Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-hd9dq Total loading time: 0.361 Render date: 2022-09-29T19:53:43.232Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

9 - Interactions in Microstructures and Constrained Equilibrium

from Part II - The Atomic Origins of Thermodynamics and Kinetics

Published online by Cambridge University Press:  24 April 2020

Brent Fultz
Affiliation:
California Institute of Technology
Get access

Summary

Interactions between different physical processes often make rich contributions to phase transformations in materials. The slow kinetics of one physical process can alter the thermodynamics of another process, confining it to a “constrained equilibrium,” sometimes a local minimum of free energy called a “metastable” state. A first example is the formation of a glass, which we approach with the simplest assumption that some state variables remain constant, while others relax towards equilibrium. Sometimes “self-trapping” occurs, when the slowing of a one variable enables the relaxation of a slower second variable coupled to it, and this relaxation impedes changes of the first variable. Couplings between interstitial and substitutional concentration variables are shown to alter the unmixing of both. Coherency stresses in two-phase materials are described. This chapter develops thermodynamic relationships between the different degrees of freedom of multiferroic materials, with a focus on the extensive variables that are closer to the atoms and electrons. The chapter concludes by addressing more deeply the meaning of “separability,” showing some of its formal thermodynamic consequences.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×