Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-mn2s7 Total loading time: 0.201 Render date: 2022-01-29T02:33:00.016Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

9 - Theories of radio emissions and plasma waves

Published online by Cambridge University Press:  27 October 2009

Get access

Summary

A generally accepted theory of the enigmatic phenomenon of planetary radio emission is not yet available. In this chapter, we direct our attention primarily to the question of how the Jovian decameter radiation might be generated via both direct and indirect mechanisms. Direct mechanisms transform the free energy contained in an electron distribution (typically a loss-cone) directly into electromagnetic waves. Indirect mechanisms transform the free energy contained in an electron beam distribution first into electrostatic waves that can then couple, in some manner, to produce electromagnetic waves. The growth rates for the unstable electromagnetic and electrostatic waves are derived. Nonlinear theories are briefly discussed as they apply to the case of Jupiter's decametric radiation. Because most of the Jovian radio emission seems to be controlled by Io, we describe how Io, through the emission of kinetic Alfven waves, can produce a “beamlike” electron distribution. It is more difficult to understand how Io can enhance or produce a “loss-cone” distribution. Thus we conclude that, at least for Jovian radio phenomena, indirect mechanisms are preferred. We also describe theories and models for the generation of the dynamic spectral arcs that characterize the radio spectrum from hectometric to decametric wavelengths.

Introduction

Jupiter is the most powerful planetary source of nonthermal electromagnetic radiation in the solar system, with a radio spectrum extending from a few kHz to over 100 MHz. The phenomenology of the decimeter component in the GHz range has been discussed in Chapter 7.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
69
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×