Skip to main content Accessibility help
×
Hostname: page-component-546b4f848f-q5mmw Total loading time: 0 Render date: 2023-06-02T23:40:34.484Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

References

Published online by Cambridge University Press:  24 April 2020

Brent Fultz
Affiliation:
California Institute of Technology
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Onsager, L., Phys. Rev. 65, 117 (1944).CrossRefGoogle Scholar
[2] Cerezo, A., Hyde, J.M., Miller, M.K., et al., Phil. Trans. Roy. Soc. London A 341, 313 (1992).Google Scholar
[3] Hume-Rothery, W. and Raynor, G.V., The Structure of Metals and Alloys (Institute of Metals, London, 1962).Google Scholar
[4] Cottrell, A., Introduction to the Theory of Metals (Institute of Metals, London, 1988).Google Scholar
[5] Darken, L.S. and Gurry, R.W., Physical Chemistry of Metals (McGraw–Hill, New York, 1953), p. 74.Google Scholar
[6] Pettifor, D.G., Bonding and Structure of Molecules and Solids (Clarendon Press, Oxford, 1995).Google Scholar
[7] Miedema, A.R., de Chatel, P.F., and de Boer, F.R., Physica B,C 100, 1 (1980).Google Scholar
[8] Okamoto, H., Desk Handbook Phase Diagrams for Binary Alloys (ASM International, Materials Park, OH, 2000).Google Scholar
[9] Gibbs, J.W., Trans. Conn. Acad. 3, 108 (1876).Google Scholar
[10] Villars, P., Ed., with Okamoto, H. and Cenzual, K., ASM Alloy Phase Diagram Database (ASM International, Materials Park, OH, 2006–2013).Google Scholar
[11] Kittel, C., Thermal Physics (John Wiley, New York, 1969), Chapter 2.Google Scholar
[12] Warren, B.E., X-Ray Diffraction (Dover, Mineola, New York, 1990).Google Scholar
[13] Gorsky, W., Z. Physik 50, 64 (1928).CrossRefGoogle Scholar
[14] Bragg, W.L. and Williams, E.J., Proc. Roy. Soc. London A 145, 699 (1934).Google Scholar
[15] Bragg, W.L. and Williams, E.J., Proc. Roy. Soc. London A 151, 540 (1935). Ibid. 152, 231.Google Scholar
[16] Bethe, H.A., Proc. Roy. Soc. London A 150, 552 (1935).Google Scholar
[17] de Fontaine, D., Acta Metall. 23, 553 (1975).CrossRefGoogle Scholar
[18] West, D.R.F. and Saunders, N., Ternary Phase Diagrams in Materials Science, Third Edn. (Institute of Materials, London, 2002).Google Scholar
[19] Saunders, N. and Miodownik, A.P., CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Volume 1 (Pergamon Press, Oxford, 1998).Google Scholar
[20] Turchi, P.E.A., Gonis, A., and Shull, R.D., Eds., CALPHAD and Alloy Thermodynamics (TMS, Warrendale, PA, 2002).Google Scholar
[21] Turchi, P.E.A., Abrikosov, I.A., Burton, B., et al., CALPHAD 31, 4 (2007).Google Scholar
[22] Sarmiento-Perez, R., Cerqueira, T.F.T., Valencia-Jaime, I., et al., New J. Phys. 15, 115007 (2013).CrossRefGoogle Scholar
[23] Morse, P.M. and Feshbach, H., Methods of Theoretical Physics (McGraw–Hill, New York, 1953), Chapters 5 and 10.Google Scholar
[24] Simmons, R.O. and Balluffi, R.W., Phys. Rev. 117, 52 (1960).Google Scholar
[25] Simmons, R.O. and Balluffi, R.W., Phys. Rev. 125, 862 (1962).CrossRefGoogle Scholar
[26] Simmons, R.O. and Balluffi, R.W., Phys. Rev. 129, 1533 (1963).CrossRefGoogle Scholar
[27] Feder, R. and Nowick, A.S., Philos. Mag. 15, 805 (1967).CrossRefGoogle Scholar
[28] Schefer, H.-E., Frenner, K., and Würschum, R., Phys. Rev. Lett. 82, 948 (1999).Google Scholar
[29] Lee, J.K. and Aaronson, H.I., Acta Metall. 23, 799 (1975).Google Scholar
[30] Dahmen, U., Hagège, S., Faudot, F., Radetic, T., and Johnson, E., Philos. Mag. 84, 2651 (2004).CrossRefGoogle Scholar
[31] Gibbs, J.W., Trans. Conn. Acad. 11, 382 (1873).Google Scholar
[32] Volmer, M. and Weber, A., Phys, Z.. Chem. 119, 277 (1926).Google Scholar
[33] Farkas, Z., Phys, Z.. Chem. A125, 236 (1927).Google Scholar
[34] Becker, R. and Döring, W., Ann. Phys. 24, 1 (1935).Google Scholar
[35] Zeldovich, J.B., Acta Physicochim. 18, 1 (1943).Google Scholar
[36] Kelton, K.F. and Greer, A.L., Nucleation in Condensed Matter: Applications in Materials and Biology (Pergamon Press, Oxford, 2010).Google Scholar
[37] Trinkaus, H. and Yoo, M.H., Philos. Mag. A55, 269 (1987).Google Scholar
[38] Shi, G., Seinfeld, J.H., and Okuyama, K., Phys Rev. A41, 2101 (1990).Google Scholar
[39] Wu, D.T., in Solid State Physics, Volume 50, Ehrenreich, H. and Spaepen, F., Eds. (Academic Press, New York, 1997) p. 37, Section 11.Google Scholar
[40] Gulliver, G.H., J. Inst. Met. 9, 120 (1913).Google Scholar
[41] Scheil, E., Z. Metallk. 34, 70 (1942).Google Scholar
[42] Klement, W., Willens, R.H., and Duwez, P., Nature 187, 869 (1960).CrossRefGoogle Scholar
[43] Kittel, C., Introduction to Solid State Physics Fourth Edn. (Wiley, New York, 1971), p. 143.Google Scholar
[44] Medvedeva, N.I., Gornostyrev, Y.N., and Freeman, A.J., Phys. Rev. B 67, 134204 (2003).CrossRefGoogle Scholar
[45] The Fermi Surface Database www.phys.ufl.edu/fermisurface/.Google Scholar
[46] Choy, T.S., Naset, J., Chen, J., Hershfield, S., and Stanton, C., Bull. Amer. Phys. Soc. 45, 42 (2000).Google Scholar
[47] Sholl, D.S. and Steckel, J.A., Density Functional Theory: A Practical Introduction (John Wiley and Sons, Hoboken, New Jersey, 2009).CrossRefGoogle Scholar
[48] Frary, M., “Anisotropic Elasticity,” Wolfram Demonstrations Project (Wolfram Research Inc., 2011).Google Scholar
[49] Eshelby, J.D., J. Appl. Phys. 25, 255 (1954).CrossRefGoogle Scholar
[50] Eshelby, J.D., Solid State Phys. 3, 79 (1956).Google Scholar
[51] Eshelby, J.D., Proc. Roy. Soc. London A 241, 376 (1957).Google Scholar
[52] Nabarro, F.R.N., Proc. Roy. Soc. London A 175, 519 (1940).Google Scholar
[53] Kikuchi, R., Phys. Rev. 81, 988 (1951).Google Scholar
[54] Kikuchi, R., J. Chem. Phys. 60, 1071 (1974).CrossRefGoogle Scholar
[55] de Fontaine, D., in Solid State Physics, Volume 34, Ehrenreich, H., Seitz, F., and Turnbull, D., Eds. (Academic Press, New York, 1979), p. 73.Google Scholar
[56] Fowler, R.H. and Guggenheim, E.A., Proc. Roy. Soc. London A 174, 189 (1940).Google Scholar
[57] Sanchez, J.M., Ducastelle, F., and Gratias, D., Physica A 128, 334 (1984).CrossRefGoogle Scholar
[58] Connolly, J.W.D. and Williams, A.R., Phys. Rev. B 27, 5169 (1983).CrossRefGoogle Scholar
[59] Kikuchi, R., Phys. Rev. 81, 988 (1951).Google Scholar
[60] Van Baal, C.M., Physica 64, 571 (1973).CrossRefGoogle Scholar
[61] Sanchez, J.M. and de Fontaine, D., Phys. Rev. B 21, 216 (1980).CrossRefGoogle Scholar
[62] Cenedese, P. and Kikuchi, R., Physica A 205, 747 (1994).CrossRefGoogle Scholar
[63] Nernst, W. and Lindemann, F.A., Berl. Ber. 494 (1911).Google Scholar
[64] Gopal, E.S.R., Specific Heats at Low Temperatures (Plenum, New York, 1966).CrossRefGoogle Scholar
[65] McCullough, J.P. and Scott, D.W., Eds. Experimental Thermodynamics Volume 1: Calorimetry of Non-Reacting Systems (Plenum, New York, 1968).Google Scholar
[66] Lang, B.E., Boerio-Goates, J., and Woodfield, B.F., J. Chem. Thermodynamics 38, 1655 (2006).CrossRefGoogle Scholar
[67] Bachmann, R., DiSalvo, F.J., Geballe, T.H., et al., Rev. Sci. Instr. 43, 205 (1972).CrossRefGoogle Scholar
[68] Stewart, G.R., Rev. Sci. Instr. 54, 1 (1983).CrossRefGoogle Scholar
[69] Lashley, J.C., Hundley, M.F., Migliori, A., et al., Cryogenics 43, 369 (2003).CrossRefGoogle Scholar
[70] Kennedy, C.A., Stancescu, M., Marriott, R., and Whsite, M.A. Cryogenics 47, 107 (2007).CrossRefGoogle Scholar
[71] Einstein, A., Ann. Phys. 22, 180 (1907).Google Scholar
[72] Maradudin, A.A., Montroll, E.W., Weiss, G.H., and Ipatova, I.P., Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, 1971).Google Scholar
[73] Born, M. and Wang, K., Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1988).Google Scholar
[74] Dove, M.T., Introduction to Lattice Dynamics (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
[75] van de Walle, A. and Ceder, G., Rev. Mod. Phys. 74, 11 (2002).CrossRefGoogle Scholar
[76] Moraitis, G. and Gautier, F., J. Phys. F: Metal Phys. 7, 1421 (1977).Google Scholar
[77] Matthew, J.A.D., Jones, R.E., and Dwyer, V.M., J. Phys. F: Metal Phys. 13, 581 (1983).CrossRefGoogle Scholar
[78] Waegemaekers, A.A.H.J. and Bakker, H., Mater. Res. Soc. Symp. Proc. 21, 343 (1984).Google Scholar
[79] Garbulsky, G.D. and Ceder, G., Phys. Rev. B 53, 8993 (1996).CrossRefGoogle Scholar
[80] Baer, S., J. Phys. C: Solid State Phys. 16, 4103 (1983).Google Scholar
[81] Mahanty, J. and Sachdev, M., J. Phys. C 3, 773 (1970).CrossRefGoogle Scholar
[82] Bakker, H., Philos. Mag. A 45, 213 (1982).CrossRefGoogle Scholar
[83] Bakker, H., Phys. Stat. Solidi B 109, 211 (1982).CrossRefGoogle Scholar
[84] Delaire, O., Swan-Wood, T., and Fultz, B., Phys. Rev. Lett. 93, 185704 (2004).CrossRefGoogle Scholar
[85] Fultz, B. and Howe, J.M., Transmission Electron Microscopy and Diffractometry of Materials Fourth Edn. (Springer, Heidelberg, 2013).CrossRefGoogle Scholar
[86] Sluiter, M.H.F., Weinert, M., and Kawazoe, Y., Phys. Rev. B 59, 4100 (1999).Google Scholar
[87] van de Walle, A. and Ceder, G., Phys. Rev. B 61, 5972 (2000).CrossRefGoogle Scholar
[88] Wu, E.J., Ceder, G., and van de Walle, A., Phys. Rev. B 67, 134103 (2003).Google Scholar
[89] Slater, J.C., Introduction to Chemical Physics (McGraw-Hill, New York, 1939), Chapter 13.Google Scholar
[90] Desgreniers, S., Vohra, Y.K., and Ruoff, A.L., J. Phys. Chem. 94, 1117 (1990).CrossRefGoogle Scholar
[91] Weck, G., Desgreniers, S., and Loubeyre, P., Phys. Rev. Lett. 102, 255503 (2009).CrossRefGoogle Scholar
[92] Dias, R.P. and Silvera, I.F., Science 355, 715 (2017).CrossRefGoogle Scholar
[93] Winterrose, M.L., Lucas, M.S., Yue, A. F., et al., Phys. Rev. Lett. 102, 237202 (2009).CrossRefGoogle Scholar
[94] Tong, X., Xu, X., Fultz, B., et al., Phys. Rev. B 95, 094306 (2017).CrossRefGoogle Scholar
[95] Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
[96] Johnson, W.L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
[97] Chen, L.J., Lin, J.H., Lee, T.L., et al., Microsc. Res. Tech. 40, 136 (1998).3.0.CO;2-T>CrossRefGoogle Scholar
[98] Gorsky, W.S., Phys. Zeitschr. Sowjetunion 8, 457 (1935).Google Scholar
[99] Snoek, J.L., Physica 8, 711 (1941).Google Scholar
[100] Cottrell, A.H. and Jaswon, M.A., Proc. Roy. Soc. A199, 104 (1949).Google Scholar
[101] Vreeland, T., Wood, D.S., and Clark, D.S., Trans. Amer. Soc. Metals 45, 620 (1953).Google Scholar
[102] Holstein, T., Ann. Phys. 8, 325 (1959). Ibid 8, 342 (1959).CrossRefGoogle Scholar
[103] Emin, D. and Holstein, T., Ann. Phys. 53, 439 (1969).CrossRefGoogle Scholar
[104] Austin, I.G. and Mott, N.F., Adv. Phys. 18, 41 (1969).CrossRefGoogle Scholar
[105] Mott, N., J. Non-Cryst. Solids 1, 1 (1968).Google Scholar
[106] Schmid, H., Ferroelectrics 162, 317 (1994).Google Scholar
[107] Heckmann, G., Ergeb. Exakten Naturwiss. 4, 100 (1925).Google Scholar
[108] Nye, J.F., Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985).Google Scholar
[109] Nagel, L.J., Fultz, B., Robertson, J.L., and Spooner, S., Phys. Rev. B 55, 2903 (1997).CrossRefGoogle Scholar
[110] Manley, M.E., Fultz, B., and Nagel, L.J., Philos. Mag. B 80, 1167 (2000).CrossRefGoogle Scholar
[111] Nagel, L.J., Ph.D. thesis in materials science, California Institute of Technology (1996).Google Scholar
[112] Gopalan, V., Dierolf, V., and Scrymgeour, D.A., Annu. Rev. Mater. Res. 37, 449 (2007).CrossRefGoogle Scholar
[113] Zhao, Z., Ding, X., Lookman, T., Sun, J., and Salje, E.K.H., Adv. Mater. 25, 3244 (2013).Google Scholar
[114] Tartar, L., The General Theory of Homogenization: A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana 7 (Springer-Verlag, Berlin Heidelberg, 2010).CrossRefGoogle Scholar
[115] Cahn, J.W., Acta Metall. 10, 179 (1962).Google Scholar
[116] Huh, J.Y., Howe, J.M., and Johnson, W.C., Scripta Metall. 24, 2007 (1990).Google Scholar
[117] Hillert, M. and Staffansson, L.-I., Acta Chem. Scand. 24 , 3618 (1970).CrossRefGoogle Scholar
[118] Sundman, B. and Ågren, J., J. Phys. Chem. Solids 42, 297 (1981).CrossRefGoogle Scholar
[119] Yeh, X.L., Samwer, K., and Johnson, W.L., Appl. Phys. Lett. 42, 242 (1983).Google Scholar
[120] Yeh, Xian-Li, Ph.D. thesis in applied physics, California Institute of Technology (1987).Google Scholar
[121] Bowman, R.C., Luo, C.H., Ahn, C.C., Witham, C.K., and Fultz, B., J. Alloys Compounds 217, 185 (1995).CrossRefGoogle Scholar
[122] Samwer, K., Yeh, X.L., and Johnson, W.L., J. Non-Cryst. Solids 61, 631 (1984).Google Scholar
[123] Manning, J.R., Acta Metall. 15, 817 (1967).CrossRefGoogle Scholar
[124] Kikuchi, R. and Sato, H., J. Chem. Phys. 53, 2702 (1970).Google Scholar
[125] Bakker, H., Philos. Mag. 40, 525 (1979).Google Scholar
[126] Sato, H. and Kikuchi, R., Acta Metall. 24, 797 (1976).CrossRefGoogle Scholar
[127] Fultz, B., J. Chem. Phys. 87, 1604 (1987).CrossRefGoogle Scholar
[128] Siegel, R.W., Annu. Rev. Mater. Sci. 10, 393 (1980).CrossRefGoogle Scholar
[129] Kajcsos, Zs., Phys. Scripta T25, 26 (1989).CrossRefGoogle Scholar
[130] Seeger, A., J. Phys. F: Metal Phys. 3, 248 (1973).CrossRefGoogle Scholar
[131] Puska, M.J. and Nieminen, R.M., Rev. Modern Phys. 66, 841 (1994).CrossRefGoogle Scholar
[132] Boronski, E., Europhys. Lett. 75, 475 (2006).CrossRefGoogle Scholar
[133] Smigelskas, A.D. and Kirkendall, E.O., Trans. AIME 171, 131 (1947).Google Scholar
[134] Martin, G., Phys. Rev. B 30, 1424 (1984).CrossRefGoogle Scholar
[135] Martin, G. and Bellon, P., Solid State Physics, Volume 50, H. Ehrenreich and F. Spaepen, Eds. (Academic Press, New York, 1996), p. 189.Google Scholar
[136] Vineyard, G., J. Phys. Chem. Solids 3, 121 (1957).CrossRefGoogle Scholar
[137] Rice, S., Phys. Rev. 112, 804 (1958).CrossRefGoogle Scholar
[138] Burton, W.K., Cabrera, N., and Frank, F.C., Nature 163, 398 (1949).CrossRefGoogle Scholar
[139] Burton, W.K., Cabrera, N., and f Frank, , Phil. Trans. Roy. Soc. London 243, A 866 (1951).Google Scholar
[140] Jackson, K.A., Cryst, J.. Growth 24 /25, 130 (1974).Google Scholar
[141] Lomer, W.M. and Nye, J.F., Proc. Roy. Soc. London A 212, 576 (1952).Google Scholar
[142] Read, W.T. and Shockley, W., Phys. Rev. 78, 275 (1950).CrossRefGoogle Scholar
[143] Van Swygenhoven, H., Farkas, D., and Caro, A., Phys. Rev. B 62, 831 (2000).CrossRefGoogle Scholar
[144] Yuasa, M., Nakazawa, T., and Mabuchi, M., J. Phys.: Condens. Matter 24, 265703 (2012).Google Scholar
[145] Olmsted, D., Foiles, S.M., and Holm, E.A., Acta Mater. 57, 3694 (2009).Google Scholar
[146] Setyawan, W. and Kurtz, R.J., Scripta Mater. 66, 558 (2012).CrossRefGoogle Scholar
[147] Sangid, M.D., Ezaz, T., Sehitoglu, H., and Robertson, I.M., Acta Mater. 59, 283 (2011).Google Scholar
[148] Udler, D. and Seidman, D.N., Phys. Rev. B 54, R11133 (1996).CrossRefGoogle Scholar
[149] Foiles, S.M., Scripta Mater. 62, 231 (2010).CrossRefGoogle Scholar
[150] Kikuchi, R. and Cahn, J.W. Phys. Rev. B 21, 1893 (1980).CrossRefGoogle Scholar
[151] Pandit, R., Schick, M., and Wortis, M., Phys. Rev. B 26, 5112 (1982).CrossRefGoogle Scholar
[152] Cahn, J.W. and Kikuchi, R., Phys. Rev. B 36, 418 (1987).Google Scholar
[153] Cantwell, P.R., Tang, M., Dillon, S.J., et al., Acta Mater. 62, 1 (2014).CrossRefGoogle Scholar
[154] Frolov, T., Olmsted, D.L., Asta, M., and Mishin, Y., Nature Commun. 4, 1899 (2013).CrossRefGoogle Scholar
[155] Frolov, T., Asta, M., and Mishin, Y., Phys. Rev. B 92, 020103 (2015).CrossRefGoogle Scholar
[156] Cantwell, P.R., Ma, S., Bojarski, S.A., Rohrer, G.S., and Harmer, M.P., Acta Mater. 106, 78 (2016).CrossRefGoogle Scholar
[157] Clarke, D.R., J. Amer. Ceramic Soc. 70, 15 (1987).CrossRefGoogle Scholar
[158] Keblinski, P., Phillpot, S.R., Wolf, D., and Gleiter, H., Phys. Rev. Lett. 77, 2965 (1996).CrossRefGoogle Scholar
[159] McLean, D., Grain Boundaries in Metals (Clarendon Press, Oxford, 1957). Chapter 5.Google Scholar
[160] Zucker, R.V., Chatain, D., Dahmen, U., Hagège, S., and Carter, W.C., J. Mater. Sci. 47, 8290 (2012).CrossRefGoogle Scholar
[161] Desré, P.J. and Yavari, A.R., Phys. Rev. Lett. 64, 1533 (1990).Google Scholar
[162] Gösele, U. and Tu, K.N., J. Appl. Phys. 53, 3252 (1982).Google Scholar
[163] Nicolet, M.-A. and Lau, S.S., in VLSI Electronics, Volume 6, Einspruch, N.G. and Larrabee, G.B., Eds. (Academic Press, New York, 1983), p. 329.Google Scholar
[164] Walser, R. and Bené, R., Appl. Phys. Lett. 28, 624 (1976).CrossRefGoogle Scholar
[165] Purewal, J., Ph.D. thesis in materials science, California Institute of Technology (2010).Google Scholar
[166] Dash, J.G. Contemp. Phys. 89 (1989).Google Scholar
[167] Rosenberg, R., Phys. Today 58, 50 (2005).CrossRefGoogle Scholar
[168] Yang, Y., Asta, M., and Laird, B.B., Phys. Rev. Lett. 110, 096102 (2013).Google Scholar
[169] Mellenthin, J., Karma, A., and Plapp, M., Phys Rev. B 78, 184110 (2008).CrossRefGoogle Scholar
[170] Tang, M., Carter, W.C., and Cannon, R.M., Phys. Rev. B 73, 024102 (2006).Google Scholar
[171] Yang, Y., Olmsted, D.L., Asta, M., and Laird, B.B., Acta Mater. 60, 4960 (2012).Google Scholar
[172] Palafox-Hernandeza, J.P., Laird, B.B., and Asta, M., Acta Mater. 59, 3137 (2011).Google Scholar
[173] Minakov, A.A., Wurm, A., and Schick, C., Eur. Phys. J. E 23, 4353 (2007).CrossRefGoogle Scholar
[174] Daeges, J., Gleiter, H., and Perepezko, J.H., Phys. Lett. A 119, 79 (1986).CrossRefGoogle Scholar
[175] Takeya, S., Appl. Phys. Lett. 88, 074103 (2006).Google Scholar
[176] Forsblom, M. and Grimvall, G., Nature 4, 388 (2005).Google Scholar
[177] Belonoshko, A.B., Skorodumova, N.V., Rosengren, A., and Johansson, B., Phys. Rev. B 73, 012201 (2006).CrossRefGoogle Scholar
[178] Fecht, H.J. and Johnson, W.L., Nature 334, 50 (1988).CrossRefGoogle Scholar
[179] Lawson, A.C., Philos. Mag. 89, 1757 (2009).CrossRefGoogle Scholar
[180] Rose, J.H., Ferrante, J., and Smith, J.R., Phys. Rev. Lett. 47, 675 (1981).CrossRefGoogle Scholar
[181] Rose, J.H., Smith, J.R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
[182] Tang, X., Li, C.W., and Fultz, B., Phys. Rev. B 82, 184301 (2010).Google Scholar
[183] Jacobs, M.H.G. and Schmid-Fetzer, R., Phys. Chem. Minerals 37, 721 (2010).CrossRefGoogle Scholar
[184] Spenscer, P.J. and the Scientific Group Thermodata Europe (SGTE), Landolt– Börnstein / New Series Group IV: Physical Chemistry, Volume 19 (Springer, Heidelberg, 1999).Google Scholar
[185] SGTE Scientific Group Thermodata Europe www.met.kth.se/sgte/.Google Scholar
[186] Bock, N., Coffey, D., and Wallace, D.C., Phys. Rev. B 72, 155120 (2005).CrossRefGoogle Scholar
[187] Bock, N., Wallace, D.C., and Coffey, D., Phys. Rev. B 73, 075114 (2006).CrossRefGoogle Scholar
[188] Kresch, M.G., Lucas, M.S., Delaire, O., Lin, J.Y.Y., and Fultz, B., Phys. Rev. B 77, 024301 (2008).CrossRefGoogle Scholar
[189] Forsblom, M. and Grimvall, G., Phys. Rev. B 72, 132204 (2005).Google Scholar
[190] Körmann, F., Dick, A., Grabowski, B., et al., Phys. Rev. B 78, 033102 (2008).CrossRefGoogle Scholar
[191] Körmann, F., Dick, A., Grabowski, B., Hickel, T., and Neugebauer, J., Phys. Rev. B 85, 125104 (2012).CrossRefGoogle Scholar
[192] Wallace, D.C., Statistical Physics of Crystals and Liquids: A Guide to Highly Accurate Equations of State (World Scientific, Singapore, 2003).CrossRefGoogle Scholar
[193] Lindemann, F.A., Phys. Z. 11, 609 (1910).Google Scholar
[194] Gilvarry, J.J., Phys. Rev. 102, 308 (1956).Google Scholar
[195] Gschneidner, K., Jr., Solid State Physics, Volume 16, F. Seitz and D. Turnbull, Eds. (Academic Press, New York, 1965), p. 275.Google Scholar
[196] Kauzmann, W., Chem. Rev. 43, 219 (1948).CrossRefGoogle Scholar
[197] Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., and Martin, S.W., J. Appl. Phys. 88, 3113 (2000).CrossRefGoogle Scholar
[198] Debenedetti, P.G. and Stillinger, F.H., Nature 410, 259 (2001).CrossRefGoogle Scholar
[199] Ediger, M.D., Annu. Rev. Phys. Chem. 51, 99 (2000).CrossRefGoogle Scholar
[200] Johnson, W.L., Demetriou, M.D., Harmon, J.S., Lind, M.L., and Samwer, K., MRS Bull. 32, 644 (2007).CrossRefGoogle Scholar
[201] Bohmer, R., Ngai, K.L., Angell, C.A., and Plazek, D.J., J. Chem. Phys. 99, 4201 (1993).Google Scholar
[202] Angell, C.A., Science 267, 1924 (1995).CrossRefGoogle Scholar
[203] Smith, H.L., Li, C.W., Hoff, A., et al., Nature Phys. 13, 900 (2017).CrossRefGoogle Scholar
[204] Goldstein, M., J. Chem. Phys. 64, 4767 (1976).CrossRefGoogle Scholar
[205] Gujrati, P.D. and Goldstein, M., J. Phys. Chem. 84, 859 (1980).CrossRefGoogle Scholar
[206] Johari, G.P., J. Chem. Phys. 112, 7518 (2000).Google Scholar
[207] Kosterlitz, J.M. and Thouless, D.J., J. Phys. C: Solid State Phys. 6, 1181 (1973).CrossRefGoogle Scholar
[208] Kurz, W. and Fisher, D.J., Fundamentals of Solidification (Trans Tech, Switzerland, 1989).Google Scholar
[209] Chalmers, B., Physical Metallurgy (Wiley, New York, 1959).Google Scholar
[210] Chalmers, B., Principles of Solidification (John Wiley & Sons, New York, 1964), pp. 118, 119.Google Scholar
[211] Karma, A. and Rappel, W.J., Phys. Rev. E 57, 4323 (1998).CrossRefGoogle Scholar
[212] Boettinger, W.J., Warren, J.A., Beckermann, C., and Karma, A., Annu. Rev. Mater. Res. 32, 163 (2002).CrossRefGoogle Scholar
[213] Warren, J.A. and Boettinger, W.J., Acta Metall. Mater. 43, 689 (1995).Google Scholar
[214] Hoyt, J.J., Asta, M., and Karma, A., Mater. Sci. Eng. Rep. 41, 121 (2003).CrossRefGoogle Scholar
[215] Brody, H.D. and Flemings, M.C., Trans. AIME, 236, 651 (1966).Google Scholar
[216] Bower, T.F., Brody, H.D., and Flemings, M.C., Trans. AIME, 236, 624 (1966).Google Scholar
[217] Saffman, P.G. and Taylor, G., Proc. Roy. Soc. 245, 312 (1958).Google Scholar
[218] Huang, S.-C. and Glicksman, M.E., Acta Metall. 29, 701 (1981).Google Scholar
[219] Langer, J.S., Rev. Mod. Phys. 52, 1 (1980).CrossRefGoogle Scholar
[220] Mullins, W.W. and Sekerka, R.F., J. Appl. Phys. 34, 323 (1963).CrossRefGoogle Scholar
[221] Mullins, W.W. and Sekerka, R.F., J. Appl. Phys. 35, 444 (1964).CrossRefGoogle Scholar
[222] Ivanstov, G.P., Doklady Akad. Nauk SSSR 58, 567 (1947).Google Scholar
[223] Langer, J.S. and Müller-Krumbhaar, H., Acta Metall. 26, 1681 (1978). Ibid. 26, 1689 (1978). Ibid. 26, 1697 (1978).Google Scholar
[224] Lipton, J., Glicksman, M.E., and Kurz, W., Mater. Sci. Eng. 65, 57 (1984).CrossRefGoogle Scholar
[225] Glicksman, M.E., Koss, M.B., and Winsa, E.A., Phys. Rev. Lett. 73, 573 (1994).CrossRefGoogle Scholar
[226] Clarke, A.J., Tourret, D., Song, Y., et al., Acta Mater. 129, 203 (2017).CrossRefGoogle Scholar
[227] Ben-Jacob, E., Goldenfield, N.D., Langer, J.S., and Schon, G., Phys. Rev. Lett. 51, 1930 (1981). Ibid. 29, 330 (1984).Google Scholar
[228] Kessler, D.A., Koplik, J., and Levine, H., Phys. Rev. A 33, 3352 (1986).Google Scholar
[229] Kessler, D.A. and Levine, H., Acta. Metall. 36, 2693 (1988).CrossRefGoogle Scholar
[230] Gurevich, S., Karma, A., Plapp, M., and Trivedi, R., Phys. Rev E 81, 011603 (2010).CrossRefGoogle Scholar
[231] Hono, K., Prog. Mater. Sci. 47, 621 (2002).CrossRefGoogle Scholar
[232] Wang, S.C. and Starink, M.J., Int. Mater. Rev. 50, 193 (2005).CrossRefGoogle Scholar
[233] Polmear, I.J., Trans. Metall. Soc. AIME 230, 1331 (1964).Google Scholar
[234] Taylor, J.A., Parker, B.A., and Polmear, I.J., Metall. Sci. 12, 478 (1978).CrossRefGoogle Scholar
[235] Garg, A. and Howe, J.M., Acta Metall. Mater. 39, 1939 (1991).Google Scholar
[236] Hardy, H.K., J. Inst. Met. 78, 169 (1950).Google Scholar
[237] Kimura, H. and Hashiguti, R., Acta Metall. 9, 1076 (1961).CrossRefGoogle Scholar
[238] Banerjee, R., Nag, S., Stechschulte, J., and Fraser, H.L., Biomaterials 25, 3413 (2004).CrossRefGoogle Scholar
[239] Bachhav, M., Yao, L., Odette, G.R., and Marquis, E.A., J. Nucl. Mater. 453, 334 (2014).CrossRefGoogle Scholar
[240] Hehemann, R.F., Kinsman, K.R., and Aaronson, H.I., Metall. Trans. 3A, 1077 (1972).Google Scholar
[241] United States Steel Company, Atlas of Isothermal Transformation Diagrams (U.S. Steel Company, Pittsburgh, PA, 1951).Google Scholar
[242] Langer, J.S. and Schwartz, A.J., Phys. Rev. A21, 948 (1980).Google Scholar
[243] Binder, K. and Stauffer, D., Adv. Phys. 25, 343 (1976).CrossRefGoogle Scholar
[244] Hoyt, J.J., Phase Transformations (McMaster Innovation Press, Hamilton, ON, 2010).Google Scholar
[245] f Kolmogorov, , Akad. Nauk SSSR, Izv., Ser. Matem. 355, 1 (1937).Google Scholar
[246] Johnson, W.A. and Mehl, P.A., Trans. AIME 135, 416 (1939).Google Scholar
[247] Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
[248] Avrami, M., J. Chem. Phys. 8, 212 (1940).CrossRefGoogle Scholar
[249] Avrami, M., J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
[250] Cahn, J.W., Acta Metall. 4, 449 (1956).Google Scholar
[251] Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
[252] Wagner, C., Z. Electrochem. 65, 581 (1961).Google Scholar
[253] Balluffi, R.W., Allen, S.M., and Carter, W.C., Kinetics of Materials (Wiley-Interscience, Hoboken, NJ, 2005), Chapter 15 and references therein.CrossRefGoogle Scholar
[254] Krill, C.E. and Chen, L.Q., Acta Mater. 50, 3057 (2002).Google Scholar
[255] Cahn, J.W., Acta Metall. 10, 1 (1962).Google Scholar
[256] Baker, J.C. and Cahn, J.W., in Solidification, T.J. Hughel and Bolling, G.F., Eds. (ASM, Metals Park, OH, 1971), p. 23.Google Scholar
[257] Hillert, M. and Sundman, B., Acta Metall. 24, 731 (1976).Google Scholar
[258] Hillert, M., Acta Mater. 47, 4481 (1999).CrossRefGoogle Scholar
[259] Aziz, M.J. and Kaplan, T., Acta Metall. 36, 2335 (1988).CrossRefGoogle Scholar
[260] Cahn, J.W., Acta Metal., 10, 789 (1962).Google Scholar
[261] Herlach, D.M., Mater. Sci. Eng. R 12, 177 (1994).CrossRefGoogle Scholar
[262] Walder, S. and Ryder, P.L., Acta Metall. Mater. 43, 4007 (1995).CrossRefGoogle Scholar
[263] Sobolev, S.L., Acta Mater. 61, 7881 (2013).CrossRefGoogle Scholar
[264] Humadi, H., Hoyt, J.J., and Provatas, N., Phys. Rev. E 93, 010801(R) (2016).CrossRefGoogle Scholar
[265] Liu, G., Zhang, G.J., Ding, X.D., Sun, J., and Chen, K.H., Mater. Sci. Eng. A 344, 113 (2003).CrossRefGoogle Scholar
[266] Eshelby, J.D., Solid State Physics, Volume 3 (Academic Press, New York, 1956), p. 79.Google Scholar
[267] Khachaturyan, A.G., Theory of Structural Transformations in Solids (Wiley-Interscience, New York, 1983).Google Scholar
[268] Bitter, F., Phys. Rev. 37, 1527 (1931).Google Scholar
[269] Crum, M.M., communication cited in F.R.N. Nabarro, Proc. Roy. Soc. A 125, 519 (1940).Google Scholar
[270] Cahn, J.W. and Larché, F.C., Acta Metall. 32, 1915 (1984).CrossRefGoogle Scholar
[271] Schwarz, R.B. and Khachaturyan, A.G., Phys. Rev. Lett. 74, 2523 (1995).CrossRefGoogle Scholar
[272] Schwarz, R.B. and Khachaturyan, A.G., Acta Mater. 54, 313 (2006).CrossRefGoogle Scholar
[273] Luo, S., Luo, W., Clewley, J.D., Flanagan, T.B., and Bowman, R.C., Jr., J. Alloys Compounds 231, 473 (1995).Google Scholar
[274] Witham, C.K., Ph.D. Thesis in materials science, California Institute of Technology (2000).Google Scholar
[275] Cahn, J.W., Acta Metall. 9, 795 (1961).Google Scholar
[276] Cahn, J.W. and Hilliard, J.E., J. Chem. Phys. 28, 258 (1958).CrossRefGoogle Scholar
[277] Cahn, J.W. and Hilliard, J.E., J. Chem. Phys. 31, 688 (1959).CrossRefGoogle Scholar
[278] Langer, J.S., Ann. Phys. 65, 53 (1971).CrossRefGoogle Scholar
[279] Wei, Xiong, Hedström, P., Selleby, M., et al., CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 35, 355 (2011).Google Scholar
[280] Langer, J.S., Rev. Mod. Phys. 52, 1 (1980).CrossRefGoogle Scholar
[281] Hohenberg, P.C. and Halperin, B.I., Rev. Mod. Phys. 49, 435 (1977).CrossRefGoogle Scholar
[282] Mohri, T.., in Alloy Physics, Pfeiler, W., Ed. (Wiley–VCH, Weinheim, 2007), Chapter 10.Google Scholar
[283] Allen, S.M. and Cahn, J.W., Acta Metall. 27, 1085 (1979).CrossRefGoogle Scholar
[284] Stauffer, D., Introduction to Percolation Theory (Taylor & Francis, London, 1985).CrossRefGoogle Scholar
[285] Khachaturyan, A.G., Phys. Met. Metallog. 13, 493 (1962).Google Scholar
[286] Khachaturyan, A.G., Sov. Phys. Solid State 5, 16 (1963).Google Scholar
[287] Khachaturyan, A.G., Sov. Phys. Solid State 5, 548 (1963).Google Scholar
[288] Khachaturyan, A.G., Prog. Mater. Sci. 22, 1-150 (1978).CrossRefGoogle Scholar
[289] Landau, L.D. s 7, 19 (1937). Ibid 7, 627 (1937). Translated and reprinted in L.D. Landau, Collected Papers, Volume 1 (Nauka, Moscow, 1969), pp. 234–252.Google Scholar
[290] Landau, L.D. and Lifshitz, E.M., Statistical Physics (Addison-Wesley, Reading, MA, 1969), Chapters 13, 14.Google Scholar
[291] Kaminsky, E.Z. and Kurdjumov, G.V., Tekh, Zh.. Fiz. 6, 984 (1936).Google Scholar
[292] Kurdjumov, G.V., Miretzskii, V.I., and Stelletskaya, T.I., Tekh, Zh.. Fiz. 2, 1956 (1939).Google Scholar
[293] Patterson, R.L. and Wayman, C.M., Acta Metall. 14, 347 (1966).CrossRefGoogle Scholar
[294] Shewmon, P.G., Transformations in Metals (McGraw-Hill, New York, 1969).Google Scholar
[295] Kurdjumov, G.V. and Sachs, G., Z. Phys. 64, 325 (1930).Google Scholar
[296] Nishiyama, Z., Sci. Rep. Tohoku Univ. 23, 637 (1934).Google Scholar
[297] Lieberman, D.S., Weschler, M.S., and Read, T.A., J. Appl. Phys. 26, 473 (1955).CrossRefGoogle Scholar
[298] Kurdjumov, G.V. and Khandros, G., Dokl. Nauk. SSSR 66, 211 (1949).Google Scholar
[299] Tong, H.C. and Wayman, C.M., Acta Metall. 23, 209 (1975).CrossRefGoogle Scholar
[300] Nishiyama, Z., Martensitic Transformation (Academic Press, New York, 1978).Google Scholar
[301] Bogers, A.J. and Burgers, W.G., Acta Metall. 12, 255 (1964).CrossRefGoogle Scholar
[302] Olson, G.B. and Cohen, M., J. Less-Common Metals 28, 107 (1972).CrossRefGoogle Scholar
[303] Bracke, L., Kestens, L., and Penning, J., Scripta Metall. 57, 385 (2007).CrossRefGoogle Scholar
[304] Wechsler, M.S., Lieberman, D.S., and Read, T.A., Trans. AIME 197, 1503 (1953).Google Scholar
[305] Bowles, J.S. and Mackenzie, J.K., Acta Metall. 2, 129 (1954).Google Scholar
[306] Mackenzie, J.K. and Bowles, J.S., Acta Metall. 2, 138 (1954).CrossRefGoogle Scholar
[307] Mackenzie, J.K. and Bowles, J.S., Acta Metall. 5, 137 (1957).CrossRefGoogle Scholar
[308] Christian, J.W., J. Inst. Metals 84, 385 (1956).Google Scholar
[309] Born, M., Proc. Cambridge Philos. Soc. 36, 160 (1940).Google Scholar
[310] Zener, C., Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948).Google Scholar
[311] Scheil, E.S., Anorg. Allg. Chem. 207, 21 (1932).Google Scholar
[312] Clapp, P.C., Phys. Stat. Sol. B 57, 561 (1973).CrossRefGoogle Scholar
[313] Petry, W., Phase Trans. 31, 119 (1991).CrossRefGoogle Scholar
[314] Petry, W., Heiming, A., Trampenau, J., et al., Phys. Rev. B 43, 10933 (1991).CrossRefGoogle Scholar
[315] Petry, W., Phys, J.. IV 5 C2, 15 (1995).Google Scholar
[316] Grimvall, G., Magyari-Köpe, B., Ozolins, V., and Persson, K.A., Rev. Mod. Phys. 84, 945 (2012).CrossRefGoogle Scholar
[317] Trampenau, J., Petry, W., and Herzig, C., Phys. Rev. B 47, 3132 (1993).CrossRefGoogle Scholar
[318] Friedel, J., J. Phys. Lett. (Paris) 35, 59 (1974).Google Scholar
[319] Cahn, J.W., Prog. Mater. Sci. 36, 149 (1992).CrossRefGoogle Scholar
[320] Mañosa, L., Planes, A., Ortín, J., and Martínez, B., Phys. Rev. B 45, 7633 (1992).Google Scholar
[321] Mañosa, L., Planes, A., Ortín, J., and Martínez, B., Phys. Rev. B 48, 3611 (1993).Google Scholar
[322] Obradó, E., Mañosa, L., and Planes, A., Phys. Rev. B 56, 20 (1997).CrossRefGoogle Scholar
[323] Bogdanoff, P. and Fultz, B., Philos. Mag. B 81, 299 (2001).CrossRefGoogle Scholar
[324] Schaefer, H.E., Nanoscience (Springer, Heidelberg, 2010).CrossRefGoogle Scholar
[325] Fultz, B., Kuwano, H., and Ouyang, H., J. Appl. Phys. 77, 3458 (1995).CrossRefGoogle Scholar
[326] Hong, L.B. and Fultz, B., J. Appl. Phys. 79, 3946 (1996).Google Scholar
[327] Yamada, K. and Koch, C.C., J. Mater. Res. 8, 1317 (1993).Google Scholar
[328] Pushkin, M.A., Troyan, V.I., Borisyuk, P.V., Borman, V.D., and Tronin, V.N., J. Nanosci. Nanotechnol. 12, 8676 (2012).CrossRefGoogle Scholar
[329] Jensen, K.M.Ø., Juhas, P., Tofanelli, M.A., et al., Nature Commun. 7, 11859 (2016).CrossRefGoogle Scholar
[330] Chen, C.C., Zhu, C., White, E.R., et al., Nature 496, 74 (2013).Google Scholar
[331] Chiu, C.Y., Li, Y., Ruan, L., Ye, X., Murray, C.B., and Huang, Y., Nature Chem. 3, 393 (2011).CrossRefGoogle Scholar
[332] Yang, Y., Chen, C.-C., Scott, M.C., et al., Nature 542, 75 (2017).Google Scholar
[333] Saita, S. and Maenosono, S., Chem. Mater. 17, 6624 (2005).Google Scholar
[334] Miao, J., Ercius, P., and Billinge, S.J.L., Science 353, aaf2157 (2016).CrossRefGoogle Scholar
[335] Bouckaert, L.P., Smoluchowski, R., and Wigner, E., Phys. Rev. 50, 58 (1936).CrossRefGoogle Scholar
[336] Tschöpe, A. and Birringer, R., Acta Metall. Mater. 41, 2791 (1993).CrossRefGoogle Scholar
[337] Suzuki, K. and Sumiyama, K., Mater. Trans. JIM 36, 188 (1995).Google Scholar
[338] Trampenau, J., Bauszuz, K., Petry, W., and Herr, U., Nanostruct. Mater. 6, 551 (1995).CrossRefGoogle Scholar
[339] Fultz, B., Robertson, J.L., Stephens, T.A., Nagel, L.J., and Spooner, S., J. Appl. Phys. 79, 8318 (1996).CrossRefGoogle Scholar
[340] Frase, H.N., Nagel, L.J., Robertson, J.L., and Fultz, B., Philos. Mag. B 75, 335 (1997).CrossRefGoogle Scholar
[341] Frase, H.N., Fultz, B., and Robertson, J.L., Phys. Rev. B 57, 898 (1998).CrossRefGoogle Scholar
[342] Papandrew, A.B., Yue, A.F., Fultz, B., et al., Phys. Rev. B 69, 144301 (2004).CrossRefGoogle Scholar
[343] Fultz, B., Ahn, C.C., Alp, E.E., Sturhahn, W., and Toellner, T.S., Phys. Rev. Lett. 79, 937 (1997).CrossRefGoogle Scholar
[344] Bonetti, E., Pasquini, L., Sampaolesi, E., Deriu, A., and Cicognani, G., J. Appl. Phys. 88, 4571 (2000).CrossRefGoogle Scholar
[345] Frase, H.N., Nagel, L.J., Robertson, J.L., and Fultz, B., in Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, E. Ma, B. Fultz, R. Shull, J. Morral, and P. Nash, Eds. (TMS, Warrendale, PA, 1997), p. 125.Google Scholar
[346] Cuenya, B.R., Naitabdi, A., Croy, J., et al., Phys. Rev. B 76, 195422 (2007).CrossRefGoogle Scholar
[347] Cuenya, B.R., Keune, W., Peters, R., et al., Phys. Rev. B 77, 165410 (2008).Google Scholar
[348] Tamura, A., Higeta, H., and Ichinokawa, T., J. Phys. C 15, 4975 (1982).CrossRefGoogle Scholar
[349] Tamura, A. and Ichinokawa, T., J. Phys. C 16, 4779 (1983).Google Scholar
[350] Tamura, A., Higeta, H., and Ichinokawa, T., J. Phys. C 16, 1585 (1983).Google Scholar
[351] Hansen, M.F., Koch, C.B., and Mørup, S., Phys. Rev. B 62, 1124 (2000).Google Scholar
[352] Bedanta, S. and Kleemann, W., J. Phys. D Appl. Phys. 42, 013001 (2009).CrossRefGoogle Scholar
[353] Mørup, S., Hansen, M.F., and Frandsen, C., Beilstein J. Nanotechnol. 1, 182 (2010).Google Scholar
[354] Bozorth, R.M., Ferromagnetism (Van Nostrand, New York, 1951).Google Scholar
[355] Ruderman, M.A. and Kittel, C., Phys. Rev. 96, 99 (1954).CrossRefGoogle Scholar
[356] Kasuya, T., Prog. Theor. Phys. 16, 45 (1956).Google Scholar
[357] Yosida, K., Phys. Rev. 106, 893 (1957).CrossRefGoogle Scholar
[358] Goodenough, J.B., J. Phys. Chem. Solids 6, 287 (1958).CrossRefGoogle Scholar
[359] Kanamori, J., J. Phys. Chem. Solids 10, 87 (1959).CrossRefGoogle Scholar
[360] Anderson, P.W., Solid State Physics, Volume 14, F. Seitz and D. Turnbull, Eds. (Academic Press, New York, 1963), p. 99.Google Scholar
[361] Goodenough, J.B., Scholarpedia 3, 7382 (2008).CrossRefGoogle Scholar
[362] Dzyaloshinskii, I., J. Phys. Chem. Solids 4, 241 (1958).Google Scholar
[363] Moriya, T., Phys. Rev. Lett. 4, 228 (1960).CrossRefGoogle Scholar
[364] Moriya, T., Phys. Rev. 120, 91 (1960).CrossRefGoogle Scholar
[365] Yu, X., Mostovoy, M., Tokunaga, Y., Zhang, W., et al., Proc. Natl. Acad. Sci. USA 109, 8856 (2012).Google Scholar
[366] Yu, X.Z., Onose, Y., Kanazawa, N., et al., Nature 465, 901 (2010).Google Scholar
[367] Bauer, A., Garst, M, and Pfleiderer, C., Phys. Rev. Lett. 110, 177207 (2013).Google Scholar
[368] Kay, H.F. and Vousden, P., Philos. Mag. 40, 1019 (1949).CrossRefGoogle Scholar
[369] Sanchez, J.M., de Fontaine, D., and Teitler, W., Phys. Rev. B 26, 1465 (1982).CrossRefGoogle Scholar
[370] Sanchez, J.M. and de Fontaine, D., Phys. Rev. B 21, 216 (1980).CrossRefGoogle Scholar
[371] Woloszyn, M., Stauffer, D., and Kulakowski, K., Eur. Phys. J. B 57, 331 (2007).CrossRefGoogle Scholar