Skip to main content Accessibility help
×
Hostname: page-component-cc8bf7c57-hbs24 Total loading time: 0 Render date: 2024-12-10T08:41:18.656Z Has data issue: false hasContentIssue false

13 - Dynamic Chinese Restaurant Game: Sequential Decision-Making in Dynamic Systems

from Part III - Sequential Decision-Making

Published online by Cambridge University Press:  01 July 2021

Yan Chen
Affiliation:
University of Science and Technology of China
Chih-Yu Wang
Affiliation:
Academica Sinica, Taipei
Chunxiao Jiang
Affiliation:
Tsinghua University, Beijing
K. J. Ray Liu
Affiliation:
University of Maryland, College Park
Get access

Summary

Users in a social network are usually confronted with decision-making under uncertain network states. While there are some works in the social learning literature on how to construct belief in an uncertain network state, few studies have focused on integrating learning with decision-making for the scenario in which users are uncertain about the network state and their decisions influence each other. Moreover, the population in a social network can be dynamic since users may arrive at or leave the network at any time, which makes the problem even more challenging. In this chapter, we introduce a dynamic Chinese restaurant game to study how a user in a dynamic social network learns about the uncertain network state and makes optimal decisions by taking into account not only the immediate utility, but also subsequent users’ influence. We introduce a Bayesian learning-based method for users to learn the network state and discuss a multidimensional Markov decision process-based approach for users to make optimal decisions. Finally, we apply the dynamic Chinese restaurant game to cognitive radio networks and use simulations to verify the effectiveness of the scheme.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×