Skip to main content Accessibility help
Hostname: page-component-684899dbb8-rbzxz Total loading time: 0.873 Render date: 2022-05-25T10:43:46.213Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Book contents

16 - Karstic systems

Published online by Cambridge University Press:  05 June 2016

Jasper Knight
University of the Witwatersrand, Johannesburg
Stefan W. Grab
University of the Witwatersrand, Johannesburg
Get access



This chapter describes the karstic systems in southern Africa and explores their role in preserving records of past environmental and climatic conditions and archaeology. On longer glacial–interglacial timescales, multiproxy studies of clastic and organic cave deposits and calcium carbonate precipitates (speleothems) have provided information about the environment in which early humans lived. Speleothems also have potential to show millennial to annual-scale climate/environmental variability. The advantages of speleothems to provide precise ages, and the empirical relationships between speleothem chemistry and climate, are encouraging as we address the need for more globally dispersed terrestrial palaeoclimatic records. Future research should focus not only on obtaining more records, but also on improving the precision of data interpretation in terms of quantitative estimations of climate variables.

Quaternary Environmental Change in Southern Africa
Physical and Human Dimensions
, pp. 250 - 268
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adams, E. W., Schroder, S., Grotzinger, J. P. and McCormick, D. S. (2004). Digital reconstruction and stratigraphic evolution of a microbial-dominated isolated carbonate platform (Terminal Proterozoic, Nama Group, Namibia). Journal of Sedimentary Research, 74, 479497.CrossRefGoogle Scholar
Bar-Matthews, M., Marean, C. W., Jacobs, Z., Karkanas, P., Fisher, E. C., Herries, A. I. R., Brown, K., Williams, H. M., Bernatchez, J., Ayalon, A. and Nilssen, P. J. (2010). A high resolution and continuous speleothem record of paleoclimate and paleoenvironment from 90 to 53 ka from Pinnacle Point on the south coast of South Africa. Quaternary Science Reviews, 29, 21312145.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Fairbanks, R. G. and Zindler, A. (1990). Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature, 345, 405410.CrossRefGoogle Scholar
Beaumont, P. B., Van Zinderen Bakker, E. M. and Vogel, J. C. (1984). Environmental changes since 32000 BP at Kathu Pan, northern Cape. In Late Cainozoic Palaeoclimates of the Southern Hemisphere, ed. Vogel, J. C.. Rotterdam: Balkema, pp. 329338.Google Scholar
Brook, G. A. (1982). Stratigraphic evidence of Quaternary climatic change at Echo Cave, Transvaal, and a paleoclimatic record for Botswana and northeastern South Africa. Catena, 9, 343351.CrossRefGoogle Scholar
Brook, G. A., Cowart, J. B., Brandt, S. A. and Scott, L. (1997). Quaternary climatic change in southern and eastern Africa during the last 300 ka: The evidence from caves in Somalia and the Transvaal region of South Africa. Zeitschrift für Geomorphologie, Supplementband, 108, 1548.Google Scholar
Brook, G. A., Cowart, J. B. and Marais, E. (1996). Wet and dry periods in the southern African summer rainfall zone during the last 300 kyr from speleothem, tufa and sand dune age data. Palaeoecology of Africa, 24, 147158.Google Scholar
Brook, G. A., Marais, E. and Cowart, J. B. (1999a). Evidence of wetter and drier conditions in Namibia from tufas and submerged speleothems. Climbebasia, 15, 2939.Google Scholar
Brook, G. A., Rafter, M. A., Railsback, L. B., Shen, S.-W. and Lundberg, J. (1999b). A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohibe Cave, Madagascar. The Holocene, 9, 695705.CrossRefGoogle Scholar
Brook, G. A., Scott, L., Railsback, L. B. and Goddard, E. A. (2010). A 35 ka record of pollen and isotope record of environmental change along the southern margin of the Kalahari from a stalagmite and animal dung deposits in Wonderwerk Cave, South Africa. Journal of Arid Environments, 74, 870884.CrossRefGoogle Scholar
Bruxelles, L., Clarke, R. J., Maire, R., Ortega, R. and Stratford, D. (2014). Stratigraphic analysis of the Sterkfontein StW 573 Australopithecus skeleton and implications for its age. Journal of Human Evolution, 70, 3648.CrossRefGoogle ScholarPubMed
Burney, D. A., Brook, G. A. and Cowart, J. B. (1994). A Holocene pollen record for the Kalahari Desert of Botswana from a U-series dated speleothem. The Holocene, 4, 225232.CrossRefGoogle Scholar
Burney, D. A., James, H. F., Grady, F. V., Rafamantanantsoa, J.-G., Ramilisonina, , Wright, H. T. and Cowart, J. B. (1997). Environmental change, extinction and human activity: Evidence from caves in NW Madagascar. Journal of Biogeography, 24, 755767.CrossRefGoogle Scholar
Butzer, K. W., Stuckenrath, R., Bruzewicz, A. and Helgren, D. M. (1978). Late Cenozoic paleoclimates of the Gaap Escarpment, Kalahari margin, South Africa. Quaternary Research, 10, 310339.CrossRefGoogle Scholar
Chase, B. and Meadows, M. E. (2007). Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth-Science Reviews, 84, 103138.CrossRefGoogle Scholar
Chase, B. M., Scott, L., Meadows, M. E., Gil-Romera, G., Boom, A., Carr, A. S., Reimer, P. J., Truc, L., Valsecchi, V. and Quick, L. J. (2012). Rock hyrax middens: A palaeoenvironmental archive for southern African drylands. Quaternary Science Reviews, 56, 107125.CrossRefGoogle Scholar
Chazan, M., Ron, H., Matmon, A., Porat, N., Goldberg, P., Yates, R., Avery, M., Sumner, A. and Horwitz, L. K. (2008). Radiometric dating of the Earlier Stone Age sequence in Excavation 1 at Wonderwerk Cave, South Africa: Preliminary results. Journal of Human Evolution, 55, 111.CrossRefGoogle ScholarPubMed
Cooke, H. J. (1975). The palaeoclimatic significance of caves and adjacent landforms in the Kalahari of western Ngamiland, Botswana. Geographical Journal, 141, 430444.CrossRefGoogle Scholar
Cooke, H. J. (1984). The evidence from northern Botswana of climate change. In Late Cainozoic Palaeoclimates of the Southern Hemisphere, ed. Vogel, J. C.. Rotterdam: Balkema, pp. 265278.Google Scholar
Cooke, H. J. and Verhagen, B. Th. (1977). The dating of cave development – an example from Botswana. Proceedings of the 7th International Speleological Congress, Sheffield. Sheffield, UK, pp. 122124.Google Scholar
Curnoe, D., Grün, R., Taylor, L. and Thackeray, F. (2001). Direct ESR dating of a Pliocene hominin from Swartkrans. Journal of Human Evolution, 40, 379391.CrossRefGoogle ScholarPubMed
De Waele, J. and Follesa, R. (2003). Human impact on karst: The example of Lusaka (Zambia). International Journal of Speleology, 32, 7183.CrossRefGoogle Scholar
Fairchild, I. J. and Baker, A. (2012). Speleothem Sciences: From Process to Past Environments. Chichester: Wiley–Blackwell, 432pp.CrossRefGoogle Scholar
Faith, J. T. (2013). Taphonomic and paleoecological change in the large mammal sequence from Boomplaas Cave, western Cape, South Africa. Journal of Human Evolution, 65, 715730.CrossRefGoogle ScholarPubMed
Finch, A. A., Shaw, P. A., Holmgren, K. and Lee-Thorp, J. (2003). Corroborated rainfall records from aragonitic stalagmites. Earth and Planetary Science Letters, 215, 265273.CrossRefGoogle Scholar
Ford, D. and Williams, P. (2007). Karst Hydrology and Geomorphology (3rd Ed). London: Unwin, 576pp.CrossRefGoogle Scholar
Geyh, M. A. and Heine, K. (2014). Several distinct wet periods since 420 ka in the Namib Desert inferred from U-series dates of speleothems. Quaternary Research, 81, 381391.CrossRefGoogle Scholar
Holmgren, K., Karlén, W. and Shaw, P. A. (1995). Paleoclimatic significance of the stable isotopic composition and petrology of a late Pleistocene stalagmite from Botswana. Quaternary Research, 43, 320328.CrossRefGoogle Scholar
Holmgren, K., Lee-Thorp, J. A., Cooper, G. R. J., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Talma, A. S. and Tyson, P. D. (2003). Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quaternary Science Reviews, 22, 23112326.CrossRefGoogle Scholar
Holmgren, K., Moberg, A., Svanered, O. and Tyson, P. D. (2001). A preliminary 3000-year regional temperature reconstruction for South Africa. South African Journal of Science, 97, 4951.Google Scholar
Holmgren, K. and Öberg, H. (2006). Climate change in Southern and East Africa during the past millennium and its implications for societal development. Environment, Development and Sustainability, 8, 185195.CrossRefGoogle Scholar
Holzkämper, S., Holmgren, K., Lee-Thorp, J., Talma, S., Mangini, A. and Partridge, T. (2009). Late Pleistocene stalagmite growth in Wolkberg Cave, South Africa. Earth and Planetary Science Letters, 282, 212221.CrossRefGoogle Scholar
Hopley, P. J., Marshall, J. D., Weedon, G. P., Latham, A. G., Herries, A. I. R. and Kuykendall, K. L. (2007). Orbital forcing and the spread of C4 grasses in the late Neogene: Stable isotope evidence from South African speleothems. Journal of Human Evolution, 53, 620634.CrossRefGoogle Scholar
Johnson, B. J., Miller, G. H., Fogel, M. L. and Beaumont, P. B. (1997). The determination of late Quaternary palaeoenvironments at Equus Cave, South Africa, using stable isotopes and amino acid racemization in ostrich eggshell. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 121137.CrossRefGoogle Scholar
Klein, R. G., Cruz-Uribe, K. and Beaumont, P. B. (1991). Environmental, ecological, and paleoanthropological implications of the Late Pleistocene mammalian fauna from Equus Cave, northern Cape Province, South Africa. Quaternary Research, 36, 94119.CrossRefGoogle Scholar
Laumanns, M. and Gebauer, H. D. (1993). Namoroka 1992: Expedition to the karst of Namoroka and Narinda, Madagascar. The International Caver, 6, 3036.Google Scholar
Lee-Thorp, J. A. and Beaumont, P. B. (1995). Vegetation and seasonality shifts during the Late Quaternary deduced from 13C/12C ratios of grazers at Equus Cave, South Africa. Quaternary Research, 43, 426432.CrossRefGoogle Scholar
Lee-Thorp, J. A. and Talma, A. S. (2000). Stable light isotopes and environments in the southern African Quaternary and late Pliocene. In The Cenozoic of Southern Africa, eds. Partridge, T. C. and Maud, R. R.. Oxford: Oxford University Press, pp. 236251.Google Scholar
Lee-Thorp, J. A., Holmgren, K., Lauritzen, S.-E., Linge, H., Moberg, A., Partridge, T. C., Stevenson, C. and Tyson, P. D. (2001). Rapid climate shifts in the southern African interior throughout the mid to late Holocene. Geophysical Research Letters, 28, 45074510.CrossRefGoogle Scholar
Martini, J. E. J. (2006). Karsts and Caves. In The Geology of South Africa, eds. Johnson, M. R., Anhaeusser, C. R. and Thomas, R. J.. Pretoria: Geological Society of South Africa/Council for Geoscience, pp. 661668.Google Scholar
Partridge, T. C. (2000). Hominid-bearing cave and tufa deposits. In The Cenozoic of Southern Africa, eds. Partridge, T. C. and Maud, R. R.. Oxford: Oxford University Press, pp. 100125.Google Scholar
Pickering, R., Hancox, P. J., Lee-Thorp, J. A., Grün, R., Mortimer, G. E., McCulloch, M. and Berger, L. R. (2007). Stratigraphy, U-Th chronology, and paleoenvironments at Gladysvale Cave: insights into the climatic control of South African hominin-bearing cave deposits. Journal of Human Evolution, 53, 602619.CrossRefGoogle ScholarPubMed
Pickering, R., Jacobs, Z., Herries, A. I. R., Karkanas, P., Bar-Matthews, M., Woodhead, J. D., Kappen, P., Fischer, E. and Marean, C. W. (2013). Paleoanthropologically significant South African sea caves dated to 1.1–1.0 million years using a combination of U–Pb, TT-OSL and palaeomagnetism. Quaternary Science Reviews, 65, 3952.CrossRefGoogle Scholar
Railsback, L. B., Brook, G. A., Chen, J., Kalin, R. and Fleisher, C. J. (1994). Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calref. Journal of Sedimentary Research, Section A, 64, 147155.Google Scholar
Scott, L. (1987). Pollen analysis of hyena coprolites and sediments from Equus Cave, Taung, southern Kalahari (South Africa). Quaternary Research, 28, 144156.CrossRefGoogle Scholar
Scott, L. and Thackeray, J. F. (1987). Multivariate analysis of late Pleistocene and Holocene pollen spectra from Wonderkrater, Transvaal, South Africa. South African Journal of Science, 83, 9398.Google Scholar
Shaw, P. A. and Cooke, H. J. (1986). Geomorphic evidence for the Late Quaternary paleoclimates of the Middle Kalahari of northern Botswana. Catena, 13, 349359.CrossRefGoogle Scholar
Sletten, H. R., Railsback, L. B., Liang, F., Brook, G. A., Marais, E., Hardt, B. F., Cheng, H. and Edwards, R. L. (2013). A petrographic and geochemical record of climate change over the last 4600 years from a northern Namibia stalagmite, with evidence of abruptly wetter climate at the beginning of southern Africa’s Iron Age. Palaeogeography, Palaeoclimatology, Palaeoecology, 376, 149162.CrossRefGoogle Scholar
Stager, J. C., Ryves, D. B., King, C., Madson, J., Hazzard, M., Neumann, F. H. and Maud, R. (2013). Late Holocene precipitation variability in the summer rainfall region of South Africa. Quaternary Science Reviews, 67, 105120.CrossRefGoogle Scholar
Sundqvist, H. S., Holmgren, K., Fohlmeister, J., Zhang, Q., Bar-Matthews, M., Spötl, C. and Körnich, H. (2013). Evidence of a large cooling between 1690 and 1740 AD in southern Africa. Scientific Reports, 3, 1767, doi:10.1038/srep01767.CrossRefGoogle Scholar
Talma, A. S. and Vogel, J. C. (1992). Late Quaternary paleotemperatures derived from a speleothem from Cango Caves, Cape Province, South Africa. Quaternary Research, 37, 203213.CrossRefGoogle Scholar
Talma, A. S., Vogel, J. C. and Partridge, T. C. (1974). Isotopic contents of some Transvaal speleothems and their palaeoclimatic significance. South African Journal of Science, 70, 135140.Google Scholar
Thackeray, J. F. and Lee-Thorp, J. A. (1992). Isotopic analysis of equid teeth from Wonderwerk Cave, northern Cape province, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 99, 141150.CrossRefGoogle Scholar
Tyson, P. D., Lee-Thorp, J., Holmgren, K. and Thackeray, J. F. (2002). Changing gradients of climate change in southern Africa during the past millennium: Implications for population movements. Climatic Change, 52, 129135.CrossRefGoogle Scholar
Tyson, P. D. and Preston-Whyte, R. A. (2000). The Weather and Climate of Southern Africa. Cape Town: Oxford University Press, 408pp.Google Scholar
Van Zinderen Bakker, E. M. (1982). Pollen analytical studies of the Wonderwerk Cave, South Africa. Pollen et Spores, 24, 235250.Google Scholar
Vrba, E. S. (1974). Chronological and ecological implications of the fossil Bovidae at the Sterkfontein Australopithecine site. Nature, 250, 1923.CrossRefGoogle Scholar
Vrba, E. S. (1975). Some evidence of chronology and palaeoecology of Sterkfontein, Swartkrans and Kromdraii from the fossil Bovidae. Nature, 254, 301304.CrossRefGoogle Scholar
Vrba, E. S. (1995). The fossil record of African Antelopes (Mammalia, Bovidae) in relation to human evolution and palaeoclimate. In Palaeoclimate and Evolution, with Emphasis on Human Origins, eds. Vrba, E. S., Denton, G. H., Partridge, T. C. and Burckle, L. H.. New Haven CT: Yale University Press, pp. 385424.Google Scholar
Williams, P. W. (2008). World Heritage Caves and Karst: A Thematic Study. World Heritage Convention, IUCN World Heritage Studies, no 2. Gland, Switzerland: IUCN, 57pp.Google Scholar
Wyberg, W. J. (1925). Economic geology of Sable and Pilgrim’s rest. Memoirs, Geological Survey South Africa, 23, 124pp.Google Scholar
Zinke, J., Dullo, W. C., Heiss, G. A. and Eisenhauer, A. (2004). ENSO and Indian Ocean subtropical dipole variability is recorded in a coral record of southwest Madagascar for the period 1659 to 1995. Earth and Planetary Science Letters, 228, 177194.CrossRefGoogle Scholar
Zinke, J., Loveday, B. R., Reason, C. J. C., Dullo, W.-C. and Kroon, D. (2014). Madagascar corals track sea surface temperature variability in the Agulhas Current core region over the past 334 years. Scientific Reports, 4, 4393, doi:10.1038/srep04393.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats