Skip to main content Accessibility help
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-25T08:31:36.559Z Has data issue: false hasContentIssue false

53 - The single kidney

from Part V - Urology

Published online by Cambridge University Press:  08 January 2010

Adrian S. Woolf
Nephro-Urology Unit, UCL Institute of Child Health, London, UK
Mark D. Stringer
University of Otago, New Zealand
Keith T. Oldham
Children's Hospital of Wisconsin
Pierre D. E. Mouriquand
Debrousse Hospital, Lyon
Get access



This review covers three clinical scenarios which feature the single kidney. The first category concerns patients who are born with only one kidney: they have congenital solitary functioning kidney, either caused by unilateral renal agenesis or regression of a malformed rudiment. After addressing the definition, incidence and diagnosis of this disorder, three aspects will be discussed: the putative developmental etiologies of this disorder; the occasional familial nature of the disorder suggesting a genetic basis to the disorder, and the long-term outcome of these individuals in terms of risk of subsequent disease in the kidney and the occurrence of hypertension (the “renal prognosis”).

The second category concerns patients who, in childhood or adulthood, have had either a unilateral nephrectomy or a subtotal nephrectomy for intrinsic renal disease. The latter subgroup have had one kidney and a fraction of the contralateral organ removed and are said to have a “remnant kidney.” I will discuss the clinical evidence which addresses the renal prognosis of these individuals. The third category concerns the renal prognosis of the single kidney in otherwise healthy renal transplant donors.

Renal agenesis and the congenital single kidney


Renal agenesis implies the total absence of the kidney and can be considered as part of the spectrum of renal malformations which also include: (i) renal hypoplasia, a disorder in which the kidney is small and contains fewer nephrons than normal; (ii) renal dysplasia in which the kidney contains undifferentiated tissue; (iii) the multicystic dysplastic kidney in which the dysplastic organ contains massive cysts and; (iv) renal aplasia which describes a tiny dysplastic organ.

Pediatric Surgery and Urology
Long-Term Outcomes
, pp. 675 - 682
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Risdon, R. A. & Woolf, A. S. Developmental defects and cystic diseases of the kidney. In Jennette, J. C., Olson, J. L., Schwartz, M. M., & Silva, F. G., eds. Heptinstall's Pathology of the Kidney. 5th edn. Philadelphia-New York, USA: Lippincott-Raven, 1998:1149–1206.Google Scholar
Woolf, A. S., Welham, S. J. M., Hermann, M. M., & Winyard, P. J. D. Maldevelopment of the human kidney and lower urinary tract: an overview. In Vize, P. D., Woolf, A. S., & Bard, J. B. L., eds. The Kidney: From Normal Development to Congenital Disease. The Netherlands: Elsevier Science/Academic Press, 2003:377–393.Google Scholar
Dungan, J. S., Fernandez, M. T., Abbitt, P. L., Thiagarajah, S., Howards, S. S., & Hogge, W. A.Multicystic dysplastic kidney: natural history of prenatally detected casesPrenat. Diagn. 1990; 10:175–182.CrossRefGoogle ScholarPubMed
Hiraoka, M., Tsukahara, H., Ohshima, Y., Kasuga, K., Ishihara, Y., & Mayumi, M.Renal aplasia is the predominant cause of congenital solitary kidney. Kidney Int. 2002; 61:1840–1844.CrossRefGoogle Scholar
Winyard, P. J. D., Nauta, J., Lirenman, D. al. Deregulation of cell survival in cystic and dysplastic renal development. Kidney Int. 1996; 49:135–146.CrossRefGoogle ScholarPubMed
Kiprov, D. D., Calvin, R. B., & McLuskey, R. T.Focal and segmental glomeruloscerosis and proteinuria associated with unilateral renal agenesis. Lab. Invest. 1982; 46:275–281.Google Scholar
Roodhooft, A. M., Birnholz, J. C., Holmes, L. B.Familial nature of congenital absence and severe dysgenesis of both kidneys. N. Engl. J. Med. 1984; 310:1341–1345.CrossRefGoogle ScholarPubMed
Potter, E. L.Bilateral renal agenesis. J. Pediatr. 1946; 29:68–76.CrossRefGoogle ScholarPubMed
Carter, C. O., Evans, K., & Pescia, G.A familial study of renal agenesis. J. Med. Genet. 1979; 16:176–188.CrossRefGoogle ScholarPubMed
Bankier, A., Campo, M., Newell, R., Rogers, J. G., & Danks, D. M.A pedigree study of perinatally lethal renal disease. J. Med. Genet. 1985; 22:104–111.CrossRefGoogle ScholarPubMed
Atiyeh, B., Husmann, D., & Baum, M.Contralateral renal abnormalities in patients with renal agenesis and noncystic renal dysplasia. Pediatrics 1993; 91:812–815.Google ScholarPubMed
Boyden, E. A.Experimental obstruction of the mesonephric ducts. Proc. Soc. Exp. Biol. Med. 1927; 24:572–576.CrossRefGoogle Scholar
Boyden, E. A.Congenital absence of the kidney. An interpretation based on a 10 mm human embryo exhibiting unilateral renal agenesis. Anat. Rec. 1932; 52:325–349.CrossRefGoogle Scholar
Mackie, C. G. & Stephens, F. D.Duplex kidneys: a correlation of renal dysplasia with position of the ureteric orifice. J. Urol. 1975; 114:274–280.CrossRefGoogle Scholar
Woolf, A. S.Congenital obstructive nephropathy gets complicated. Kidney Int. 2003; 63:761–763.CrossRefGoogle ScholarPubMed
Grobstein, C.Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature 1953; 172:869–870.CrossRefGoogle ScholarPubMed
Kreidberg, J. A., Sariola, H., Loring, J. al. WT-1 is required for early kidney development. Cell 1993; 74:679–691.CrossRefGoogle ScholarPubMed
Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F., & Pachnis, V.Defects in kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 1994; 367:380–383.CrossRefGoogle ScholarPubMed
Torres, M, Gomex-Pardo, E., Dressler, G. R., & Gruss, P.Pax-2 controls multiple steps of urogenital development. Development 1995; 121:4057–4065.Google ScholarPubMed
Davis, A. P., Witte, D. P., Hsieh-Li, H. M., Potter, S. S., & Capecchi, M. R.Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 1995; 375:791–795.CrossRefGoogle ScholarPubMed
Mendelsohn, C., Lohnes, D., Decimo, al. Function of the retinoic acid receptors (RAR) during development. Development 1994; 120:2749–2771.Google ScholarPubMed
Veis, D. J., Sorenson, C. M., Shutter, J. R., & Korsmeyer, S. J.Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys and hypopigmented hair. Cell 1993; 75:229–240.CrossRefGoogle ScholarPubMed
Novak, R. W. & Robinson, H. B.Coincident DiGeorge anomaly and renal agenesis and its relation to maternal diabetes. Am. J. Med. Genet. 1994; 50:311–312.CrossRefGoogle ScholarPubMed
Stevens, A. R.Pelvic single kidneys. J. Urol. 1937; 37:610–618.CrossRefGoogle Scholar
Cain, D. R., Griggs, D., Lackey, D. A., & Kagan, B. M.Familial renal agenesis and total dysplasia. Am. J. Dis. Child. 1974; 128:377–380.Google ScholarPubMed
Pashayan, H. M., Dowd, T., & Nigro, A. V.Bilateral absence of the kidneys and ureters. J. Med. Genet. 1977; 14:205–209.CrossRefGoogle ScholarPubMed
Schinzel, A., Homberger, C., & Sigrist, T.Bilateral renal agenesis in 2 male sibs born to consanguineous parents. J. Med. Genet. 1978; 15:314–316.CrossRefGoogle ScholarPubMed
McPherson, E., Carey, J., Kramer, al. Dominantly inherited renal adysplasia. Am. J. Med. Genet. 1987; 26:863–872.CrossRefGoogle ScholarPubMed
Murugasu, B., Cole, B. R., Hawkins, E. P., Blanton, S. H., Conley, S. B., & Portman, R. J.Familial renal adysplasia. Am. J. Kidney Dis. 1991; 18:490–494.CrossRefGoogle ScholarPubMed
Arfeen, S., Rosborough, D., Luger, A. M., & Nolph, K. D.Familial unilateral renal agenesis and focal and segmental glomerulosclerosis. Am. J. Kidney Dis. 1993; 21:663–668.CrossRefGoogle ScholarPubMed
Rodriguez-Soriano, J.Branchio-oto-renal syndrome. J. Nephrol. 2003; 16:603–605.Google ScholarPubMed
Bingham, C., Ellard, S.Cole, T. R. al. Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor-1β mutations. Kidney Int. 2002; 61:1243–1251.CrossRefGoogle ScholarPubMed
Kolatsi-Joannou, M., Bingham, C., Ellard, al. Hepatocyte nuclear factor 1β: a new kindred with renal cysts and diabetes, and gene expression in normal human development. J. Am. Soc. Nephrol. 2001; 12:2175–2180.Google ScholarPubMed
Duke, V. M., Winyard, P. J. D., Thorogood, P., Soothill, P., Bouloux, P. M. G., & Woolf, A. S.KAL, a gene mutated in Kallmann's syndrome, is expressed in the first timester of human development. Mol. Cell. Endocrin. 1995; 110:73–79.CrossRefGoogle Scholar
Kirk, J. M. W, Grant, D. B., Besser, G. al.. Unilateral renal aplasia in X-linked Kallmann's Syndrome. Clin. Genet. 1994; 46:260–262.CrossRefGoogle ScholarPubMed
McGregor, L., Makela, V., Darling, S., M. et al.Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat. Genet. 2003; 34:203–208.CrossRefGoogle ScholarPubMed
Fine, L. G., Kurtz, I., Woolf, A. S. et al. Pathophysiology and nephron adaptation in chronic renal failure. In Schrier, R. W. & Gottschalk, C. W., eds. Diseases of the Kidney, Boston: Little and Brown, 1992:2703–2742.Google Scholar
Mandell, J., Peters, C. A., Estroff, J. A., Allred, E. N., & Benacerraf, B. R.Human fetal compensatory renal growth. J. Urol. 1993: 150:790–792.CrossRefGoogle ScholarPubMed
Glazebrook, K. N., McGrath, F. P., & Steele, B. T.Prenatal compensatory renal growth: documentation with US. Radiology 1993; 189:733–735.CrossRefGoogle ScholarPubMed
Douglas-Denton, R., Moritz, K. M., Bertram, J. F., & Wintour, E. M.Compensatory renal growth after untilateral nephrectomy in the ovine fetus. J. Am. Soc. Nephrol. 2002; 13:406–410.Google ScholarPubMed
Hostetter, T. H., Olson, J. L., Rennke, H. G., & Brenner, B. M.Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am. J. Phys. 1981; 241:F85–F93.Google ScholarPubMed
O'Donnell, M. P., Kasiske, B., Raij, L., & Keane, W. F.Age is a determinant of the glomerular morphologic and functional responses to chronic nephron loss. J. Lab. Clin. Med. 1985; 106:308–313.Google ScholarPubMed
Celsi, G., Bohman, S.-O., & Aperia, A.Development of focal glomeruloscerosis after unilateral nephrectomy in infant rats. Pediatr. Nephrol. 1987; 1:290–296.CrossRefGoogle Scholar
Mackenzie, H. S., Tullius, S. G., Heemann, U. al.Nephron supply is a major determinant of long-term allograft outcome in rats. J. Clin. Invest. 1994; 94:2148–2152.CrossRefGoogle ScholarPubMed
Moritz, K. M., Wintour, E. M., & Dodic, M.Fetal uninephrectomy leads to postnatal hyspertension and compromised renal function. Hypertension 2002; 39:1071–1076.CrossRefGoogle ScholarPubMed
Thorner, P. S., Arbus, G. S., Calermajer, D. S., & Baumal, R.Focal segmental glomerulosclerosis and progressive renal failure associated with a unilateral kidney. Pediatrics 1984; 73:806–810.Google ScholarPubMed
Gutierrez-Millet, V., Nieto, J., Praga, al.Focal glomerulosclerosis and proteinuria in patients with solitary kidneys. Ann. Intern. Med. 1986; 146:705–709.CrossRefGoogle ScholarPubMed
Nomura, S. & Osawa, G.Focal glomerular sclerotic lesions in a patient with unilateral oligomeganephronia and agenesis of the contralateral kidney: a case report. Clin. Nephrol. 1990; 33:7–11.Google Scholar
Argueso, L. R., Ritchey, M. L., Boyle, E. T. Jr, Milliner, D. S., Bergstralh, E. J., & Kramer, S. A.Prognosis of patients with unilateral renal agenesis. Pediatr. Nephrol. 1992; 6:412–416.CrossRefGoogle ScholarPubMed
Mei-Zahav, M., Koizets, Z., Cohen, al.Ambulatory blood pressure monitoring in children with a solitary kidney – a comparison between unilateral renal agenesis and nephrectomy. Blood Pressure Monitoring 2001; 6:262–267.CrossRefGoogle Scholar
Cascio, S., Paran, S., & Puri, P.Associated urological anomalies in children with unilateral renal agenesis. J. Urol. 1999; 162:1081–1083.CrossRefGoogle ScholarPubMed
Zucchelli, P., Cagnoli, L., Casanova, S., Donini, V., & Pasquali, S.Focal glomerulosclerosis in patients with unilateral nephrectomy. Kidney Int. 1983; 24:649–655.CrossRefGoogle ScholarPubMed
Robitaille, P., Mongeau, J.-G., Lortie, L., & Sinnasammy, P.Long term follow-up of patients who underwent unilateral nephrectomy in childhood. Lancet 1985; 1:1297–1299.CrossRefGoogle ScholarPubMed
Wikstad, I., Celsi, G., Larsson, L., Herin, P., & Aperia, A.Kidney function in adults born with unilateral agenesis or nephrectomised in childhood. Pediatr. Nephrol. 1988; 2:177–182.CrossRefGoogle ScholarPubMed
Argueso, L. R., Ritchey, M. L., Boyle, E. T., Milliner, D. S., Bergstralh, E. J., & Kramer, S. A.Prognosis of children with solitary kidney after unilateral nephrectomy. J. Urol. 1992; 148:747–751.CrossRefGoogle ScholarPubMed
Lent, V. & Harth, J.Nephropathy in remnant kidneys: pathological proteinuria after unilateral nephrectomy. J. Urol. 1994; 152:312–316.CrossRefGoogle ScholarPubMed
Ohishi, A., Suzuki, H., Nakamoto, al. Status of patients who underwent uninephrectomy in adulthood more than 20 years ago. Am. J. Kidney Dis. 1995; 26:889–897.CrossRefGoogle ScholarPubMed
Rutsky, E. A., Dubovsky, E. V., & Kirk, K. A.Long term follow-up of a human subject with a remnant kidney. Am. J. Kidney Dis. 1991; 18:509–513.CrossRefGoogle ScholarPubMed
Lhotta, K., Eberle, H., Konig, P., & Dittrich, P.Renal function after tumour enucleation in a solitary kidney. Am. J. Kidney Dis. 1991; 17:266–270.CrossRefGoogle Scholar
Foster, M. H., Sant, G. R., Donohoe, J. F., Harrington, J. T.Prolonged survival with a remnant kidney. Am. J. Kidney Dis. 1991; 17:261–265.CrossRefGoogle ScholarPubMed
Grossman, H. B., Sommerfield, D., Konnak, J. W., & Bromberg, J.Long-term assessment of renal function following nephrectomy for stage I renal carcinoma. Br. J. Urol. 194; 74:279–282.CrossRefGoogle Scholar
Novick, A. C., Gephardt, G., Guz, B., Steinmuller, D., & Tubbs, R. R.Long-term follow up after partial removal of a solitary kidney. N. Engl. J. Med. 1991; 325:1058–1062.CrossRefGoogle ScholarPubMed
Hakim, R. M., Goldszer, R. C., & Brenner, B. M.Hypertension and proteinuria: long-term sequelae of uninephrectomy in humans. Kidney Int. 1984; 25:930–936.CrossRefGoogle ScholarPubMed
Talseth, T., Fauchald, P., Skrede, al. Long-term blood pressure and renal function in kidney donors. Kidney Int. 1986; 29:1072–1076.CrossRefGoogle ScholarPubMed
Watnick, T. J., Jenkins, R. R., Rackoff, P., Baumgarten, A., & Bia, M. J.Microalbumin and hypertension in long-term renal donors. Transplant 1988; 45:59–65.Google Scholar
Fotino, S.The solitary kidney: a model of chronic hyperfiltration in humans. Am. J. Kidney Dis. 1989; 13:88–98.CrossRefGoogle ScholarPubMed
Goldfarb, D. A., Matin, S. F., Braun, W. al.Renal outcome 25 years after donor nephrectomy. J. Urol. 2001; 166:2043–2047.CrossRefGoogle ScholarPubMed
Eberhard, O. K., Kliem, V., Offner, al. Assessment of long-term risks for living related kidney donors by 24-h blood pressure monitoring and testing for microalbuminuria. Clin. Transpl. 1997; 11:415–419.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats