Skip to main content Accessibility help
Hostname: page-component-768ffcd9cc-rq46b Total loading time: 0.655 Render date: 2022-11-29T21:57:04.963Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

12 - Channel Allocation for Infrastructure-Based 802.11 WLANs

from Part IV - Link Layer Resource Allocation in Wireless Networks

Published online by Cambridge University Press:  11 May 2017

Ekram Hossain
University of Manitoba, Canada
Mehdi Rasti
Amir Kabir University of Technology
Long Bao Le
Université du Québec, Montréal
Get access



Due primarily to its unlicensed frequency band of operation and low-cost equipment, the IEEE 802.11-based wireless access technology, also known as WiFi, has been widely deployed in local area networks (LANs). A typical deployment of this technology is shown in Figure 12.1. Based on how they are managed, wireless LANs (WLANs) can be categorized into one of the following: (1) Centrally managed or (2) Uncoordinated [2]. Centrally managed deployments are usually seen in places such as university campuses, offices, or airports where all access points (APs) and associated clients are managed by a central entity. On the other hand, uncoordinated WLANs operate in the absence of a central control and are typical in places such as residential neighborhoods or private hotspots managed by different service providers (e.g., restaurants, coffee shops, etc.).

Successful deployment in either case requires efficient mechanisms for addressing performance issues such as excessive interference, which usually translates into low throughputs. In the literature, several techniques have been proposed to address such performance issues. In particular, association control (or load balancing), in which a central entity associates (respectively, disassociates) clients with (respectively, from) APs in order to balance traffic in a network, is usually proposed for the centrally managed deployments [3]. Proposed for the uncoordinated deployments, on the other hand, are such techniques as power control [4] and careful carrier-sensing [5], in which transmission power is dynamically tuned and unnecessary carrier sensing is avoided, respectively. One other technique that is extensively considered and applicable to both centrally managed and uncoordinated environments is channel assignment, in which a frequency channel is assigned to each AP for use for a certain duration of time. In this chapter, we present a survey of such channel assignment techniques. We identify and discuss several major approaches applicable to the different deployment scenarios. Subsequently, a qualitative comparison is made among these approaches. Some comments on current practice in channel assignment are also presented. Finally, several important future research directions are outlined.

Radio Resource Management in Wireless Networks
An Engineering Approach
, pp. 352 - 376
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1] S., Chieochan, E., Hossain, and J., Diamond, “Channel assignment schemes for infrastructurebased 802.11 WLANs: A survey,” in IEEE Communications Surveys & Tutorials, vol. 12, no. 1, First Quarter 2010, pp. 124–136.Google Scholar
[2] A., Mishra and V., Shrivastava, D., Agrawal, S., Banerjee, and S., Ganguly, “Distributed channel management in uncoordinated wireless environments,” in Proc. International Conference on Mobile Computing and Networking, 2006, pp. 170–181.
[3] Y., Bejerano, S., Han, and L., Li, “Fairness and load balancing in wireless LANs using association control,” in Proc. ACM Mobicom, 2004, pp. 315–329.
[4] A., Akella, G., Judd, S., Seshan, and P., Steenkiste, “Self-management in chaotic wireless deployments,” in Proc. ACM Mobicom, 2005, pp. 185–199.
[5] A., Vasan, R., Ramjee, and T., Woo, “Echos: Enhanced capacity 802.11 hotspots,” in Proc. IEEE Infocom, 2005.
[6] “IEEE Standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,” IEEE STD 802.11-2007 (Revision of IEEE Std 802.11-1999), June 12, 2007, pp. C1–1184.
[7] “Supplement to IEEE standard for information technology telecommunications and information exchange between systems – local and metropolitan area networks – specific requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-Speed physical layer in the 5 GHz band,” IEEE STD 802.11a-1999, 1999.
[8] “List of WLANs channels,”
[9] I., Katzela and M., Naghshineh, “Channel assignment schemes for cellular mobile telecommunication systems: A comprehensive survey,” IEEE Personal Communications, June 1996, pp. 10–31.
[10] W. K., Hale, “Frequency assignment: Theory and applications,” in Proceedings of the IEEE, vol. 68, 1980, pp. 1497–1514.Google Scholar
[11] P., Mahonen, J., Riihijarvi, and M., Petrova, “Automatic channel allocation for small wireless local area networks using graph colouring algorithm approach,” in Proc. of the IEEE Int. Symposium on Personal, Indoor and Mobile Radio Communications, Sept. 2004, pp. 536– 539.
[12] A., Mishra, V., Brik, S., Banerjee, A., Srinivasan, and W., Arbaugh, “A client-driven approach for channel management in wireless LANs,” in Proc. of the 25th IEEE International Conference on Computer Communications (INFOCOM'06), 2006.
[13] J. K., Chen, G. D., Veciana, and T. S., Rappaport, “Improved measurement-based frequency allocation algorithms for wireless networks,” in Proc. of the IEEE GLOBECOM 2007,Washington, DC, Nov. 2007.
[14] M., Gast, 802.11 Wireless Networks: The Definitive Guide. 2nd ed. O'Reilly, 2005.
[15] A., Hills, “Large-scale wireless LAN design,” IEEE Communications Magazine, vol. 39, no. 11, Nov. 2001, pp. 98–107.Google Scholar
[16] R. C., Rodrigues, G. R., Mateus, and A. A. F., Loureiro, “On the design and capacity planning of a wireless local area network,” IEEE/IFIP Network Operations and Management Symposium, 2000.
[17] Y., Lee, K., Kim, and Y., Choi, “Optimization of AP placement and channel assignment in wireless LANs,” in Proc. of the 27th Annual IEEE Conf. Local Computer Networks, Nov. 2002, pp. 831–836.
[18] P., Wertz, M., Sauter, F., Landstorfer, G., Wolfle, and R., Hoppe, “Automatic optimization algorithms for the planning of wireless local area networks,” in Proc. of the IEEE Vehicular Technology Conference, vol. 4, Sept. 2004, pp. 3010–3014.Google Scholar
[19] X., Ling and K. L., Yeung, “Joint access point placement and channel assignment for 802.11 wireless LANs,” in Proc. of the IEEE WCNC'05, 2005.
[20] G., Bianchi, “Performance analysis of IEEE 802.11 distributed coordination function,” IEEE Journal on Selected Areas in Communications, vol. 18, Mar. 2000, pp. 535–547.Google Scholar
[21] A., Eisenblatter, H. F., Geerdes, and I., Siomina, “Integrated access point placement and channel assignment for wireless LANs in an indoor office environment,” in Proc. of the 8th IEEE Intl. Symposium on a World of Wireless, Mobile and Multimedia Networks, June 2007.
[22] “Official IEEE 802.11 Working Group project timelines: IN-PROCESS standards, amendments, and recommended practices,” 802.11_Timelines.htm
[23] J., Riihijarvi, M., Petrova, and P., Mahonen, “Frequency allocation for WLANs using graph colouring techniques,” in Proc. of the 2nd Annual Conference on Wireless On-demand Network Systems and Services 2005, Jan. 2005, pp. 19–21.
[24] J., Riihijarvi, M., Petrova, P., Mahonen, and J. A., Barbosa, “Performance evaluation of automatic channel assignment mechanism for IEEE 802.11 based on graph coloring,” in Proc. of the 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sept. 2006, pp. 1–5.
[25] M., Achanta, “Method and apparatus for least congested channel scan for wireless access points,” U.S. Patent No. 20060072602, Apr. 2006.
[26] K. K., Leung and B.-J., Kim, “Frequency assignment for IEEE 802.11 wireless networks,” in Proc. of IEEE Vehicular Technology Conference, vol. 3, Oct. 2003, pp. 1422–1426.Google Scholar
[27] M., Yu, H., Luo, and K. K., Leung, “A dynamic radio resource management technique for multiple APs in WLANs,” IEEE Transactions on Wireless Communications, vol. 5, July 2006, pp. 1910–1919.Google Scholar
[28] F., Cali, M., Conti, and E., Gregori, “Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit,” IEEE/ACM Transactions on Networking, vol. 8, Dec. 2000, pp. 785–799.Google Scholar
[29] M., Yu and H., Luo, “An adaptive radio resource management technique for APs in WLANs,” in Proceedings, 12th IEEE International Conference on Networks (ICON' 2004), Nov. 2004.
[30] A., Mishra, S., Banerjee, and W., Arbaugh, “Weighted coloring based channel assignment for WLANs,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 9, no. 3, 2005, pp. 19–31.Google Scholar
[31] R., Akl and A., Arepally, “Dynamic channel assignment in IEEE 802.11 networks,” in Proc. of the IEEE International Conference on Portable Information Devices (PORTABLE'07), 2007.
[32] M., Haidar, R., Akl, and H., Al-Rizzo, “Channel assignment and load distribution in a powermanaged WLAN,” in Proc. of the IEEE PIMRC: 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sept. 2007.
[33] H., Al-Rizzo, M., Haidar, R., Akl, and Y., Chan, “Enhanced channel assignment and load distribution in IEEE 802.11 WLANs,” in Proc. of IEEE International Conference on Signal Processing and Communication, Nov. 2007.
[34] A., Mishra, V., Shrivastava, S., Banerjee, and W., Arbaugh, “Partially overlapped channels not considered harmful,” in ACM SIGMETRICS Performance Evaluation Review, vol. 34, no. 1, 2006, pp. 63–74.Google Scholar
[35] “Online Help for Cisco IOS Release 12.2(15)JA,” access_points/online_help/eag/122-15.JA/1400br/h_ap_network-if_802-11_c.html
[36] “Improving wireless connectivity for your users,” businesswp_4AA45077ENW.pdf
[37] “Method and system for client-driven channel management in wireless communication networks,”
[38] Z., Khan, H., Ahmadi, E., Hossain,M., Coupechoux, L. A., DaSilva, and J., Lehtomaki, “Carrier aggregation/channel bonding in next generation cellular networks: Methods and challenges,” IEEE Network, Special Issue on “Unveiling 5G Wireless Networks: Emerging Research Advances, Prospects, and Challenges,” vol. 28, no. 6, Nov.–Dec. 2014, pp. 34–40.Google Scholar
[39] LTE-U Forum,

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats