Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-16T02:36:14.423Z Has data issue: false hasContentIssue false

20 - Minerogenic microfossil records of Quaternary environmental change in southern Africa

Published online by Cambridge University Press:  05 June 2016

Jasper Knight
Affiliation:
University of the Witwatersrand, Johannesburg
Stefan W. Grab
Affiliation:
University of the Witwatersrand, Johannesburg
Get access

Summary

Abstract

Minerogenic microfossils are abundantly preserved in sedimentary sequences from a wide range of aquatic environments, including shallow and deep ocean basins, lakes, wetlands and estuaries, and in environments with a range of pH, temperature, salinity and nutrient loads. In southern Africa, pollen is used more commonly as a palaeoenvironmental proxy than are minerogenic microfossils, despite the wider range of environmental variables to which minerogenic micro-organisms respond. Palaeoenvironmental reconstructions in southern Africa that have utilised some of these microfossils demonstrate their value, particularly in multi-proxy analyses, when comparing microfossil community changes with those represented by pollen, charcoal and stable isotopes. This chapter outlines the minerogenic microfossils that are most commonly examined globally, and discusses some specific case studies from southern Africa that demonstrate the utility of microfossils in reconstructing Quaternary palaeoenvironments. We argue that efforts should be made to expand the use of minerogenic microfossils in southern African palaeoenvironmental studies, given the valuable information they provide, both as proxies and through facilitating isotope analysis and dating.

Type
Chapter
Information
Quaternary Environmental Change in Southern Africa
Physical and Human Dimensions
, pp. 324 - 348
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoniades, D., Douglas, M. S. V. and Smol, J. P. (2005). Benthic diatom autecology and inference model development from the Canadian High Arctic Archipelago. Journal of Phycology, 41, 3045.CrossRefGoogle Scholar
Armstrong, H. A. and Brasier, M. D. (2005). Microfossils, 2nd ed. Chichester: Blackwell, 306pp.Google Scholar
Backwell, L., McCarthy, T. S., Wadley, L., Henderson, Z., Steininger, C. M., de Klerk, B., Barré, M., Lamothe, M., Chase, B. M., Woodborne, S., Susino, G. J., Bamford, M. K., Sievers, C., Brink, J. S., Rossouw, L., Pollarolo, L., Trower, G., Scott, L. and d’Errico, F. (2014). Multiproxy record of late Quaternary climate change and Middle Stone Age human occupation at Wonderkrater, South Africa. Quaternary Science Reviews, 99, 4259.CrossRefGoogle Scholar
Barker, P. A., Hurrell, E. R., Leng, M. J., Plessen, B., Wolff, C., Conley, D. J., Keppens, E., Milne, I., Cumming, B. F., Laird, K. R., Kendrick, C. P., Wynn, P. M. and Verschuren, D. (2013). Carbon cycling within an East African lake revealed by the carbon isotope composition of diatom silica: A 25-ka record from Lake Challa, Mt. Kilimanjaro. Quaternary Science Reviews, 66, 5563.CrossRefGoogle Scholar
Barker, P., Williamson, D., Gasse, F. and Gibert, E. (2003). Climatic and volcanic forcing revealed in a 50,000-year diatom record from Lake Massoko, Tanzania. Quaternary Research, 60, 368376.CrossRefGoogle Scholar
Battarbee, R. W. (2000). Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews, 19, 107124.CrossRefGoogle Scholar
Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. G., Bennion, H., Carvalho, L. and Juggins, S. (2001). Diatoms. In Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal and Siliceous Indicators, ed. Smol, J. P., Birks, H. J. B., Last, W. M., Bradley, R. S. and Alverson, K.. Berlin: Kluwer Academic Publishers, pp. 155202.Google Scholar
Baumann, K.-H. and Freitag, T. (2004). Pleistocene fluctuations in the northern Benguela Current system as revealed by coccolith assemblages. Marine Micropalaeontology, 52, 195215.CrossRefGoogle Scholar
Baxter, A. J. and Meadows, M. E. (1999). Evidence for Holocene sea level change at Verlorenvlei, Western Cape, South Africa. Quaternary International, 56, 6579.CrossRefGoogle Scholar
Bere, T. (2014). Ecological preferences of benthic diatoms in a tropical river system in Sao Carlos-SP, Brazil. Tropical Ecology, 55, 4761.Google Scholar
Bigler, C. and Hall, R. I. (2002). Diatoms as indicators of climatic and limnological change in Swedish Lapland: A 100-lake calibration set and its value for paleoecological reconstructions. Journal of Paleolimnology, 27, 97115.CrossRefGoogle Scholar
Billard, C. and Inouye, I. (2004). What is new in coccolithophore biology? In Coccolithophores: From molecular processes to global impact, ed. Thierstein, H. R. and Young, J. R.. Berlin: Springer, pp. 130.Google Scholar
Birks, H. J. B. (2014). Quantitative palaeoenvironmental reconstructions from Holocene biological data. In Global Change in the Holocene, ed. Birks, J., Battarbee, R., Mackay, A. and Slipper, I. J.. Oxford: Routledge, pp. 107123.CrossRefGoogle Scholar
Boomer, I., Horne, D. J. and Slipper, I. J. (2003). The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? Palaeontological Society Papers, 9, 153179.CrossRefGoogle Scholar
Burnett, W. C. and Riggs, S. R. (eds) (2006). Phosphate Deposits of the World: Volume 3, Neogene to Modern Phosphorites, 4th Ed. Cambridge: Cambridge University Press, 484pp.Google Scholar
Burrough, S. L., Thomas, D. S. G., Shaw, P. A. and Bailey, R. M. (2007). Multiphase Quaternary highstands at Lake Ngami, Kalahari, northern Botswana. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 280299.CrossRefGoogle Scholar
Burrough, S. E., Breman, E. and Dodd, C. (2012). Can phytoliths provide an insight into past vegetation of the Middle Kalahari palaeolakes during the Quaternary? Journal of Arid Environments, 82, 156164.CrossRefGoogle Scholar
Chase, B. M. and Meadows, M. E. (2007). Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth-Science Reviews, 84, 103138.CrossRefGoogle Scholar
Chase, B. M., Quick, L. J., Meadows, M. E., Scott, L., Thomas, D. S. G. and Reimer, P. J. (2011). Late glacial interhemispheric climate dynamics revealed in South African hyrax middens. Geology, 39, 1922.CrossRefGoogle Scholar
Chazan, M., Avery, D. M., Bamford, M. K., Berna, F., Brink, J., Fernandez-Jalvo, Y., Goldberg, P., Holt, S., Matmon, A., Porat, N., Ron, H., Rossouw, L., Scott, L. and Horwitz, L. K. (2012). The Oldowan horizon in Wonderwerk Cave (South Africa): Archaeological, geological, paleontological and paleoclimate evidence. Journal of Human Evolution, 63, 859866.CrossRefGoogle Scholar
Cordova, C. E. (2013). C3 Poaceae and Restionaceae phytoliths as potential proxies for reconstructing winter rainfall in South Africa. Quaternary International, 287, 121180.CrossRefGoogle Scholar
Cordova, C. E., Chase, B. M. and Smith, G. F. (2013). Comment on “Burrough, S.E., Breman, E., and Dodd, C., 2012. Can phytoliths provide an insight into past vegetation of the Middle Kalahari paleolakes during the Quaternary? Journal of Arid Environments 82, 156–164”. Journal of Arid Environments, 92, 113116.CrossRefGoogle Scholar
Cordova, C. E. and Scott, L. (2010). The potential of Poaceae, Cyperaceae, and Restionaceae phytoliths to reflect past environmental conditions in South Africa. In African Palaeoenvironmental and Geomorphic Landscape Evolution, Palaeoecology of Africa, 30, ed. Runge, J.. Boca Raton, Florida: CRC Press, pp. 107133.Google Scholar
De Vargas, C., Aubry, M.-P., Probert, I. and Young, J. (2007). Origin and Evolution of Coccolithophores: From coastal hunters to organic farmers. In Evolution of Primary Producers of the Sea, ed. Falkowski, P. G. and Knoll, A. H.. Boston: Academic Press, pp. 251285.CrossRefGoogle Scholar
De Wever, P., Dumitrica, P., Caulet, J. P., Nigrini, C. and Caridroit, M. (2002). Radiolarians in the Sedimentary Record. Amsterdam: CRC Press, 533pp.CrossRefGoogle Scholar
Dingle, R. V., Lord, A. R. and Boomer, I. D. (1989). Ostracod faunas and water masses across the continental margin off southwestern Africa. Marine Geology, 87, 323328.CrossRefGoogle Scholar
Ekblom, A. and Stabell, B. (2008). Paleohydrology of Lake Nhaucati (southern Mozambique), ~400 AD to present. Journal of Paleolimnology, 40, 11271141.CrossRefGoogle Scholar
Ekblom, A., Gillson, L., Risberg, J., Holmgren, K. and Chidoub, Z. (2012). Rainfall variability and vegetation dynamics of the lower Limpopo Valley, Southern Africa, 500 AD to present. Palaeogeography, Palaeoclimatology, Palaeoecology, 363–364, 6978CrossRefGoogle Scholar
Feng, Q., He, W., Gu, S., Meng, Y., Jin, Y. and Zhang, F. (2007). Radiolarian evolution during the latest Permian in South China. Global and Planetary Change, 55, 177192.CrossRefGoogle Scholar
Finch, J.M. and Hill, T.R. (2008). A late Quaternary pollen sequence from Mfabeni Peatland, South Africa: Reconstructing forest history in Maputaland. Quaternary Research, 70, 442450.CrossRefGoogle Scholar
Finné, M., Norström, E., Risberg, J. and Scott, L. (2010). Siliceous microfossils as late-Quaternary paleo-environmental indicators at Braamhoek wetland, South Africa. The Holocene, 20, 747760.CrossRefGoogle Scholar
Franceschini, G., McMillan, I. K. and Compton, J. S. (2005) Foraminifera of Langebaan Lagoon salt marsh and their application to the interpretation of late Pleistocene depositional environments at Monwabisi, False Bay coast, South Africa. South African Journal of Geology, 108, 285296.CrossRefGoogle Scholar
Gasse, F., Cortijo, E., Disnar, J.-R., Ferry, L., Gilbert, E., Kissel, C., Laggoun-Défarge, F., Lallier-Vergès, E., Miskovsky, J.-C., Ratsimbazafy, B., Ranaivo, F., Robison, L., Tucholka, P., Saos, J-L.., Sifeddine, A., Taieb, M., Van Campo, E. and Williamson, D. (1994). A 36 ka environmental record in the southern tropics: Lake Tritrivakely (Madagascar). Comptes Rendus de l’Académie des Sciences, 318, 15131519.Google Scholar
Gasse, F., Juggins, S. and Ben Khelifa, L. (1995). Diatom-based transfer functions for inferring past hydrochemical characteristics of African Lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 117, 3154.CrossRefGoogle Scholar
Gasse, F. and Van Campo, E. (1998). A 40 000 year pollen and diatom record from Lake Tritrivakely, Madagascar, in the southern Tropics. Quaternary Research, 49, 299311.CrossRefGoogle Scholar
Gasse, F. and Van Campo, E. (2001). Late Quaternary environmental changes from a pollen and diatom record in the southern tropics (Lake Tritrivakely, Madagascar). Palaeogeography, Palaeoclimatology, Palaeoecology, 167, 287308.CrossRefGoogle Scholar
Giraudeau, J. (1993). Planktonic foraminiferal assemblages in surface sediments from the southwest African continental margin. Marine Geology, 110, 4762.CrossRefGoogle Scholar
Grab, S., Scott, L., Rossouw, L. and Meyer, S. (2005). Holocene palaeoenvironments inferred from a sedimentary sequence in the Tsoaing River Basin, western Lesotho. Catena, 61, 4962.CrossRefGoogle Scholar
Gray, W., Holmes, J. and Shevenell, A. (2014). Evaluation of foraminiferal trace element cleaning protocols on the Mg/Ca of marine ostracod genus Krithe. Chemical Geology, 382, 1423.CrossRefGoogle Scholar
Haberyan, K. A. (1987). Fossil diatoms and the paleolimnology of Lake Rukwa, Tanzania. Freshwater Biology, 17, 429436.CrossRefGoogle Scholar
Harding, W. R. and Taylor, J. C. (2011). The South African Diatom Index (SADI) – A preliminary index for indicating water quality in rivers and streams in southern Africa. WRC, Pretoria: Water Research Commission Report No. 1701/1/11.Google Scholar
Herbert, R. S. (1987). Late Holocene Climatic Change: The Little Ice Age and El Niño from planktonic foraminifera in Sediments off Walvis Bay, South West Africa. Cape Town; Bulletin No. 18, Marine Geosciences Unit, Department of Geology, University of Cape Town, 45pp.Google Scholar
Hofmann, W. (1998). Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology, 19, 5562.CrossRefGoogle Scholar
Holmgren, K., Risberg, J., Freudendahl, J., Achimo, M., Ekblom, A., Mugabe, J., Norström, E. and Sitoe, S. (2012). Water-level variations in Lake Nhauhache, Mozambique, during the last 2,300 years. Journal of Paleolimnology, 48, 311322.CrossRefGoogle Scholar
Horne, D. J. (2007). A Mutual Temperature Range method for Quaternary palaeoclimatic analysis using European nonmarine Ostracoda. Quaternary Science Reviews, 26, 13981415.CrossRefGoogle Scholar
Horne, D. J., Holmes, J. A., Rodriguez-Lazaro, J. and Viehlberg, F. A. (2012). Ostracoda as proxies for Quaternary climate change: Overview and future prospects. In Ostracoda as proxies for Quaternary climate change, ed. Horne, D., Holmes, J., Viehberg, F. and Rodriguez-Lazaro, J.. Amsterdam: Elsevier, pp. 305324.CrossRefGoogle Scholar
Huntsman-Mapila, P., Ringrose, S., Mackay, A. W., Downey, W. S., Modisi, M., Coetzee, S. H., Tiercelin, J.-J., Kampunzu, A. B. and Vanderpost, C. (2006). Use of the geochemical and biological sedimentary record in establishing palaeo-environments and climate change in the Lake Ngami basin, NW Botswana. Quaternary International, 148, 5164.CrossRefGoogle Scholar
Jacot Des Comes, H. and Abelman, A. (2007). A 350-ky radiolarian record of Lüderitz, Namibia – evidence for changes in the upwelling regime. Marine Micropaleontology, 62, 194210.CrossRefGoogle Scholar
Jones, R. W. (2013). Foraminifera and Their Applications. Cambridge: Cambridge University Press, 401pp.CrossRefGoogle Scholar
Jones, V. (2006). Diatom Introduction. In Encyclopedia of Quaternary Science, ed. Elias, S. A.. London: Elsevier, pp. 476484.Google Scholar
Juggins, S., Simpson, G. L. and Telford, R. J. (2015). Taxon selection using statistical learning techniques to improve transfer function prediction. The Holocene, 25, 130136.CrossRefGoogle Scholar
Knight, J. and Harrison, S. (2014). Limitations of uniformitarianism in the Anthropocene. Anthropocene, 5, 7175.CrossRefGoogle Scholar
Lamb, A. L., Leng, M. J., Sloane, H. J. and Telford, R. J. (2005). A comparison of the palaeoclimate signals from diatom oxygen isotope ratios and carbonate oxygen isotope ratios from a low latitude crater lake. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 290302.CrossRefGoogle Scholar
Lazarus, D., Bittniok, B., Diester-Haass, L., Billups, K., Ogawa, Y., Takahashi, K. and Meyers, P. (2008). Radiolarian and sedimentologic paleoproductivity proxies in late Pleistocene sediments of the Benguela Upwelling System, ODP Site 1084. Marine Micropalaeontology, 68, 223235.CrossRefGoogle Scholar
Leiter, C. and Altenbach, A. V. (2010). Benthic foraminifera from the diatomaceous mud belt off Namibia: characteristic species for severe anoxia. Palaeontologia Electronica, 13, Issue 2, 11A, 19pp. http://palaeo-electronica.org/2010_2/188/index.htmlGoogle Scholar
Leng, M. J. and Barker, P. A. (2006). A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimate reconstruction. Earth-Science Reviews, 75, 527.CrossRefGoogle Scholar
Licari, L. and Mackensen, A. (2005). Benthic foraminifera off West Africa (1°N to 32°S): Do live assemblages from the topmost sediment reliably record environmental variability? Marine Micropalaeontology, 55, 205233.CrossRefGoogle Scholar
Little, M. G., Schneider, R. R., Kroon, D., Price, B., Bickert, T. and Wefer, G. (1997). Rapid palaeoceanographic change in the Benguela Upwelling System for the last 160,000 years as indicated by abundances of planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 135161.CrossRefGoogle Scholar
Lotter, A. F. (2014). Multi-proxy climatic reconstructions. In Global Change in the Holocene, ed. Birks, J., Battarbee, R., Mackay, A. and Oldfield, F.. Oxford: Routledge, pp. 373383.Google Scholar
Loubere, P. (1989). Bioturbation and sedimentation rate control of benthic microfossil taxon abundances in surface sediments: A theoretical approach to the analysis of species microhabitats. Marine Micropaleontology, 14, 317325.CrossRefGoogle Scholar
Mackay, A. W., Jones, V. J. and Battarbee, R. W. (2003). Approaches to Holocene climate reconstructions using diatoms. In Global Change in the Holocene, ed. Birks, J., Battarbee, R., Mackay, A. and Oldfield, F.. Oxford: Routledge, pp. 294309.Google Scholar
Martens, K. (2007). On a new species and genus in the Cypridini (Crustacea, Ostracoda, Cyprididae) from South Africa, with a phylogenetic analysis of the tribe and a discussion on the genus concept in this group. Journal of Natural History, 41, 381399.CrossRefGoogle Scholar
Martens, K., Schön, I., Meisch, C. and Horne, D. J. (2008). Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia, 595, 185193.CrossRefGoogle Scholar
Martin, A. R. H. (1959). The stratigraphy and history of Groenvlei, a South African coastal fen. Australian Journal of Botany, 7, 142167.CrossRefGoogle Scholar
Martin, A. R. H. (1968). Pollen analysis of Groenvlei Lake sediments, Knysna (South Africa). Review of Palaeobotany and Palynology, 7, 107144.CrossRefGoogle Scholar
Maslin, M., Pike, J., Stickley, C. and Ettwein, V. (2014). Evidence of Holocene climate variability in marine sediments. In Global Change in the Holocene, ed. Birks, J., Battarbee, R., Mackay, A. and Oldfield, F.. Oxford: Routledge, pp. 185209.Google Scholar
McLean, B. and Scott, L. (1999). Phytoliths in sediments of the Pretoria Saltpan (Tswaing Crater) and their potential as indicators of the environmental history at the site. In Tswaing – Investigations into the Origin, Age and Paleoenvironments of the Pretoria Saltpan, ed. Partridge, T. C.. Pretoria: Council for Geosciences, pp. 167171.Google Scholar
McMillan, I. K. (2003). Foraminiferally defined biostratigraphic episodes and sedimentation pattern of the Cretaceous drift succession (Early Barremian to Late Maastrichtian) in seven basins of on the South African and southern Namibian continental margin. South African Journal of Science, 99, 537576.Google Scholar
Meadows, M. E. (2014). Recent methodological advances in Quaternary palaeoecological proxies. Progress in Physical Geography, 38, 807817.CrossRefGoogle Scholar
Mercader, J., Bennett, T., Esselmont, C., Simpson, S. and Walde, D. (2009). Phytoliths in woody plants from the Miombo woodlands of Mozambique. Annals of Botany, 104, 91113.CrossRefGoogle ScholarPubMed
Metcalfe, S. E. (1999). Diatoms from the Pretoria Saltpan – a record of lake evolution and environmental change. In Tswaing – Investigations into the Origin, Age and Paleoenvironments of the Pretoria Saltpan, ed. Partridge, T. C.. Pretoria: Council for Geosciences, pp. 172192.Google Scholar
Mitchell-Innes, B. A. and Winter, A. (1987). Coccolithophores: A major phytoplankton component in mature upwelled waters off the Cape Peninsula, South Africa in March, 1983. Marine Biology, 95, 2530.CrossRefGoogle Scholar
Mitchell, E. A. D., Charman, D. J. and Warner, B. G. (2008). Testate amoebae analysis in ecological and paleoecological studies of wetlands: Past, present and future. Biodiversity Conservation, 17, 21152137.CrossRefGoogle Scholar
Moore, A. E., Cotterill, F. P. D. and Eckhardt, F. D. (2012). The evolution and ages of Makgadikgadi palaeo-lakes: consilient evidence from Kalahari drainage evolution south-central Africa. South African Journal of Geology, 115, 385413.CrossRefGoogle Scholar
Murray, J. W. (2006). Ecology and Applications of Benthic Foraminifera. Cambridge: Cambridge University Press, 440pp.CrossRefGoogle Scholar
Neumann, F. H., Stager, J. C., Scott, L., Venter, H. J. T. and Weyhenmeyer, C. (2008). Holocene vegetation and climate records from Lake Sibaya, KwaZulu-Natal (South Africa). Review of Palaeobotany and Palynology, 152, 113128.CrossRefGoogle Scholar
Norström, E., Scott, L., Partridge, T. C., Risberg, J. and Holmgren, K. (2009). Reconstruction of environmental and climate changes at Braamhoek wetland, eastern escarpment South Africa, during the last 16,000 years with emphasis on the Pleistocene – Holocene transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 240258.CrossRefGoogle Scholar
Noström, E., Risberg, J., Gröndahl, H., Holmgren, K., Snowball, I., Mugabe, J. A. and Sitoe, S. R. (2012). Coastal paleo-environment and sea-level change at Macassa Bay, southern Mozambique, since c 6600 cal BP. Quaternary International, 260, 153163.CrossRefGoogle Scholar
Pasche, N., Alunga, G., Mills, K., Muvundja, F., Ryves, D. B., Schurter, M., Wehrli, B., Schmid, M. (2010). Abrupt onset of carbonate deposition in Lake Kivu during the 1960s: Response to recent environmental changes. Journal of Paleolimnology, 44, 931946.CrossRefGoogle Scholar
Pike, J. and Kemp, A. E. S. (1996). Preparation and analysis techniques for studies of laminated sediments. In Palaeoclimatology and Palaeoceanography from Laminated Sediments, ed. Kemp, A. E. S.. London: Geological Society of London Special Publication 116, pp. 3748.Google Scholar
Piperno, D. R. (2006). Phytoliths: A Comprehensive Guide for Archaeologists and Paleocologists. Lanham, MD: AltaMira Press, 304pp.Google Scholar
Rau, A. J., Rogers, J., Lutjeharms, J. R. E., Giraudeau, J., Lee-Thorp, J. A., Chen, M.-T. and Waelbroek, C. (2002). A 450-kyr record of hydrological conditions on the western Agulhas Bank Slope, south of Africa. Marine Geology, 180, 183201.CrossRefGoogle Scholar
Riedel, F., Henderson, A. C. G., Heußner, K.-U., Kaufmann, G., Kossler, A., Leipe, C., Shemang, E. and Taft, L. (2014). Dynamics of a Kalahari long-lived mega-lake system: hydromorphological and limnological changes in the Makgadikgadi Basin (Botswana) during the terminal 50 ka. Hydrobiologia, 739, 2553.CrossRefGoogle Scholar
Roberts, P., Lee-Thorp, J. A., Mitchell, P. J. and Arthur, C. (2013). Stable carbon isotopic evidence for climate change across the late Pleistocene to early Holocene from Lesotho, southern Africa. Journal of Quaternary Science, 28, 360369.CrossRefGoogle Scholar
Rodriguez-Lazaro, J. and Ruiz-Muñoz, F. (2012). A general introduction to ostracods: Morphology, distribution, fossil record, and applications. In Ostracoda as Proxies for Quaternary Climate Change, ed. Horne, D., Holmes, J., Viehberg, F. and Rodriguez-Lazaro, J.. Amsterdam: Elsevier, pp. 114.Google Scholar
Rörig, L. F. (2013). Algal Analysis. In Handbook of Water Analysis, 3rd Ed, ed. Nollet, L. M. L. and De Gelder, L. S. P.. Boca Raton: CRC Press, pp. 163188.Google Scholar
Rossouw, L., Stynder, D. D. and Haarhof, P. (2009). Evidence for opal phytolith preservation in the Langebaanweg ‘E’ Quarry Varswater Formation and its potential for palaeohabitat reconstruction. South African Journal of Science, 105, 223227.Google Scholar
Roubeix, V., Chalie, F. and Gasse, F. (2014). The diatom Thalassiosira faurri (Gasse) Hasle in the Ziway-Shala lakes (Ethiopia) and implications for paleoclimatic reconstructions: Case study of the Glacial–Holocene transition in East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 402, 104112.CrossRefGoogle Scholar
Round, F. E. (1984). The Ecology of Algae. Cambridge: Cambridge University Press, 664pp.Google Scholar
Samtleben, C. and Bickert, T. (1990). Coccoliths in sediment traps from the Norwegian Sea. Marine Micropaleontology, 16, 3964.CrossRefGoogle Scholar
Sanfilippo, A., Westberg-Smith, M.J. and Riedel, W.R. (1989). Cenozoic radiolarian. In Plankton Stratigraphy: Volume 2, Radiolaria, Diatoms, Silicoflagellates, Dinoflagellates and Ichthyoliths, ed. Bolli, H. M., Saunders, J. B. and Perch-Nielsen, K.. Cambridge: Cambridge University Press, pp. 631712.Google Scholar
Schmiedl, G., Mackensen, A. and Müller, P. J. (1997). Recent benthic foraminifera from the eastern South Atlantic Ocean: Dependence on food supply and water masses. Marine Micropaleontology, 32, 249287.CrossRefGoogle Scholar
Schoeman, F. R. (1972). A further contribution to the diatom flora of sewage enriched waters in southern Africa. Phycologia, 11, 239245.CrossRefGoogle Scholar
Scott, L. (1999). Vegetation history and climate in the Savanna biome South Africa since 190,000 ka: A comparison of pollen data from the Tswaing Crater (the Pretoria Saltpan) and Wonderkrater. Quaternary International, 57–58, 215223.CrossRefGoogle Scholar
Scott, L. (2002). Grassland development under glacial and interglacial conditions in southern Africa: A review of pollen, phytolith and isotope evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 4757.CrossRefGoogle Scholar
Scott, L., Neumann, F. H., Brook, G. A., Bousan, C. B., Norström, E. and Metwally, A. A. (2012). Terrestrial fossil-pollen evidence of climate change during the last 26 thousand years in Southern Africa. Quaternary Science Reviews, 32, 100118.CrossRefGoogle Scholar
Scott, L. and Rossouw, L. (2005). Reassessment of botanical evidence for palaeoenvironments at Florisbad, South Africa. South African Archaeological Bulletin, 60, 96102.Google Scholar
Seppä, H., Birks, H. J. B., Odland, A., Poska, A. and Veski, S. (2004). A modern pollen –climate calibration set from northern Europe: Developing and testing a tool for palaeoclimatological reconstructions. Journal of Biogeography, 31, 251267.CrossRefGoogle Scholar
Shaw, P. A., Stokes, S., Thomas, D. S. G., Davies, F. B. M. and Holmgren, K. (1997). Palaeoecology and age of a Quaternary high lake level in the Makgadikgadi Basin of the Middle Kalahari, Botswana. South African Journal of Science, 93, 273276.Google Scholar
Shaw, P. A. (2010). The use of diatoms as palaeoenvironmental indicators in Botwana: A review and species checklist. Botswana Notes and Records, 42, 154162.Google Scholar
Shi, N., Schneider, R. R., Beug, H.-J. and Dupont, L. M. (2001). Southeast trade wind variations during the last 135 kyr: Evidence from pollen spectra in eastern South Atlantic sediments. Earth and Planetary Science Letters, 187, 311321.CrossRefGoogle Scholar
Siziba, N., Chimbari, M. J., Masundire, H., Mosepele, K. and Ramberg, L. (2013). Variation in assemblages of small fishes and microcrustaceans after inundation of rarely flooded wetlands of the lower Okavango Delta, Botswana. Environmental Management, 52, 13861399.CrossRefGoogle ScholarPubMed
Smol, J. P. and Stoermer, E. F. (Eds) (2010). The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge: Cambridge University Press, 686pp.CrossRefGoogle Scholar
Soon, W., Baliunas, S., Idso, C., Idso, S. and Legates, D. R. (2003). Reconstructing Climatic and Environmental Changes of the Past 1000 Years: A Reappraisal. Energy and Environment, 14, 233296.CrossRefGoogle Scholar
Stager, J. C. (1988). Environmental Changes at Lake Cheshi, Zambia since 40,000 Years B.P. Quaternary Research, 29, 5465.CrossRefGoogle Scholar
Stager, J. C., Ryves, D. B., King, C., Madson, J., Hazzard, M., Neumann, F. H. and Maud, R. (2013). Late Holocene precipitation variability in the summer rainfall region of South Africa. Quaternary Science Reviews, 67, 105120.CrossRefGoogle Scholar
Stager, J. C., Westwood, J., Grzesik, D. and Cumming, B. F. (2005). A 5500-year environmental history of Lake Nabugabo, Uganda. Palaeogeography, Palaeoclimatology, Palaeoecology, 218, 347354.CrossRefGoogle Scholar
Strachan, K. L., Finch, J. M., Hill, T. and Barnett, R. L. (2014). A late Holocene sea-level curve for the east coast of South Africa. South African Journal of Science, 110(1/2), Art. #2013-0198, 9pp, doi:10.1590/sajs.2014/20130198.CrossRefGoogle Scholar
Strachan, K. L., Hill, T. R., Finch, J. M. and Barnett, R. L. (2015). Vertical zonation of foraminifera assemblages in Galpins salt marsh, South Africa. Journal of Foraminiferal Research, 45, 2941.CrossRefGoogle Scholar
Stevenson, R. J. and Pan, Y. (2004). Assessing environmental conditions in rivers and streams with diatoms. In The Diatoms: Applications for the Environmental and Earth Science, ed. Stoermer, E. F. and Smol, J. P.. Cambridge: Cambridge University Press, pp. 1140.Google Scholar
Summerhayes, C. P., Kroon, D., Rosell-Melé, A., Jordan, R. W., Schrader, H.-J., Hearn, R., Villanueva, J., Grimalt, J. O. and Eglinton, G. (1995). Variability in the Benguela Current upwelling system over the past 70,000 years. Progress in Oceanography, 35, 207251.CrossRefGoogle Scholar
Taylor, J. C., Harding, W. R., Archibald, C. G. M and van Rensberg, L. (2005). Diatoms as indicators of water quality in the Jukskei-Crocodile river system in 1956 and 1957, a re-analysis of diatom count data generated by BJ Cholnoky. Water SA, 31, 237246.CrossRefGoogle Scholar
Thomas, D. S. G. and Shaw, P.A. (1991). The Kalahari Environment. Cambridge: Cambridge University Press, 298pp.Google Scholar
Tsartsidou, G., Lev-Yadun, S., Albert, R.-M., Miller-Rosen, A., Efstratiou, N. and Weiner, S. (2007). The phytolith archaeological record: Strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. Journal of Archaeological Science, 34, 12621275.CrossRefGoogle Scholar
Tyrrell, T. and Young, J. R. (2009). Coccolithophores. In Elements of Physical Oceanography, ed. Steele, J. H., Thorpe, S. A. and Turekian, K. K.. London: Academic Press, pp. 407415.Google Scholar
Wilson, K. E., Leng, M. J. and Mackay, A. W. (2014). The use of multivariate statistics to resolve multiple contamination signals in the oxygen isotope analysis of biogenic silica. Journal of Quaternary Science, 29, 641649.CrossRefGoogle Scholar
Zhu, L., Peng, P., Xie, M., Wang, J., Frenzel, P., Wrozyna, C. and Schwalb, A. (2010). Ostracod-based environmental reconstruction over the last 8,400 years of Nam Co Lake on the Tibetan plateau. Hydrobiologia, 648, 157174.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×