Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-9th95 Total loading time: 0.601 Render date: 2022-12-03T15:32:10.168Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Some general results in combinatorial enumeration

Published online by Cambridge University Press:  05 October 2010

Martin Klazar
Affiliation:
Department of Applied Mathematics Charles University 118 00 Praha Czech Republic
Steve Linton
Affiliation:
University of St Andrews, Scotland
Nik Ruškuc
Affiliation:
University of St Andrews, Scotland
Vincent Vatter
Affiliation:
Dartmouth College, New Hampshire
Get access

Summary

Abstract

This survey article is devoted to general results in combinatorial enumeration. The first part surveys results on growth of hereditary properties of combinatorial structures. These include permutations, ordered and unordered graphs and hypergraphs, relational structures, and others. The second part advertises four topics in general enumeration: 1. counting lattice points in lattice polytopes, 2. growth of context-free languages, 3. holonomicity (i.e., P-recursiveness) of numbers of labeled regular graphs and 4. ultimate modular periodicity of numbers of MSOL-definable structures.

Introduction

We survey some general results in combinatorial enumeration. A problem in enumeration is (associated with) an infinite sequence P = (S1, S2, …) of finite sets Si. Its counting function fP is given by fP (n) = |Sn|, the cardinality of the set Sn. We are interested in results of the following kind on general classes of problems and their counting functions.

Scheme of general results in combinatorial enumeration. The counting function fP of every problem P in the class C belongs to the class of functions F. Formally, {fP | PC} ⊂ F.

The larger C is, and the more specific the functions in F are, the stronger the result. The present overview is a collection of many examples of this scheme.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] M. H., Albert and M. D., Atkinson. Simple permutations and pattern restricted permutations. Discrete Math., 300(1-3):1–15, 2005.Google Scholar
[2] M. H., Albert, M. D., Atkinson, and R., Brignall. Permutation classes of polynomial growth. Ann. Comb., 11(3–4):249–264, 2007.Google Scholar
[3] M. H., Albert, M., Elder, A., Rechnitzer, P., Westcott, and M., Zabrocki. On the Wilf-Stanley limit of 4231-avoiding permutations and a conjecture of Arratia. Adv. in Appl. Math., 36(2):95–105, 2006.Google Scholar
[4] M. H., Albert and S., Linton. Growing at a perfect speed. Combin. Probab. Comput., 18:301–308, 2009.Google Scholar
[5] M. H., Albert, S., Linton, and N., Ruškuc. The insertion encoding of permutations. Electron. J. Combin., 12(1):Research paper 47, 31 pp., 2005.Google Scholar
[6] V. E., Alekseev. Range of values of entropy of hereditary classes of graphs. Diskret. Mat., 4(2):148–157, 1992.Google Scholar
[7] J.-P., Allouche and J., Shallit. Automatic sequences. Cambridge University Press, Cambridge, 2003.Google Scholar
[8] G. E., Andrews. The theory of partitions. Addison-Wesley Publishing Co., Reading, Mass.Mass.-London-Amsterdam, 1976.Google Scholar
[9] R., Arratia. On the Stanley-Wilf conjecture for the number of permutations avoiding a given pattern. Electron. J. Combin., 6:Note, N1, 4 pp., 1999.Google Scholar
[10] M. D., Atkinson, M. M., Murphy, and N., Ruškuc. Partially well-ordered closed sets of permutations. Order, 19(2):101–113, 2002.Google Scholar
[11] J., Balogh and B., Bollobás. Hereditary properties of words. Theor. Inform. Appl., 39(1):49–65, 2005.Google Scholar
[12] J., Balogh, B., Bollobás, and R., Morris. Hereditary properties of ordered graphs. In M., Klazar, J., Kratochvíl, M., Loebl, J., Matoušek, R., Thomas, and P., Valtr, editors, Topics in discrete mathematics, volume 26 of Algorithms Combin., pages 179–213. Springer, Berlin, 2006.Google Scholar
[13] J., Balogh, B., Bollobás, and R., Morris. Hereditary properties of partitions, ordered graphs and ordered hypergraphs. European J. Combin., 27(8):1263–1281, 2006.Google Scholar
[14] J., Balogh, B., Bollobás, and R., Morris. Hereditary properties of combinatorial structures: posets and oriented graphs. J. Graph Theory, 56(4):311–332, 2007.Google Scholar
[15] J., Balogh, B., Bollobás, and R., Morris. Hereditary properties of tournaments. Electron. J. Combin., 14(1):Research Paper 60, 25 pp., 2007.Google Scholar
[16] J., Balogh, B., Bollobás, M., Saks, and V. T., Sós. The unlabeled speed of a hereditary graph property. Preprint.
[17] J., Balogh, B., Bollobás, and M., Simonovits. The number of graphs without forbidden subgraphs. J. Combin. Theory Ser. B, 91(1):1–24, 2004.Google Scholar
[18] J., Balogh, B., Bollobás, and D., Weinreich. The speed of hereditary properties of graphs. J. Combin. Theory Ser. B, 79(2):131–156, 2000.Google Scholar
[19] J., Balogh, B., Bollobás, and D., Weinreich. The penultimate rate of growth for graph properties. European J. Combin., 22(3):277–289, 2001.Google Scholar
[20] J., Balogh, B., Bollobás, and D., Weinreich. Measures on monotone properties of graphs. Discrete Appl. Math., 116(1-2):17–36, 2002.Google Scholar
[21] J., Balogh, B., Bollobás, and D., Weinreich. A jump to the Bell number for hereditary graph properties. J. Combin. Theory Ser. B, 95(1):29–48, 2005.Google Scholar
[22] E., Barcucci, A., Del Lungo, A., Frosini, and S., Rinaldi. From rational functions to regular languages. In Formal power series and algebraic combinatorics (Moscow, 2000), pages 633–644. Springer, Berlin, 2000.Google Scholar
[23] A., Barvinok. The complexity of generating functions for integer points in polyhedra and beyond. In International Congress of Mathematicians. Vol. III, pages 763–787. Eur. Math. Soc., Zürich, 2006.Google Scholar
[24] A., Barvinok and K., Woods. Short rational generating functions for lattice point problems. J. Amer. Math. Soc., 16(4):957–979, 2003.Google Scholar
[25] M., Beck and S., Robins. Computing the continuous discretely. Undergraduate Texts in Mathematics. Springer, New York, 2007.Google Scholar
[26] O., Bernardi, M., Noy, and D., Welsh. On the growth rate of minor-closed classes of graphs. arXiv:06710.2995 [math.CO].
[27] C., Blatter and E., Specker. Le nombre de structures finies d'une théorie à caractère fini. Sci. Math. Fonds Nat. Rec. Sci. Bruxelles, pages 41–44, 1981.Google Scholar
[28] C., Blatter and E., Specker. Modular periodicity of combinatorial sequences. Abstract Amer. Math. Soc., 4:313, 1983.Google Scholar
[29] C., Blatter and E., Specker. Recurrence relations for the number of labeled structures on a finite set. In E., Börger, G., Hasenjaeger, and D., Rödding, editors, Logic and Machines, pages 43–61, 1983.Google Scholar
[30] B., Bollobás. Hereditary and monotone properties of combinatorial structures. In A., Hilton and J., Talbot, editors, Surveys in Combinatorics 2007, number 346 in London Mathematical Society Lecture Note Series, pages 1–39. Cambridge University Press, 2007.Google Scholar
[31] B., Bollobás and A., Thomason. Projections of bodies and hereditary properties of hypergraphs. Bull. London Math. Soc., 27(5):417–424, 1995.Google Scholar
[32] B., Bollobás and A., Thomason. Hereditary and monotone properties of graphs. In The mathematics of Paul Erdős, II, volume 14 of Algorithms Combin., pages 70–78. Springer, Berlin, 1997.Google Scholar
[33] M., Bóna. Permutations avoiding certain patterns: the case of length 4 and some generalizations. Discrete Math., 175(1-3):55–67, 1997.Google Scholar
[34] M., Bóna. Combinatorics of permutations. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2004.Google Scholar
[35] Y., Boudabbous and M., Pouzet. The morphology of infinite tournaments. application to the growth of their profile. arXiv:0801.4069 [math.CO].
[36] M., Bousquet-Mélou. Algebraic generating functions in enumerative combinatorics and context-free languages. In STACS 2005, volume 3404 of Lecture Notes in Comput. Sci., pages 18–35. Springer, Berlin, 2005.Google Scholar
[37] M., Bousquet-Mélou. Rational and algebraic series in combinatorial enumeration. In International Congress of Mathematicians. Vol. III, pages 789–826. Eur. Math. Soc., Zürich, 2006.Google Scholar
[38] M. R., Bridson and R. H., Gilman. Context-free languages of sub-exponential growth. J. Comput. System Sci., 64(2):308–310, 2002.Google Scholar
[39] R., Brignall. A survey of simple permutations. In this volume, 41–65.
[40] R., Brignall, S., Huczynska, and V., Vatter. Simple permutations and algebraic generating functions. J. Combin. Theory Ser. A, 115(3):423–441, 2008.Google Scholar
[41] R., Brignall, N., Ruškuc, and V., Vatter. Simple permutations: decidability and unavoidable substructures. Theoret. Comput. Sci., 391(1–2):150–163, 2008.Google Scholar
[42] S. N., Burris. Number theoretic density and logical limit laws, volume 86 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.Google Scholar
[43] P. J., Cameron. Oligomorphic permutation groups, volume 152 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1990.Google Scholar
[44] P. J., Cameron. Some counting problems related to permutation groups. Discrete Math., 225(1-3):77–92, 2000.Google Scholar
[45] T., Ceccherini-Silberstein. Growth and ergodicity of context-free languages. II. The linear case. Trans. Amer. Math. Soc., 359(2):605–618, 2007.Google Scholar
[46] T., Ceccherini-Silberstein, A., Machi, and F., Scarabotti. On the entropy of regular languages. Theoret. Comput. Sci., 307(1):93–102, 2003.Google Scholar
[47] T., Ceccherini-Silberstein and W., Woess. Growth and ergodicity of context-free languages. Trans. Amer. Math. Soc., 354(11):4597–4625, 2002.Google Scholar
[48] T., Ceccherini-Silberstein and W., Woess. Growth-sensitivity of context-free languages. Theoret. Comput. Sci., 307(1):103–116, 2003.Google Scholar
[49] N., Chomsky and M. P., Schützenberger. The algebraic theory of context-free languages. In Computer programming and formal systems, pages 118–161. North-Holland, Amsterdam, 1963.Google Scholar
[50] L., Comtet. Advanced combinatorics. D. Reidel Publishing Co., Dordrecht, 1974.Google Scholar
[51] F., D'Alessandro, B., Intrigila, and S., Varricchio. On the structure of the counting function of sparse context-free languages. Theoret. Comput. Sci., 356(1-2):104–117, 2006.Google Scholar
[52] P., de la Harpe. Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.Google Scholar
[53] E., Deutsch and B. E., Sagan. Congruences for Catalan and Motzkin numbers and related sequences. J. Number Theory, 117(1):191–215, 2006.Google Scholar
[54] V., Domocoş. Minimal coverings of uniform hypergraphs and P-recursiveness. Discrete Math., 159(1-3):265–271, 1996.Google Scholar
[55] H.-D., Ebbinghaus and J., Flum. Finite model theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, enlarged edition, 2006.Google Scholar
[56] E., Ehrhart. Sur les polyèdres rationnels homothétiques à n dimensions. C. R. Acad. Sci. Paris, 254:616–618, 1962.Google Scholar
[57] M., Elder and V., Vatter. Problems and conjectures presented at the Third International Conference on Permutation Patterns, University of Florida, March 7–11, 2005. arXiv:0505504 [math.CO].
[58] S.-P., Eu, S.-C., Liu, and Y.-N., Yeh. Catalan and Motzkin numbers modulo 4 and 8. European J. Combin., 29(6):1449–1466, 2008.Google Scholar
[59] E., Fischer. The Specker-Blatter theorem does not hold for quaternary relations. J. Combin. Theory Ser. A, 103(1):121–136, 2003.Google Scholar
[60] E., Fischer and J. A., Makowsky. The Specker-Blatter theorem revisited. In Computing and combinatorics, volume 2697 of Lecture Notes in Comput. Sci., pages 90–101. Springer, Berlin, 2003.Google Scholar
[61] E., Fischer and J. A., Makowsky. On spectra of sentences of monadic second order logic with counting. J. Symbolic Logic, 69(3):617–640, 2004.Google Scholar
[62] P., Flajolet. Analytic models and ambiguity of context-free languages. Theoret. Comput. Sci., 49(2-3):283–309, 1987.Google Scholar
[63] P., Flajolet and R., Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009.Google Scholar
[64] R., Fraïssé. Sur quelques classifications des systèmes de relations. PhD thesis, Université de Paris, 1953.
[65] R., Fraïssé. Sur l'extension aux relations de quelques propriétés des ordres. Ann. Sci. Ecole Norm. Sup. (3), 71:363–388, 1954.Google Scholar
[66] R., Fraïssé. Theory of relations, volume 145 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, revised edition, 2000.Google Scholar
[67] I. M., Gessel. Symmetric functions and P-recursiveness. J. Combin. Theory Ser. A, 53(2):257–285, 1990.Google Scholar
[68] I. P., Goulden and D. M., Jackson. Labelled graphs with small vertex degrees and P-recursiveness. SIAM J. Algebraic Discrete Methods, 7(1):60–66, 1986.Google Scholar
[69] R., Grigorchuk and I., Pak. Groups of intermediate growth: an introduction. Enseign. Math. (2), 54(3-4):251–272, 2008.Google Scholar
[70] R. I., Grigorchuk. On the Milnor problem of group growth. Dokl. Akad. Nauk SSSR, 271(1):30–33, 1983.Google Scholar
[71] G., Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3), 2:326–336, 1952.Google Scholar
[72] S., Huczynska and V., Vatter. Grid classes and the Fibonacci dichotomy for restricted permutations. Electron. J. Combin., 13:Research paper 54, 14 pp., 2006.Google Scholar
[73] R., Incitti. The growth function of context-free languages. Theoret. Comput. Sci., 255(1-2):601–605, 2001.Google Scholar
[74] Y., Ishigami. The number of hypergraphs and colored hypergraphs with hereditary properties. arXiv:0712.0425v1 [math.CO].
[75] V., Jelínek and M., Klazar. Generalizations of Khovanski's theorems on the growth of sumsets in abelian semigroups. Adv. in Appl. Math., 41(1):115–132, 2008.Google Scholar
[76] T., Kaiser and M., Klazar. On growth rates of closed permutation classes. Electron. J. Combin., 9(2):Research paper 10, 20 pp., 2003.Google Scholar
[77] M., Klazar. Counting pattern-free set partitions. I. A generalization of Stirling numbers of the second kind. European J. Combin., 21(3):367–378, 2000.Google Scholar
[78] M., Klazar. Counting pattern-free set partitions. II. Noncrossing and other hypergraphs. Electron. J. Combin., 7:Research Paper 34, 25 pp., 2000.Google Scholar
[79] M., Klazar. Extremal problems for ordered (hyper) graphs: applications of Davenport-Schinzel sequences. European J. Combin., 25(1):125–140, 2004.Google Scholar
[80] M., Klazar. On the least exponential growth admitting uncountably many closed permutation classes. Theoret. Comput. Sci., 321(2-3):271–281, 2004.Google Scholar
[81] M., Klazar. On growth rates of permutations, set partitions, ordered graphs and other objects. Electron. J. Combin., 15(1):Research paper 75, 22 pp., 2008.Google Scholar
[82] W. F., Lunnon, P. A. B., Pleasants, and N. M., Stephens. Arithmetic properties of Bell numbers to a composite modulus. I. Acta Arith., 35(1):1–16, 1979.Google Scholar
[83] I. G., Macdonald. The volume of a lattice polyhedron. Proc. Cambridge Philos. Soc., 59:719–726, 1963.Google Scholar
[84] I. G., Macdonald. Polynomials associated with finite cell-complexes. J. London Math. Soc. (2), 4:181–192, 1971.Google Scholar
[85] H. D., Macpherson. Growth rates in infinite graphs and permutation groups. Proc. London Math. Soc. (3), 51(2):285–294, 1985.Google Scholar
[86] H. D., Macpherson. Orbits of infinite permutation groups. Proc. London Math. Soc. (3), 51(2):246–284, 1985.Google Scholar
[87] A., Marcus and G., Tardos. Excluded permutation matrices and the Stanley-Wilf conjecture. J. Combin. Theory Ser. A, 107(1):153–160, 2004.Google Scholar
[88] D., Marinov and R., Radoičić. Counting 1324-avoiding permutations. Electron. J. Combin., 9(2):Research paper 13, 9 pp., 2003.Google Scholar
[89] C., McDiarmid, A., Steger, and D. J. A., Welsh. Random graphs from planar and other addable classes. In Topics in discrete mathematics, volume 26 of Algorithms Combin., pages 231–246. Springer, Berlin, 2006.Google Scholar
[90] M., Mishna. Automatic enumeration of regular objects. J. Integer Seq., 10(5):Article 07.5.5, 18 pp., 2007.Google Scholar
[91] M. J., Mishna. Une approche holonome à la combinatoire algébrique. PhD thesis, Univ. Québec à Montréal, 2003.
[92] M., Morse and G. A., Hedlund. Symbolic Dynamics. Amer. J. Math., 60(4):815–866, 1938.Google Scholar
[93] S., Norine, P., Seymour, R., Thomas, and P., Wollan. Proper minor-closed families are small. J. Combin. Theory Ser. B, 96(5):754–757, 2006.Google Scholar
[94] C. H., Papadimitriou. Computational complexity. Addison-Wesley Publishing Company, Reading, MA, 1994.Google Scholar
[95] M., Pouzet. Sur la théorie des relations. PhD thesis, Université Claude-Bernard, Lyon 1, 1978.
[96] M., Pouzet. Application de la notion de relation presque-enchaînable au dénombrement des restrictions finies d'une relation. Z. Math. Logik Grundlag. Math., 27(4):289–332, 1981.Google Scholar
[97] M., Pouzet. The profile of relations. Glob. J. Pure Appl. Math., 2(3):237–272, 2006.Google Scholar
[98] M., Pouzet and N. M., Thiéry. Some relational structures with polynomial growth and their associated algebras. arXiv:0601256v1 [math.CO].
[99] C. R., Read. Enumeration. In L. W., Beineke and R. J., Wilson, editors, Graph connections, pages 13–33, New York, 1997. The Clarendon Press Oxford University Press.Google Scholar
[100] N., Robertson and P., Seymour. Graph minors i–xx. J. Combinatorial Theory Ser. B, 1983–2004.Google Scholar
[101] A., Salomaa. Formal languages. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1973. ACM Monograph Series.Google Scholar
[102] A., Salomaa and M., Soittola. Automata-theoretic aspects of formal power series. Springer-Verlag, New York, 1978. Texts and Monographs in Computer Science.Google Scholar
[103] E. R., Scheinerman and J., Zito. On the size of hereditary classes of graphs. J. Combin. Theory Ser. B, 61(1):16–39, 1994.Google Scholar
[104] S., Shelah. Spectra of monadic second order sentences. Sci. Math. Jpn., 59(2):351–355, 2004.Google Scholar
[105] S., Shelah and M., Doron. Bounded m-ary patch-width are equivalent for m > 2. arXiv:math/0607375v1 [math.LO].
[106] R., Simion. Noncrossing partitions. Discrete Math., 217(1-3):367–409, 2000. Formal power series and algebraic combinatorics (Vienna, 1997).Google Scholar
[107] E., Specker. Application of logic and combinatorics to enumeration problems. In Trends in theoretical computer science (Udine, 1984), volume 12 of Principles Comput. Sci. Ser., pages 143–169. Computer Sci. Press, Rockville, MD, 1988.Google Scholar
[108] E., Specker. Modular counting and substitution of structures. Combin. Probab. Comput., 14(1-2):203–210, 2005.Google Scholar
[109] J., Spencer. The strange logic of random graphs, volume 22 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2001.Google Scholar
[110] R. P., Stanley. Solution to problem E2546. Amer. Math. Monthly, 83(10):813–814, 1976.Google Scholar
[111] R. P., Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1997.Google Scholar
[112] R. P., Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.Google Scholar
[113] V. I., Trofimov. Growth functions of some classes of languages. Cybernetics, 17:727–731, 1982. translated from Kibernetika (1981), 9–12.Google Scholar
[114] V., Vatter. Permutation classes of every growth rate above 2.48188. Mathematika, 56:182–192, 2010.Google Scholar
[115] V., Vatter. Small permutation classes. arXiv:0712.4006v2 [math.CO].
[116] V., Vatter. Enumeration schemes for restricted permutations. Combin. Probab. Comput., 17:137–159, 2008.Google Scholar
[117] H. S., Wilf. What is an answer? Amer. Math. Monthly, 89(5):289–292, 1982.Google Scholar
4
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×