scholar
Maas, MB. Intensive blood pressure reduction in patients with intracerebral hemorrhage and extreme initial hypertension: Primum non nocere. JAMA Neurol. 2020; 77(11):13511352.CrossRefGoogle ScholarPubMed
Moullaali, TJ, Wang, X, Martin, RH, Shipes, VB, Qureshi, AI, Anderson, CS, et al. Statistical analysis plan for pooled individual patient data from two landmark randomized trials (INTERACT2 and ATACH-II) of intensive blood pressure lowering treatment in acute intracerebral hemorrhage. Int J Stroke. 2019; 14(3):321328.CrossRefGoogle Scholar
Arima, H, Wang, JG, Huang, Y, Heeley, E, Skulina, C, Parsons, MW, et al. Significance of perihematomal edema in acute intracerebral hemorrhage: The INTERACT trial. Neurology. 2009 (Dec. 8); 73(23):19631968.CrossRefGoogle ScholarPubMed
Hill, MD, Muir, KW. INTERACT-2: Should blood pressure be aggressively lowered acutely after intracerebral hemorrhage? Stroke. 2013 (Oct.); 44(10):29512952.CrossRefGoogle ScholarPubMed
Qureshi, AI. Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH): Rationale and design. Neurocrit Care. 2007; 6(1):5666.CrossRefGoogle ScholarPubMed
Qureshi, AI, Palesch, YY, Martin, R, Toyoda, K, Yamamoto, H, Wang, Y, et al. Interpretation and implementation of intensive blood pressure reduction in acute cerebral hemorrhage trial (INTERACT II). J Vasc Interv Neurol. 2014 (Jun.); 7(2):3440.Google ScholarPubMed
Kernan, WN, Ovbiagele, B, Black, HR, Bravata, DM, Chimowitz, MI, Ezekowitz, MD, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014 (Jul.); 45(7):21602236.CrossRefGoogle ScholarPubMed
Tschanz, CMP, Cushman, WC, Harrell, E, Berlowitz, DR, Sall, JL. Synopsis of the 2020 U.S. Department of Veterans Affairs/U.S. Department of Defense clinical practice guideline: The diagnosis and management of hypertension in the primary care setting. Ann Intern Med. 2020 (Dec. 1); 173(11):904913.CrossRefGoogle ScholarPubMed
Charidimou, A, Boulouis, G, Roongpiboonsopit, D, Xiong, L, Pasi, M, Schwab, KM, et al. Cortical superficial siderosis and recurrent intracerebral hemorrhage risk in cerebral amyloid angiopathy: Large prospective cohort and preliminary meta-analysis. Int J Stroke. 2019 (Feb. 20); 14(7):723733.CrossRefGoogle ScholarPubMed
Wermer, MJH, Greenberg, SM. The growing clinical spectrum of cerebral amyloid angiopathy. Curr Opin Neurol. (2018 Feb.); 31(1):2835.CrossRefGoogle ScholarPubMed
Banerjee, G, Carare, R, Cordonnier, C, Greenberg, SM, Schneider, JA, Smith, EE, et al. The increasing impact of cerebral amyloid angiopathy: Essential new insights for clinical practice. J Neurol Neurosurg Psychiatry. 2017 (Aug. 26); 88(11):982994.CrossRefGoogle ScholarPubMed
Greenberg, SM, Charidimou, A. Diagnosis of cerebral amyloid angiopathy: Evolution of the Boston criteria. Stroke. 2018 (Jan. 15); 49(2):491497.CrossRefGoogle ScholarPubMed
Kernan, WN, Ovbiagele, B, Black, HR, Bravata, DM, et al. on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Peripheral Vascular Disease. Guidelines on the prevention of stroke in patients with stroke and transient ischemic attack. Stroke. 2014; 45(7):21602236.CrossRefGoogle ScholarPubMed
Hulot, J-S, Collet, J-P, Silvain, J, Pena, A, Bellemain-Appaix, A, Barthélémy, O, et al. Cardiovascular risk in clopidogrel-treated patients according to cytochrome P450 2C19*2 loss-of-function allele or proton pump inhibitor coadministration: A systematic meta-analysis. J Am Coll Cardiol. 2010 (Jul. 6); 56(2):134143.CrossRefGoogle ScholarPubMed
Wang, Y, Pan, Y, Zhao, X, Li, H, Wang, D, Johnston, SC, et al. Clopidogrel With Aspirin in Acute Minor Stroke or Transient Ischemic Attack (CHANCE) Trial: One-year outcomes. Circulation. 2015 (Jul. 7); 132(1):4046.CrossRefGoogle ScholarPubMed
Dong, J, Wang, F, Sundararajan, S. Use of dual antiplatelet therapy following ischemic stroke. Stroke. 2020 (Apr. 8); 51(5):e7880.CrossRefGoogle ScholarPubMed
Quinn, GR, Fang, MC. Atrial fibrillation: Stroke prevention in older adults. Clin Geriatr Med. 2012 (Nov.); 28(4):617634.CrossRefGoogle ScholarPubMed
Helms, TM, Duong, G, Zippel-Schultz, B, Tilz, RR, Kuck, K-H, Karle, CA. Prediction and personalised treatment of atrial fibrillation-stroke prevention: Consolidated position paper of CVD professionals. EPMA J. 2014 (Sep. 2); 5(1):15.CrossRefGoogle ScholarPubMed
Coppens, M, Hart, RG, Eikelboom, JW. Stroke prevention in older adults with atrial fibrillation. Can Med Assoc J. 2013 (Nov. 19); 185(17):14791480.CrossRefGoogle ScholarPubMed
Kishore, A, Vail, A, Majid, A, Dawson, J, Lees, KR, Tyrrell, PJ, et al. Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: A systematic review and meta-analysis. Stroke. 2014 (Feb.); 45(2):520526.CrossRefGoogle ScholarPubMed
Halperin, JL, Hankey, GJ, Wojdyla, DM, Piccini, JP, Lokhnygina, Y, Patel, MR, et al. Efficacy and safety of rivaroxaban compared with warfarin among elderly patients with nonvalvular atrial fibrillation in the Rivaroxaban Once Daily, Oral, Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF). Circulation. 2014 (Jul. 8); 130(2):138146.CrossRefGoogle ScholarPubMed
Katsanos, AH, Hart, RG. New horizons in pharmacologic therapy for secondary stroke prevention. JAMA Neurol. 2020 (Oct. 10); 77(10):13081317.CrossRefGoogle ScholarPubMed
Ezekowitz, MD, Nagarakanti, R, Noack, H, Brueckmann, M, Litherland, C, Jacobs, M, et al. Comparison of Dabigatran and Warfarin in Patients With Atrial Fibrillation and Valvular Heart Disease: The RE-LY Trial (Randomized Evaluation of Long-Term Anticoagulant Therapy). Circulation. 2016 (Aug. 23); 134(8):589598.CrossRefGoogle ScholarPubMed
Connolly, SJ, Ezekowitz, MD, Yusuf, S, Eikelboom, J, Oldgren, J, Parekh, A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009 (Sep. 17); 361(12):11391151.CrossRefGoogle ScholarPubMed
Patel, MR, Mahaffey, KW, Garg, J, Pan, G, Singer, DE, Hacke, W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011 (Sep. 8); 365(10):883891.CrossRefGoogle ScholarPubMed
Granger, CB, Alexander, JH, McMurray, JJV, Lopes, RD, Hylek, EM, Hanna, M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011 (Sep. 15); 365(11):981992.CrossRefGoogle ScholarPubMed
Kato, ET, Giugliano, RP, Ruff, CT, Koretsune, Y, Yamashita, T, Kiss, RG, et al. Efficacy and safety of edoxaban in elderly patients with atrial fibrillation in the ENGAGE AF-TIMI 48 trial. J Am Heart Assoc. 2016 (May 20); 5(5).CrossRefGoogle ScholarPubMed
Okumura, K, Akao, M, Yoshida, T, Kawata, M, Okazaki, O, Akashi, S, et al. Low-dose edoxaban in very elderly patients with atrial fibrillation. N Engl J Med. 2020 (Oct. 29); 383(18):17351745.CrossRefGoogle ScholarPubMed
Sellers, MB, Newby, LK. Atrial fibrillation, anticoagulation, fall risk, and outcomes in elderly patients. Am Heart J. 2011 (Feb.); 161(2):241246.CrossRefGoogle ScholarPubMed
Pisters, R, Lane, DA, Nieuwlaat, R, de Vos, CB, Crijns, HJGM, Lip, GYH. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: The Euro Heart Survey. Chest. 2010 (Nov.); 138(5):10931100.CrossRefGoogle ScholarPubMed
Morrone, D, Kroep, S, Ricci, F, Renda, G, Patti, G, Kirchhof, P, et al. Mortality prediction of the CHA2DS2-VASc score, the HAS-BLED score, and their combination in anticoagulated patients with atrial fibrillation. J Clin Med. 2020 (Dec. 9); 9(12).CrossRefGoogle ScholarPubMed
Lane, DA, Lip, GYH. Use of the CHA(2)DS(2)-VASc and HAS-BLED scores to aid decision making for thromboprophylaxis in nonvalvular atrial fibrillation. Circulation. 2012 (Aug. 14); 126(7):860865.CrossRefGoogle Scholar
Apostolakis, S, Lane, DA, Buller, H, Lip, GYH. Comparison of the CHADS2, CHA2DS2-VASc and HAS-BLED scores for the prediction of clinically relevant bleeding in anticoagulated patients with atrial fibrillation: The AMADEUS trial. Thromb Haemost. 2013 (Nov.); 110(5):10741079.CrossRefGoogle ScholarPubMed
Möbius-Winkler, S, Schuler, GC, Sick, PB. Interventional treatments for stroke prevention in atrial fibrillation with emphasis upon the WATCHMAN device. Curr Opin Neurol. 2008 (Feb.); 21(1):6469.CrossRefGoogle ScholarPubMed
Centers for Medicare and Medicaid Services. Proposed decision memo for percutaneous left atrial appendage (LAA) closure therapy. 2015. https://thaddeuspope.com/images/Proposed_Decision_Memo_for_Percutaneous_Left_Atrial_Appendage_LAA_Closure_Therapy_CAG-00445N_.pdf.Google Scholar
Grundy, SM, Stone, NJ, Bailey, AL, Beam, C, Birtcher, KK, Blumenthal, RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APHA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: Executive summary – A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019 (Jun. 25); 73(24):31683209.CrossRefGoogle Scholar
McKinney, JS, Kostis, WJ. Statin therapy and the risk of intracerebral hemorrhage: A meta-analysis of 31 randomized controlled trials. Stroke. 2012 (Aug.); 43(8):21492156.CrossRefGoogle ScholarPubMed
Gasecki, AP, Eliasziw, M, Ferguson, GG, Hachinski, V, Barnett, HJ. Long-term prognosis and effect of endarterectomy in patients with symptomatic severe carotid stenosis and contralateral carotid stenosis or occlusion: Results from NASCET. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Group. J Neurosurg. 1995 (Nov.); 83(5):778782.CrossRefGoogle ScholarPubMed
Mantese, VA, Timaran, CH, Chiu, D, Begg, RJ, Brott, TG, CREST Investigators. The Carotid Revascularization Endarterectomy versus Stenting Trial (CREST): Stenting versus carotid endarterectomy for carotid disease. Stroke. 2010 (Oct. 1); 41(10 Suppl.):S3134.CrossRefGoogle ScholarPubMed
Waters, MF. Surgical approaches to stroke risk reduction. Continuum (Minneap, Minn). 2020 (Apr.); 26(2):457477.Google ScholarPubMed
Waters, MF. Surgical approaches to stroke risk reduction. Continuum (Minneap, Minn). 2020 (Apr.); 26(2):457477.Google ScholarPubMed
Kasner, SE, Lynn, MJ, Chimowitz, MI, Frankel, MR, Howlett-Smith, H, Hertzberg, VS, et al. Warfarin vs aspirin for symptomatic intracranial stenosis: Subgroup analyses from WASID. Neurology. 2006 (Oct. 10); 67(7):12751278.CrossRefGoogle ScholarPubMed
National Institute of Neurological Disorders and Stroke RT-PA stroke study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995 (Dec. 14); 333(24):15811587.CrossRefGoogle Scholar
Thomalla, G, Simonsen, CZ, Boutitie, F, Andersen, G, Berthezene, Y, Cheng, B, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018 (Aug. 16); 379(7):611622.CrossRefGoogle ScholarPubMed
Winstein, CJ, Stein, J, Arena, R, Bates, B, Cherney, LR, Cramer, SC, et al. Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016 (Jun.); 47(6):e98169.CrossRefGoogle ScholarPubMed
Lansberg, MG, O’Donnell, MJ, Khatri, P, Lang, ES, Nguyen-Huynh, MN, Schwartz, NE, et al. Antithrombotic and thrombolytic therapy for ischemic stroke: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012 (Feb.); 141(2 Suppl.):e601Se636S.CrossRefGoogle ScholarPubMed
Naccarato, M, Chiodo Grandi, F, Dennis, M, Sandercock, PA. Physical methods for preventing deep vein thrombosis in stroke. Cochrane Database Syst Rev. 2010 (Aug. 4); 8:CD001922.Google Scholar
Gregory, P, Edwards, L, Faurot, K, Williams, SW, Felix, ACG. Patient preferences for stroke rehabilitation. Top Stroke Rehabil. 2010 (Oct.); 17(5):394400.CrossRefGoogle ScholarPubMed

References

Martinez-Martin, P. What is quality of life and how do we measure it? Relevance to Parkinson’s disease and movement disorders. Mov Disord. 2017; 32(3):382392.CrossRefGoogle ScholarPubMed
Verghese, J, et al. Epidemiology of gait disorders in community-residing older adults. J Am Geriatr Soc. 2006; 54(2):255261.CrossRefGoogle ScholarPubMed
Louis, ED, Thawani, SP, Andrews, HF. Prevalence of essential tremor in a multiethnic, community-based study in northern Manhattan, New York, N.Y. Neuroepidemiology. 2009; 32(3):208214.CrossRefGoogle Scholar
de Rijk, MC, et al. Prevalence of parkinsonism and Parkinson’s disease in Europe: The EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997; 62(1):1015.CrossRefGoogle ScholarPubMed
Cohen, O, et al. Rest tremor in patients with essential tremor: Prevalence, clinical correlates, and electrophysiologic characteristics. Arch Neurol. 2003; 60(3):405410.CrossRefGoogle ScholarPubMed
Schneider, SA, Deuschl, G. The treatment of tremor. Neurotherapeutics, 2014; 11(1):128138.CrossRefGoogle ScholarPubMed
Higgins, JJ, Pho, LT, Nee, LE. A gene (ETM) for essential tremor maps to chromosome 2p22-p25. Mov Disord. 1997; 12(6):859864.CrossRefGoogle ScholarPubMed
Gulcher, JR, et al. Mapping of a familial essential tremor gene, FET1, to chromosome 3q13. Nat Genet. 1997; 17(1):8487.CrossRefGoogle ScholarPubMed
Zesiewicz, TA, et al. Practice parameter: Therapies for essential tremor – Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2005; 64(12):20082020.CrossRefGoogle Scholar
Koller, W, et al. High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol. 1997;42(3):292299.CrossRefGoogle ScholarPubMed
Schuurman, PR, et al. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med. 2000; 342(7):461468.CrossRefGoogle ScholarPubMed
Elias, WJ, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2016; 375(8):730739.CrossRefGoogle ScholarPubMed
Deuschl, G, Bain, P, Brin, M. Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee. Mov Disord. 1998; 13(Suppl. 3):223.CrossRefGoogle Scholar
Ramirez-Zamora, A, Okun, MS. Deep brain stimulation for the treatment of uncommon tremor syndromes. Expert Rev Neurother. 2016; 16(8):983997.CrossRefGoogle ScholarPubMed
Tyrer, P, et al. An extrapyramidal syndrome after lithium therapy. Br J Psychiatry. 1980; 136:191194.CrossRefGoogle ScholarPubMed
Niethammer, M, Ford, B. Permanent lithium-induced cerebellar toxicity: three cases and review of literature. Mov Disord. 2007; 22(4):570573.CrossRefGoogle ScholarPubMed
Baumann, CR. Epidemiology, diagnosis and differential diagnosis in Parkinson’s disease tremor. Parkinsonism Relat Disord. 2012; 18(Suppl. 1):S9092.CrossRefGoogle ScholarPubMed
Zesiewicz, TA, et al. Practice Parameter: Treatment of nonmotor symptoms of Parkinson disease – Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2010; 74(11):924931.CrossRefGoogle Scholar
Hughes, AJ, et al. A clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol. 1993; 50(2):140148.CrossRefGoogle ScholarPubMed
Kagi, G, Bhatia, KP, Tolosa, E. The role of DAT-SPECT in movement disorders. J Neurol Neurosurg Psychiatry. 2010; 81(1):512.CrossRefGoogle ScholarPubMed
Respondek, G, et al. The phenotypic spectrum of progressive supranuclear palsy: A retrospective multicenter study of 100 definite cases. Mov Disord. 2014; 29(14):17581766.CrossRefGoogle ScholarPubMed
McKeith, IG, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017; 89(1):88100.CrossRefGoogle ScholarPubMed
Wenning, GK, et al. The natural history of multiple system atrophy: A prospective European cohort study. Lancet Neurol. 2013; 12(3):264274.CrossRefGoogle ScholarPubMed
Tu, PH, et al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol. 1998; 44(3):415422.CrossRefGoogle ScholarPubMed
Armstrong, MJ, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013; 80(5):496503.CrossRefGoogle ScholarPubMed
Winikates, J, Jankovic, J. Clinical correlates of vascular parkinsonism. Arch Neurol. 1999; 56(1):98102.CrossRefGoogle ScholarPubMed
Stephen, PJ, Williamson, J. Drug-induced parkinsonism in the elderly. Lancet. 1984; 2(8411): 10821083.CrossRefGoogle ScholarPubMed
Langston, JW, Ballard, P. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Implications for treatment and the pathogenesis of Parkinson’s disease. Can J Neurol Sci. 1984; 11(1 Suppl.):160165.CrossRefGoogle ScholarPubMed
Olanow, CW. Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci. 2004; 1012:209223.CrossRefGoogle ScholarPubMed
Klawans, HL, et al. A pure parkinsonian syndrome following acute carbon monoxide intoxication. Arch Neurol. 1982; 39(5):302304.CrossRefGoogle ScholarPubMed
Parkinson Study, Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med. 1993; 328(3):176183.Google Scholar
Shults, CW, et al. Effects of coenzyme Q10 in early Parkinson disease: Evidence of slowing of the functional decline. Arch Neurol. 2002; 59(10):15411550.CrossRefGoogle ScholarPubMed
Thomas, A, et al. Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004; 75(1):141143.Google ScholarPubMed
Pritchett, AM, et al. Valvular heart disease in patients taking pergolide. Mayo Clin Proc. 2002; 77(12):12801286.CrossRefGoogle ScholarPubMed
Voon, V, et al. Impulse control disorders in Parkinson disease: A multicenter case–control study. Ann Neurol. 2011; 69(6):986996.CrossRefGoogle ScholarPubMed
Weintraub, D, et al. Impulse control disorders in Parkinson disease: A cross-sectional study of 3090 patients. Arch Neurol. 2010; 67(5):589595.CrossRefGoogle ScholarPubMed
Whone, AL, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol. 2003; 54(1):93101.CrossRefGoogle ScholarPubMed
Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA. 2002; 287(13):16531661.CrossRefGoogle Scholar
Parkinson Study Group. Pramipexole vs levodopa as initial treatment for Parkinson disease: A randomized controlled trial. JAMA. 2000; 284(15):19311938.CrossRefGoogle Scholar
Cilia, R, et al. The modern pre-levodopa era of Parkinson’s disease: Insights into motor complications from sub-Saharan Africa. Brain. 2014; 137(Pt 10):27312742.CrossRefGoogle ScholarPubMed
Rascol, O, et al. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med. 2000; 342(20):14841491.CrossRefGoogle ScholarPubMed
Stowe, RL, et al. Dopamine agonist therapy in early Parkinson’s disease. Cochrane Database Syst Rev. 2008(2):CD006564.Google ScholarPubMed
Group PDMC, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): A large, open-label, pragmatic randomised trial. Lancet. 2014; 384(9949):11961205.CrossRefGoogle Scholar
Rinne, UK, et al. Brain receptor changes in Parkinson’s disease in relation to the disease process and treatment. J Neural Transm Suppl. 1983; 18:279286.Google Scholar
Mouradian, MM, et al. Modification of central dopaminergic mechanisms by continuous levodopa therapy for advanced Parkinson’s disease. Ann Neurol. 1990; 27(1):1823.CrossRefGoogle ScholarPubMed
Block, G., et al. Comparison of immediate-release and controlled release carbidopa/levodopa in Parkinson’s disease: A multicenter 5-year study – The CR First Study Group. Eur Neurol. 1997; 37(1):2327.CrossRefGoogle Scholar
Hauser, RA, et al. Extended-release carbidopa-levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: A phase 3 randomised, double-blind trial. Lancet Neurol. 2013; 12(4):346356.CrossRefGoogle ScholarPubMed
Mittur, A, Gupta, S, Modi, NB. Pharmacokinetics of Rytary((R)): An extended-release capsule formulation of Carbidopa-Levodopa. Clin Pharmacokinet. 2017; 56(9):9991014.CrossRefGoogle Scholar
Fernandez, HH, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s disease: Final 12-month, open-label results. Mov Disord. 2015; 30(4):500509.CrossRefGoogle ScholarPubMed
Zibetti, M., et al. Levodopa/carbidopa intestinal gel infusion in advanced Parkinson’s disease: A 7-year experience. Eur J Neurol. 2014; 21(2):312318.CrossRefGoogle ScholarPubMed
Uncini, A, Eleopra, R, Onofrj, M. Polyneuropathy associated with duodenal infusion of levodopa in Parkinson’s disease: Features, pathogenesis and management. J Neurol Neurosurg Psychiatry. 2015; 86(5):490495.CrossRefGoogle ScholarPubMed
Parkinson Study Group. Entacapone improves motor fluctuations in levodopa-treated Parkinson’s disease patients. Ann Neurol. 1997; 42(5):747755.CrossRefGoogle Scholar
Rajput, AH, et al. Tolcapone improves motor function in parkinsonian patients with the “wearing-off” phenomenon: A double-blind, placebo-controlled, multicenter trial. Neurology. 1997; 49(4):10661071.CrossRefGoogle ScholarPubMed
Lew, MF, Kricorian, G. Results from a 2-year centralized tolcapone liver enzyme monitoring program. Clin Neuropharmacol, 2007; 30(5):281286.CrossRefGoogle ScholarPubMed
Martinez-Ramirez, D, Okun, MS. Rationale and clinical pearls for primary care doctors referring patients for deep brain stimulation. Gerontology. 2014; 60(1):3848.CrossRefGoogle Scholar
Deuschl, G, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006; 355(9):896908.CrossRefGoogle ScholarPubMed
Rodriguez-Oroz, MC, et al. Bilateral deep brain stimulation in Parkinson’s disease: A multicentre study with 4 years follow-up. Brain. 2005; 128(Pt 10):22402249.CrossRefGoogle ScholarPubMed
Perestelo-Perez, L, et al. Deep brain stimulation in Parkinson’s disease: Meta-analysis of randomized controlled trials. J Neurol. 2014; 261(11):20512060.CrossRefGoogle ScholarPubMed
Ostergaard, K, Aa Sunde, N. Evolution of Parkinson’s disease during 4 years of bilateral deep brain stimulation of the subthalamic nucleus. Mov Disord. 2006; 21(5):624631.CrossRefGoogle ScholarPubMed
Marras, C., et al. Survival in Parkinson disease: Thirteen-year follow-up of the DATATOP cohort. Neurology. 2005; 64(1):8793.CrossRefGoogle ScholarPubMed
Tuck, KK, et al. Preferences of patients with Parkinson’s disease for communication about advanced care planning. Am J Hosp Palliat Care. 2015; 32(1):6877.CrossRefGoogle ScholarPubMed
Barak, Y, Wagenaar, RC, Holt, KG. Gait characteristics of elderly people with a history of falls: A dynamic approach. Phys Ther. 2006; 86(11):15011510.CrossRefGoogle Scholar
Marmarou, A, et al. Guidelines for management of idiopathic normal pressure hydrocephalus: Progress to date. Acta Neurochir Suppl. 2005; 95:237240.CrossRefGoogle ScholarPubMed
Zesiewicz, TA, et al. Comprehensive systematic review summary: Treatment of cerebellar motor dysfunction and ataxia – Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018; 90(10):464471.CrossRefGoogle Scholar

References

Foley, DJ, Monjan, AA, Brown, SL, et al. Sleep complaints among elderly persons: An epidemiological study of 3 communities. Sleep. 1995; 18:425432.CrossRefGoogle Scholar
Mellinger, GD, Balter, MB, Uhlenhuth, EH. Insomnia and its treatment: Prevalence and correlates. Arch Gen Psychiatry. 1985; 42:225232.CrossRefGoogle ScholarPubMed
Morgan, K. Sleep and aging. In: Lichstein, K, Morin, C, eds. Treatment of Late Life Insomnia. Thousand Oaks, CA: Sage Publications, 2000, pp. 336.CrossRefGoogle Scholar
Floyd, JA, Medler, SM, Ager, JW, et al. Age-related changes in initiation and maintenance of sleep: A meta-analysis. Res Nurs Health. 2000; 23:106117.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Diagnostic Classification Steering Committee TMJC. International Classification of Sleep Disorders, 3rd edition. Rochester, NY: American Academy of Sleep Medicine, 2014.Google Scholar
Ford, DE, Kamerow, DB. Epidemiological study of the sleep disturbances and psychiatric disorders. JAMA. 1989; 262:14791484.CrossRefGoogle Scholar
Vitiello, MV, Moe, KE, Prinz, PN. Sleep complaints cosegregate with illness in older adults: Clinical research informed by and informing epidemiological studies of sleep. J Psychosom Res. 2002; 53:555559.CrossRefGoogle ScholarPubMed
Bloom, HG, Ahmed, I, Alessi, CA, et al. Evidence-based recommendations for the assessment and management of sleep disorders in older persons. J Am Geriatr Soc. 2009; 57:761789.CrossRefGoogle ScholarPubMed
Rodriguez, JC, Dzierzewski, JM, Alessi, CA. Sleep problems in the elderly. Med Clin North Am. 2015; 99:431439.CrossRefGoogle ScholarPubMed
Roth, T. Insomnia: Definition, prevalence, etiology, and consequences. J Clin Sleep Med. 2007; 3:S7S10.CrossRefGoogle ScholarPubMed
Dzierzewski, JM, O’Brien, E, Kay, DB, et al. Tackling sleeplessness: Psychological treatment options for insomnia in older adults. Nat Sci Sleep. 2010; 2:4761.Google ScholarPubMed
Spielman, AJ, Caruso, LS, Glovinsky, PB. A behavioral perspective on insomnia treatment. Psychiat Clinics of N Amer. 1987; 10:541553.CrossRefGoogle ScholarPubMed
Bastien, CH, Vallieres, A, Morin, CM. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001; 2:297307.CrossRefGoogle ScholarPubMed
Buysse, DJ, Reynolds, CFI, Monk, TH, et al. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989; 28(2):193213.CrossRefGoogle ScholarPubMed
Morin, CM, Colecchi, C, Stone, J, et al. Behavioral and pharmacological therapies for late life insomnia: A randomized controlled trial. JAMA. 1999; 281:991999.CrossRefGoogle ScholarPubMed
Sivertsen, B, Omvik, S, Pallesen, S, et al. Cognitive behavioral therapy vs zopiclone for treatment of chronic primary insomnia in older adults. JAMA. 2006; 295:28512858.CrossRefGoogle ScholarPubMed
McCurry, SM, Logsdon, RG, Teri, L, et al. Evidence-based psychological treatments for insomnia in older adults. Psychol Aging. 2007; 22:1827.CrossRefGoogle ScholarPubMed
Morgenthaler, T, Kramer, M, Alessi, CA, et al. Practice parameters for the psychological and behavioral treatment of insomnia: An update. An American Academy of Sleep Medicine report. Sleep. 2006; 29:14151419.Google ScholarPubMed
Siebern, AT, Manber, R. New developments in cognitive behavioral therapy as the first-line treatment of insomnia. Psychol Res Behav Manag. 2011; 4:2128.CrossRefGoogle ScholarPubMed
Stewart, R, Besset, A, Bebbington, P, et al. Insomnia comorbidity and impact and hypnotic use by age group in a national survey population aged 16 to 74 years. Sleep. 2006; 29:13911397.CrossRefGoogle Scholar
Alessi, CA. Sleep problems. In: Durso, SC, Sullivan, GM, eds. Geriatrics Review Syllabus: A Core Curriculum in Geriatric Medicine, 8th edition. 2013. New York: American Geriatrics Society, pp. 316339.Google Scholar
Young, T, Peppard, PE, Gottlieb, DJ. Epidemiology of obstructive sleep apnea: A population health perspective. Am J Respir Crit Care Med. 2002; 165:12171239.CrossRefGoogle ScholarPubMed
George, CFP. Sleep apnea, alertness, and motor vehicle crashes. American Journal of Respiratory and Critical Care Medicine. 2007; 176(10):954956.CrossRefGoogle ScholarPubMed