Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-pcn4s Total loading time: 0.423 Render date: 2022-05-23T03:29:05.958Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

5 - High-energy particles

Published online by Cambridge University Press:  27 October 2009

Get access

Summary

In the Jovian magnetosphere, electrons, protons, and heavier ions are accelerated to energies well above 10 MeV. These energetic particles constitute a valuable diagnostic tool for studying magnetospheric processes and produce the Jovian radio emissions. In the inner magnetosphere, both the electron and proton fluxes with energies above 1 MeV build up to ~ 108 per cm2 s and constitute a major radiation hazard to spacecraft passing through this region. Surprisingly, high fluxes of energetic oxygen and sulfur (> 7 MeV/nuc) are also found in the inner magnetosphere. Of particular interest are the interactions of these particles with the inner Jovian moons and with the Io plasma torus. Throughout much of the middle magnetosphere and magnetospheric tail, highest fluxes are found in the plasma sheet, which coincides closely with the tilted dipole equator out to 45 Rj (Jupiter radii). This plasma sheet has not been identified beyond 45 Rj in the subsolar hemisphere; however, on the night side, it extends to 200 Rj. On the day side, fluxes near the equator are relatively independent of distance (15 to 45 RJ) and fall into the range 104 to 10 per cm2 s each for protons and electrons above ~ 1 MeV. In the predawn direction, proton and electron fluxes decrease by three orders of magnitude from 20 to 90 Rj (105 to 102 per cm2 s) and then remain relatively constant to the boundary layer near the magnetopause.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
28
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×