Skip to main content Accessibility help
×
Hostname: page-component-cc8bf7c57-j4qg9 Total loading time: 0 Render date: 2024-12-10T05:17:33.937Z Has data issue: false hasContentIssue false

Section 2 - Glomerular Diseases

Published online by Cambridge University Press:  10 August 2023

Helen Liapis
Affiliation:
Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Chang-Chien, C., Chuang, G. T., Tsai, I. J., Chiang, B. L., Yang, Y. H.. A large retrospective review of persistent proteinuria in children. J Formos Med Assoc 2018;117:711–19.CrossRefGoogle ScholarPubMed
Jang, K. M., Cho, M. H Clinical approach to children with proteinuria. Child Kidney Dis 2017;21:53–60.CrossRefGoogle Scholar
Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney Int Suppl 2012;2:139–74.Google Scholar
Barisoni, L., Schnaper, H. W., Kopp, J. B.. A proposed taxonomy for the podocytopathies: A reassessment of the primary nephrotic diseases. Clin J Am Soc Nephrol 2007;2:529–42.CrossRefGoogle ScholarPubMed
Stone, H. K., Parameswaran, S., Eapen, A. A., Chen, X., Harley, J. B., Devarajan, P., et al. Comprehensive review of steroid-sensitive nephrotic syndrome genetic risk loci and transcriptional regulation as a possible mechanistic link to disease risk. Kidney Int Rep 2020;16;6:187–95.Google Scholar
Farquhar, M. G., Vernier, R. L., Good, R. A.. An electron microscope study of the glomerulus in nephrosis, glomerulonephritis, and lupus erythematosus. J Exp Med 1957;106: 649–60.Google Scholar
Maas, R. J., Deegens, J. K., Wetzels, J. F.. Permeability factors in idiopathic nephrotic syndrome: Historical perspectives and lessons for the future. Nephrol Dial Transplant 2014;29:2207–16.CrossRefGoogle ScholarPubMed
Podesta, M. A., Ponticelli, C.. Autoimmunity in focal segmental glomerulosclerosis: A long-standing yet elusive association. Front Med (Lausanne) 2020;7:604961.Google Scholar
Wen, Y., Shah, S., Campbell, K. N.. Molecular mechanisms of proteinuria in focal segmental glomerulosclerosis. Front Med (Lausanne) 2018;5:98.CrossRefGoogle ScholarPubMed
Vivarelli, M., Massella, L., Ruggiero, B., Emma, F.. Minimal change disease. Clin J Am Soc Nephrol 2017;12:332–45.Google Scholar
Chanchlani, R., Parekh, R. S.. Ethnic differences in childhood nephrotic syndrome. Front Pediatr 2016;4:39.Google Scholar
Banh, T. H., Hussain-Shamsy, N., Patel, V., Vasilevska-Ristovska, J., Borges, K., Sibbald, C., et al. Ethnic differences in incidence and outcomes of childhood nephrotic syndrome. Clin J Am Soc Nephrol 2016;11:1760–8.CrossRefGoogle ScholarPubMed
Mubarak, M., Kazi, J. I., Lanewala, A., Hashmi, S., Akhter, F.. Pathology of idiopathic nephrotic syndrome in children: Are the adolescents different from young children? Nephrol Dial Transplant 2012;27:722–6.CrossRefGoogle ScholarPubMed
Sadowski, C. E., Lovric, S., Ashraf, S., Pabst, W. L., Gee, H. Y., Kohl, S., et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015;26:1279–89.CrossRefGoogle ScholarPubMed
Trautmann, A., Bodria, M., Ozaltin, F., Gheisari, A., Melk, A., Azocar, M., et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin J Am Soc Nephrol 2015;10:592600.CrossRefGoogle ScholarPubMed
Liapis, H., Romagnani, P., Anders, H. J.. New insights into the pathology of podocyte loss: mitotic catastrophe. Am J Pathol 2013;183:1364–74.CrossRefGoogle ScholarPubMed
Kriz, W., Shirato, I., Nagata, M., LeHir, M., Lemley, K. V.. The podocyte’s response to stress: The enigma of foot process effacement. Am J Physiol Renal Physiol 2013;304:F333–47.Google Scholar
Chen, Y. M., Liapis, H.. Focal segmental glomerulosclerosis: molecular genetics and targeted therapies. BMC Nephrol 2015;16:101.Google Scholar
Haas, M., Seshan, S. V., Barisoni, L., Amann, K., Bajema, I. M., Becker, J. U., et al. Consensus definitions for glomerular lesions by light and electron microscopy: Recommendations from a working group of the Renal Pathology Society. Kidney Int 2020 98:1120–34.Google Scholar
De Vriese, A. S., Sethi, S., Nath, K. A., Glassock, R. J., Fervenza, F. C.. Differentiating primary, genetic, and secondary FSGS in adults: A clinicopathologic approach. J Am Soc Nephrol 2018;29:759–74.CrossRefGoogle ScholarPubMed
Tullus, K., Webb, H., Bagga, A.. Management of steroid-resistant nephrotic syndrome in children and adolescents. Lancet Child Adolesc Health 2018;2:880–90.Google Scholar
Rheault, M. N., Zhang, L., Selewski, D. T., Kallash, M., Tran, C. L., Seamon, M., et al. AKI in children hospitalized with nephrotic syndrome. Clin J Am Soc Nephrol 2015;10:2110–18.Google Scholar
Trautmann, A., Vivarelli, M., Samuel, S., Gipson, D., Sinha, A., Schaefer, F., et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 2020;35:1529–61.Google Scholar
Buscher, A. K., Beck, B. B., Melk, A., Hoefele, J., Kranz, B., Bamborschke, D., et al. Rapid response to cyclosporin A and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2016;11:245–53.CrossRefGoogle ScholarPubMed
Ranganathan, S.. Pathology of podocytopathies causing nephrotic syndrome in children. Front Pediatr 2016;4:32.Google Scholar
Bonsib., S. M Focal-segmental glomerulosclerosis. The relationship between tubular atrophy and segmental sclerosis. Am J Clin Pathol 1999;111(3):343–8.CrossRefGoogle ScholarPubMed
D’Agati, V.. Pathologic classification of focal segmental glomerulosclerosis. Semin Nephrol 2003;23:117–34.Google ScholarPubMed
D’Agati, V. D., Kaskel, F. J., Falk, R. J.. Focal segmental glomerulosclerosis. N Engl J Med 2011;365:2398–411.Google Scholar
Cossey, L. N., Larsen, C. P., Liapis, H.. Collapsing glomerulopathy: A 30-year perspective and single, large center experience. Clin Kidney J 2017;10(4):443–9.Google Scholar
Smeets, B., Stucker, F., Wetzels, J., Brocheriou, I., Ronco, P., Grone, H. J., et al. Detection of activated parietal epithelial cells on the glomerular tuft distinguishes early focal segmental glomerulosclerosis from minimal change disease. Am J Pathol 2014;184:3239–48.CrossRefGoogle ScholarPubMed
Vivarelli, M., Moscaritolo, E., Tsalkidis, A., Massella, L., Emma, F.. Time for initial response to steroids is a major prognostic factor in idiopathic nephrotic syndrome. J Pediatr 2010;156:965–71.Google Scholar
Mendonca, C., Oliveira, E. A., Froes, B. P., Faria, L. D., Pinto, J. S., Nogueira, M. M., et al. A predictive model of progressive chronic kidney disease in idiopathic nephrotic syndrome. Pediatr Nephrol 2015;30:2011–20.CrossRefGoogle ScholarPubMed
Larkins, N. G., Liu, I. D., Willis, N. S., Craig, J. C., Hodson, E. M.. Non-corticosteroid immunosuppressive medications for steroid-sensitive nephrotic syndrome in children. Cochrane Database Syst Rev 2020;4:CD002290.Google ScholarPubMed
McCaffrey, J., Lennon, R., Webb, N. J.. The non-immunosuppressive management of childhood nephrotic syndrome. Pediatr Nephrol 2016;31:1383–402.Google Scholar
Banerjee, S., Dissanayake, P. V., Abeyagunawardena, A. S.. Vaccinations in children on immunosuppressive medications for renal disease. Pediatr Nephrol 2016;31:1437–48.CrossRefGoogle ScholarPubMed
Rovin, B. H., Caster, D. J., Cattran, D. C., Gibson, K. L., Hogan, J. J., Moeller, M. J., et al. Management and treatment of glomerular diseases (part 2): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2019;95:281–95.Google Scholar
Chua, A., Cramer, C., Moudgil, A., Martz, K., Smith, J., Blydt-Hansen, T., et al. Kidney transplant practice patterns and outcome benchmarks over 30 years: The 2018 report of the NAPRTCS. Pediatr Transplant 2019;23:e13597.Google Scholar
Bouts, A., Veltkamp, F., Tonshoff, B., Vivarelli, M., Members of the Working Group “Transplantation”, “Idiopathic Nephrotic Syndrome” of the European Society of Pediatric Nephrology. European Society of Pediatric Nephrology survey on current practice regarding recurrent focal segmental glomerulosclerosis after pediatric kidney transplantation. Pediatr Transplant 2019;23:e13385.Google Scholar
Altassan, R., Witters, P., Saifudeen, Z., Quelhas, D., Jaeken, J., Levtchenko, E., et al. Renal involvement in PMM2-CDG, a mini-review. Mol Genet Metab 2018;123:292–6.CrossRefGoogle ScholarPubMed
Liapis, H.. Molecular pathology of nephrotic syndrome in childhood: a contemporary approach to diagnosis. Pediatr Dev Pathol 2008;11:154–63.Google Scholar
Gbadegesin, R., Hinkes, B. G., Hoskins, B. E., Vlangos, C. N., Heeringa, S. F., Liu, J., et al. Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant 2008;23:1291–7.Google Scholar
Kemper, M. J., Lemke, A.. Treatment of genetic forms of nephrotic syndrome. Front Pediatr 2018;6:72.Google Scholar
Nagatani, K., Hayashi, M.. Combination therapy improves pathology indices in diffuse mesangial sclerosis. Pediatr Int 2019;61:517–20.CrossRefGoogle ScholarPubMed
Sajantila, A., Salem, A. H., Savolainen, P., Bauer, K., Gierig, C., Paabo, S.. Paternal and maternal DNA lineages reveal a bottleneck in the founding of the Finnish population. Proc Natl Acad Sci U S A 1996;93:12035–9.Google Scholar
Hinkes, B. G., Mucha, B., Vlangos, C. N. et al.; Arbeitsgemeinschaft für Paediatrische Nephrologie Study Group. Nephrotic syndrome in the first year of life: Two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 2007;119(4):e90719.Google Scholar
Caridi, G., Bertelli, R., Di Duca, M., Dagnino, M., Emma, F., Onetti Muda, A., et al. Broadening the spectrum of diseases related to podocin mutations. J Am Soc Nephrol 2003;14:1278–86.Google Scholar
Boute, N., Gribouval, O., Roselli, S., Benessy, F., Lee, H., Fuchshuber, A., et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 2000;24:349–54.Google Scholar
Bierzynska, A., McCarthy, H. J., Soderquest, K., Sen, E. S., Colby, E., Ding, W. Y., et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int 2017;91:937–47.Google Scholar
Lovric, S., Ashraf, S., Tan, W., Hildebrandt, F.. Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol Dial Transplant 2016;31:1802–13.CrossRefGoogle ScholarPubMed
Ovunc, B., Ashraf, S., Vega-Warner, V., Bockenhauer, D., Elshakhs, N. A., Joseph, M., et al. Mutation analysis of NPHS1 in a worldwide cohort of congenital nephrotic syndrome patients. Nephron Clin Pract 2012;120:c139–46.Google Scholar
Romppanen, E. L., Mononen, I.. Detection of the Finnish-type congenital nephrotic syndrome by restriction fragment length polymorphism and dual-color oligonucleotide ligation assays. Clin Chem 2000;46:811–16.CrossRefGoogle ScholarPubMed
Patrakka, J., Kestila, M., Wartiovaara, J., Ruotsalainen, V., Tissari, P., Lenkkeri, U., et al. Congenital nephrotic syndrome (NPHS1): Features resulting from different mutations in Finnish patients. Kidney Int 2000;58:972–80.Google Scholar
Zhuo, L., Huang, L., Yang, Z., Li, G., Wang, L.. A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis. BMC Med Genet 2019;20:111.CrossRefGoogle ScholarPubMed
Roselli, S., Gribouval, O., Boute, N., Sich, M., Benessy, F., Attie, T., et al. Podocin localizes in the kidney to the slit diaphragm area. Am J Pathol 2002;160:131–19.CrossRefGoogle Scholar
Huber, T. B., Kottgen, M., Schilling, B., Walz, G., Benzing, T.. Interaction with podocin facilitates nephrin signaling. J Biol Chem 2001;276:41543–6.CrossRefGoogle ScholarPubMed
Sen, E. S., Dean, P., Yarram-Smith, L., Bierzynska, A., Woodward, G., Buxton, C., et al. Clinical genetic testing using a custom-designed steroid-resistant nephrotic syndrome gene panel: analysis and recommendations. J Med Genet 2017;54:795804.CrossRefGoogle ScholarPubMed
Tory, K., Menyhard, D. K., Woerner, S., Nevo, F., Gribouval, O., Kerti, A., et al. Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome. Nat Genet 2014;46:299304.Google Scholar
Frishberg, Y., Rinat, C., Megged, O., Shapira, E., Feinstein, S., Raas-Rothschild, A.. Mutations in NPHS2 encoding podocin are a prevalent cause of steroid-resistant nephrotic syndrome among Israeli-Arab children. J Am Soc Nephrol 2002;13:400–5.CrossRefGoogle ScholarPubMed
Rood, I. M., Deegens, J. K. J., Lugtenberg, D., Bongers, E., Wetzels, J. F. M.. Nephrotic syndrome with mutations in NPHS2: The role of R229Q and implications for genetic counseling. Am J Kidney Dis 2019;73:400–3.CrossRefGoogle ScholarPubMed
Holmberg, C., Jalanko, H.. Congenital nephrotic syndrome and recurrence of proteinuria after renal transplantation. Pediatr Nephrol 2014;29:2309–17.Google Scholar
Wang, S. X., Ahola, H., Palmen, T., Solin, M. L., Luimula, P., Holthofer, H.. Recurrence of nephrotic syndrome after transplantation in CNF is due to autoantibodies to nephrin. Exp Nephrol 2001;9:327–31.Google Scholar
Becker-Cohen, R., Bruschi, M., Rinat, C., Feinstein, S., Zennaro, C., Ghiggeri, G. M., et al. Recurrent nephrotic syndrome in homozygous truncating NPHS2 mutation is not due to anti-podocin antibodies. Am J Transplant 2007;7:256–60.Google Scholar
Billing, H., Muller, D., Ruf, R., Lichtenberger, A., Hildebrandt, F., August, C., et al. NPHS2 mutation associated with recurrence of proteinuria after transplantation. Pediatr Nephrol 2004;19:561–4.CrossRefGoogle ScholarPubMed
Warejko, J. K., Tan, W., Daga, A., Schapiro, D., Lawson, J. A., Shril, S., et al. Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2018;13:5362.Google Scholar
Varner, J. D., Chryst-Stangl, M., Esezobor, C. I., Solarin, A., Wu, G., Lane, B., et al. Genetic testing for steroid-resistant-nephrotic syndrome in an outbred population. Front Pediatr 2018;6:307.Google Scholar
Gulati, A., Sharma, A., Hari, P., Dinda, A. K., Bagga, A.. Idiopathic collapsing glomerulopathy in children. Clin Exp Nephrol 2008;12:348–53.Google Scholar
Haas, M.. Collapsing glomerulopathy: Many means to a similar end. Kidney Int 2008;73:669–71.Google Scholar
Chandra, P., Kopp, J. B.. Viruses and collapsing glomerulopathy: A brief critical review. Clin Kidney J 2013;6:15.CrossRefGoogle ScholarPubMed
Salvatore, S. P., Barisoni, L. M., Herzenberg, A. M., Chander, P. N., Nickeleit, V., Seshan, S. V.. Collapsing glomerulopathy in 19 patients with systemic lupus erythematosus or lupus-like disease. Clin J Am Soc Nephrol 2012;7:914–25.CrossRefGoogle ScholarPubMed
Markowitz, G. S., Nasr, S. H., Stokes, M. B., D’Agati, V. D.. Treatment with IFN-α, -β, or -γ is associated with collapsing focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2010;5:607–15.Google Scholar
ten Dam, M. A., Hilbrands, L. B., Wetzels, J. F.. Nephrotic syndrome induced by pamidronate. Med Oncol 2011;28:1196–200.Google Scholar
Herlitz, L. C., Markowitz, G. S., Farris, A. B., Schwimmer, J. A., Stokes, M. B., Kunis, C., et al. Development of focal segmental glomerulosclerosis after anabolic steroid abuse. J Am Soc Nephrol 2010;21:163–72.CrossRefGoogle ScholarPubMed
Abid, Q., Best Rocha, A., Larsen, C. P., Schulert, G., Marsh, R., Yasin, S., et al. APOL1-associated collapsing focal segmental glomerulosclerosis in a patient with stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI). Am J Kidney Dis 2020;75:287–90.CrossRefGoogle Scholar
Swaminathan, S., Lager, D. J., Qian, X., Stegall, M. D., Larson, T. S., Griffin, M. D.. Collapsing and non-collapsing focal segmental glomerulosclerosis in kidney transplants. Nephrol Dial Transplant 2006;21:260714.Google Scholar
Ray, P. E., Li, J., Das, J. R., Tang, P.. Childhood HIV-associated nephropathy: 36 years later. Pediatr Nephrol 2021;36:2189–201.Google Scholar
Velez, J. C. Q., Caza, T., Larsen, C. P.. COVAN is the new HIVAN: The re-emergence of collapsing glomerulopathy with COVID-19. Nat Rev Nephrol 2020;16:565–7.Google Scholar
Genovese, G., Friedman, D. J., Ross, M. D., Lecordier, L., Uzureau, P., Freedman, B. I., et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010;329:841–5.Google Scholar
Limou, S., Nelson, G. W., Kopp, J. B., Winkler, C. A.. APOL1 kidney risk alleles: Population genetics and disease associations. Adv Chronic Kidney Dis 2014;21:426–33.Google Scholar
Friedman, D. J., Pollak, M. R.. APOL1 nephropathy: From genetics to clinical applications. Clin J Am Soc Nephrol 2021;16:294303.Google Scholar
Sethna, C. B., Gipson, D. S.. Treatment of FSGS in children. Adv Chronic Kidney Dis 2014;21:1949.Google Scholar
El-Refaey, A. M., Kapur, G., Jain, A., Hidalgo, G., Imam, A., Valentini, R. P., et al. Idiopathic collapsing focal segmental glomerulosclerosis in pediatric patients. Pediatr Nephrol 2007;22:396402.CrossRefGoogle ScholarPubMed
Valeri, A., Barisoni, L., Appel, G. B., Seigle, R., D’Agati, V.. Idiopathic collapsing focal segmental glomerulosclerosis: A clinicopathologic study. Kidney Int 1996;50:173446.Google Scholar
Fiorentino, F., Napoletano, S., Caiazzo, F., Sessa, M., Bono, S., Spizzichino, L., et al. Chromosomal microarray analysis as a first-line test in pregnancies with a priori low risk for the detection of submicroscopic chromosomal abnormalities. Eur J Hum Genet 2013;21:72530.Google Scholar
Verbitsky, M., Westland, R., Perez, A., Kiryluk, K., Liu, Q., Krithivasan, P., et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet 2019;51:11727.Google Scholar
Li, S., Han, X., Wang, Y., Chen, S., Niu, J., Qian, Z., et al. Chromosomal microarray analysis in fetuses with congenital anomalies of the kidney and urinary tract: A prospective cohort study and meta-analysis. Prenat Diagn 2019;39:16574.Google Scholar
Tayeh, M. K., Chin, E. L., Miller, V. R., Bean, L. J., Coffee, B., Hegde, M.. Targeted comparative genomic hybridization array for the detection of single- and multiexon gene deletions and duplications. Genet Med 2009;11:23240.Google Scholar
Zheng, M., Tian, S. Z., Capurso, D., Kim, M., Maurya, R., Lee, B., et al. Multiplex chromatin interactions with single-molecule precision. Nature 2019;566:55862.Google Scholar
Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:40524.Google Scholar
Kaplan, J. M., Kim, S. H., North, K. N., Rennke, H., Correia, L. A., Tong, H. Q., et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 2000;24:2516.Google Scholar
Bartram, M. P., Habbig, S., Pahmeyer, C., Hohne, M., Weber, L. T., Thiele, H., et al. Three-layered proteomic characterization of a novel ACTN4 mutation unravels its pathogenic potential in FSGS. Hum Mol Genet 2016;25:115264.CrossRefGoogle ScholarPubMed
Oegema, K., Savoian, M. S., Mitchison, T. J., Field, C. M.. Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J Cell Biol 2000;150:53952.Google Scholar
Gbadegesin, R. A., Hall, G., Adeyemo, A., Hanke, N., Tossidou, I., Burchette, J., et al. Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J Am Soc Nephrol 2014;25:19912002.CrossRefGoogle ScholarPubMed
Akilesh, S., Suleiman, H., Yu, H., Stander, M. C., Lavin, P., Gbadegesin, R., et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest 2011;121:412737.Google Scholar
Gigante, M., Pontrelli, P., Montemurno, E., Roca, L., Aucella, F., Penza, R., et al. CD2AP mutations are associated with sporadic nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). Nephrol Dial Transplant 2009;24:185864.Google Scholar
Takano, T., Bareke, E., Takeda, N., Aoudjit, L., Baldwin, C., Pisano, P., et al. Recessive mutation in CD2AP causes focal segmental glomerulosclerosis in humans and mice. Kidney Int 2019;95:5761.Google Scholar
Lowik, M. M., Groenen, P. J., Pronk, I., Lilien, M. R., Goldschmeding, R., Dijkman, H. B., et al. Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int 2007;72:1198203.Google Scholar
Boyer, O., Nevo, F., Plaisier, E., Funalot, B., Gribouval, O., Benoit, G., et al. INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N Engl J Med 2011;365:237788.Google Scholar
Dong, F., Li, S., Pujol-Moix, N., Luban, N. L., Shin, S. W., Seo, J. H., et al. Genotype-phenotype correlation in MYH9-related thrombocytopenia. Br J Haematol 2005;130:6207.Google Scholar
Tabibzadeh, N., Fleury, D., Labatut, D., Bridoux, F., Lionet, A., Jourde-Chiche, N., et al. MYH9-related disorders display heterogeneous kidney involvement and outcome. Clin Kidney J 2019;12:494502.Google Scholar
Hall, G., Wang, L., Spurney, R. F.. TRPC channels in proteinuric kidney diseases. Cells 2019;9: 44.Google Scholar
Winn, M. P., Conlon, P. J., Lynn, K. L., Farrington, M. K., Creazzo, T., Hawkins, A. F., et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005;308:18014.Google Scholar
Reiser, J., Polu, K. R., Moller, C. C., Kenlan, P., Altintas, M. M., Wei, C., et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 2005;37:73944.Google Scholar
Xiong, S., Shuai, L., Li, X., Dang, X., Wu, X., He, Q.. Podocytic infolding in Schimke immuno-osseous dysplasia with novel SMARCAL1 mutations: A case report. BMC Nephrol 2020;21:170.Google Scholar
Okumura, T., Furuichi, K., Higashide, T., Sakurai, M., Hashimoto, S., Shinozaki, Y., et al. Association of PAX2 and other gene mutations with the clinical manifestations of renal coloboma syndrome. PLoS ONE 2015;10:e0142843.Google Scholar
Vivante, A., Chacham, O. S., Shril, S., Schreiber, R., Mane, S. M., Pode-Shakked, B., et al. Dominant PAX2 mutations may cause steroid-resistant nephrotic syndrome and FSGS in children. Pediatr Nephrol 2019;34:160713.CrossRefGoogle ScholarPubMed
Stefanidis, C. J., Querfeld, U.. The podocyte as a target: Cyclosporin A in the management of the nephrotic syndrome caused by WT1 mutations. Eur J Pediatr 2011;170:137783.CrossRefGoogle ScholarPubMed
Barbaux, S., Niaudet, P., Gubler, M. C., Grunfeld, J. P., Jaubert, F., Kuttenn, F., et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997;17:46770.Google Scholar
Denamur, E., Bocquet, N., Mougenot, B., Da Silva, F., Martinat, L., Loirat, C., et al. Mother-to-child transmitted WT1 splice-site mutation is responsible for distinct glomerular diseases. J Am Soc Nephrol 1999;10:221923.Google Scholar
Demmer, L., Primack, W., Loik, V., Brown, R., Therville, N., McElreavey, K.. Frasier syndrome: A cause of focal segmental glomerulosclerosis in a 46,XX female. J Am Soc Nephrol 1999;10:221518.Google Scholar
Gee, H. Y., Saisawat, P., Ashraf, S., Hurd, T. W., Vega-Warner, V., Fang, H., et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest 2013;123:324353.Google Scholar
Korkmaz, E., Lipska-Zietkiewicz, B. S., Boyer, O., Gribouval, O., Fourrage, C., Tabatabaei, M., et al. ADCK4-associated glomerulopathy causes adolescence-onset FSGS. J Am Soc Nephrol 2016;27:638.Google Scholar
Rao, J., Ashraf, S., Tan, W., van der Ven, A. T., Gee, H. Y., Braun, D. A., et al. Advillin acts upstream of phospholipase C 1 in steroid-resistant nephrotic syndrome. J Clin Invest 2017;127:425769.Google Scholar
Ebarasi, L., Ashraf, S., Bierzynska, A., Gee, H. Y., McCarthy, H. J., Lovric, S., et al. Defects of CRB2 cause steroid-resistant nephrotic syndrome. Am J Hum Genet 2015;96:15361.Google Scholar
Slavotinek, A., Kaylor, J., Pierce, H., Cahr, M., DeWard, S. J., Schneidman-Duhovny, D., et al. CRB2 mutations produce a phenotype resembling congenital nephrosis, Finnish type, with cerebral ventriculomegaly and raised alpha-fetoprotein. Am J Hum Genet 2015;96:162–9.Google Scholar
Gee, H. Y., Sadowski, C. E., Aggarwal, P. K., Porath, J. D., Yakulov, T. A., Schueler, M., et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 2016;7:10822.Google Scholar
Gee, H. Y., Zhang, F., Ashraf, S., Kohl, S., Sadowski, C. E., Vega-Warner, V., et al. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J Clin Invest 2015;125:2375–84.Google Scholar
Balbas, M. D., Burgess, M. R., Murali, R., Wongvipat, J., Skaggs, B. J., Mundel, P., et al. MAGI-2 scaffold protein is critical for kidney barrier function. Proc Natl Acad Sci U S A 2014;111:14876–81.Google Scholar
Bierzynska, A., Soderquest, K., Dean, P., Colby, E., Rollason, R., Jones, C., et al. MAGI2 mutations cause congenital nephrotic syndrome. J Am Soc Nephrol 2017;28:1614–21.Google Scholar
Mele, C., Iatropoulos, P., Donadelli, R., Calabria, A., Maranta, R., Cassis, P., et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med 2011;365:295306.Google Scholar
Hashmi, J. A., Safar, R. A., Afzal, S., Albalawi, A. M., Abdu-Samad, F., Iqbal, Z., et al. Whole exome sequencing identification of a novel insertion mutation in the phospholipase C epsilon1 gene in a family with steroid resistant inherited nephrotic syndrome. Mol Med Rep 2018;18:5095–100.Google Scholar
Tasic, V., Gucev, Z., Polenakovic, M.. Steroid resistant nephrotic syndrome-genetic consideration. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2015;36:512.Google Scholar
Ozaltin, F., Ibsirlioglu, T., Taskiran, E. Z., Baydar, D. E., Kaymaz, F., Buyukcelik, M., et al. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am J Hum Genet 2011;89:139–47.Google Scholar
Ashraf, S., Gee, H. Y., Woerner, S., Xie, L. X., Vega-Warner, V., Lovric, S., et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 2013;123:5179–89.Google Scholar
Quinzii, C., Naini, A., Salviati, L., Trevisson, E., Navas, P., Dimauro, S., et al. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 2006;78:345–9.Google Scholar
Lopez, L. C., Schuelke, M., Quinzii, C. M., Kanki, T., Rodenburg, R. J., Naini, A., et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 2006;79:1125–9.CrossRefGoogle ScholarPubMed
Hermle, T., Schneider, R., Schapiro, D., Braun, D. A., van der Ven, A. T., Warejko, J. K., et al. GAPVD1 and ANKFY1 mutations implicate RAB5 regulation in nephrotic syndrome. J Am Soc Nephrol 2018;29:2123–38.Google Scholar
Wan, X., Chen, Z., Choi, W. I., Gee, H. Y., Hildebrandt, F., Zhou, W.. Loss of epithelial membrane protein 2 aggravates podocyte injury via upregulation of caveolin-1. J Am Soc Nephrol 2016;27:1066–75.Google Scholar
Gee, H. Y., Ashraf, S., Wan, X., Vega-Warner, V., Esteve-Rudd, J., Lovric, S., et al. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am J Hum Genet 2014;94:884–90.Google Scholar
van Berkel, Y., Ludwig, M., van Wijk, J. A. E., Bokenkamp, A.. Proteinuria in Dent disease: A review of the literature. Pediatr Nephrol 2017;32:1851–9.Google Scholar
Dorval, G., Kuzmuk, V., Gribouval, O., Welsh, G. I., Bierzynska, A., Schmitt, A., et al. TBC1D8B loss-of-function mutations lead to X-linked nephrotic syndrome via defective trafficking pathways. Am J Hum Genet 2019;104:348–55.Google Scholar
Sanna-Cherchi, S., Burgess, K. E., Nees, S. N., Caridi, G., Weng, P. L., Dagnino, M., et al. Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome. Kidney Int 2011;80:389–96.Google Scholar
Has, C., Sparta, G., Kiritsi, D., Weibel, L., Moeller, A., Vega-Warner, V., et al. Integrin alpha3 mutations with kidney, lung, and skin disease. N Engl J Med 2012;366:1508–14.Google Scholar
Kambham, N., Tanji, N., Seigle, R. L., Markowitz, G. S., Pulkkinen, L., Uitto, J., et al. Congenital focal segmental glomerulosclerosis associated with beta4 integrin mutation and epidermolysis bullosa. Am J Kidney Dis 2000;36:190–6.Google Scholar
Berkovic, S. F., Dibbens, L. M., Oshlack, A., Silver, J. D., Katerelos, M., Vears, D. F., et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet 2008;82:673–84.Google Scholar
Prasad, R., Hadjidemetriou, I., Maharaj, A., Meimaridou, E., Buonocore, F., Saleem, M., et al. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J Clin Invest 2017;127:942–53.Google Scholar
Davis, E. E., Zhang, Q., Liu, Q., Diplas, B. H., Davey, L. M., Hartley, J., et al. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet 2011;43:189–96.Google ScholarPubMed
Bullich, G., Vargas, I., Trujillano, D., Mendizabal, S., Pinero-Fernandez, J. A., Fraga, G., et al. Contribution of the TTC21B gene to glomerular and cystic kidney diseases. Nephrol Dial Transplant 2017;32:151–6.Google Scholar
Huynh Cong, E., Bizet, A. A., Boyer, O., Woerner, S., Gribouval, O., Filhol, E., et al. A homozygous missense mutation in the ciliary gene TTC21B causes familial FSGS. J Am Soc Nephrol 2014;25:2435–43.Google Scholar
Braun, D. A., Rao, J., Mollet, G., Schapiro, D., Daugeron, M. C., Tan, W., et al. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet 2017;49:1529–38.Google Scholar
Shaheen, R., Abdel-Salam, G. M., Guy, M. P., Alomar, R., Abdel-Hamid, M. S., Afifi, H. H., et al. Mutation in WDR4 impairs tRNA m(7)G46 methylation and causes a distinct form of microcephalic primordial dwarfism. Genome Biol 2015;16:210.Google Scholar
Rosti, R. O., Sotak, B. N., Bielas, S. L., Bhat, G., Silhavy, J. L., Aslanger, A. D., et al. Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome. J Med Genet 2017;54:399403.Google Scholar
Fujita, A., Tsukaguchi, H., Koshimizu, E., Nakazato, H., Itoh, K., Kuraoka, S., et al. Homozygous splicing mutation in NUP133 causes Galloway-Mowat syndrome. Ann Neurol 2018;84:814–28.Google Scholar
Jinks, R. N., Puffenberger, E. G., Baple, E., Harding, B., Crino, P., Fogo, A. B., et al. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Brain 2015;138:2173–90.Google Scholar
Braun, D. A., Sadowski, C. E., Kohl, S., Lovric, S., Astrinidis, S. A., Pabst, W. L., et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet 2016;48:457–65.Google Scholar
Braun, D. A., Lovric, S., Schapiro, D., Schneider, R., Marquez, J., Asif, M., et al. Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome. J Clin Invest 2018;128:4313–28.Google Scholar
Watts, A. J. B., Keller, K. H, Lerner, G., Rosales, I., Collins, A.B., Sekulic, M., et al. Discovery of autoantibodies targeting nephrin in minimal change disease supports a novel autoimmune etiology. J Am Soc Nephrol 2022;33:238–52.Google Scholar

References

Funk, S. D., Lin, M.-H., Miner, J. H.. Alport syndrome and Pierson syndrome: diseases of the glomerular basement membrane. Matrix Biol 2018; 71–72: 25061.Google Scholar
Harvey, S. J., Jarad, G., Cunningham, J. et al. Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular perm selectivity. Am J Pathol 2007; 171: 13952.CrossRefGoogle ScholarPubMed
Muller-Diele, J., Dannenberg, J., Schroder, P. et al. Podocytes regulate the glomerular basement membrane protein nephronectin by means of miR-378a-3p in glomerular diseases. Kidney Int 2017; 92: 83649.Google Scholar
Zimmermann, S. E., Hiremath, C., Tsunezumi, J. et al. Nephronectin regulates mesangial cell adhesion and behaviour in glomeruli. J Am Soc Nephrol 2018; 29: 112840.Google Scholar
Brown, K. L., Cummings, C. F., Vanacore, R. M., Hudson, B. G.. Building collagen IV smart scaffolds on the outside of cells. Protein Sci 2017; 26: 215161.Google Scholar
Abrahamson, D. R., Hudson, B. G., Sroganova, L., Borza, D.-B., St John, P. L.. Cellular origins of type IV collagen networks in developing glomeruli. J Am Soc Nephrol 2009; 20: 147179.Google Scholar
Matthaiou, A., Poulli, T., Deltas, C.. Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or Col4A4 mutations: a systematic review. Clin Kidney J 2020; 13: 102536.Google Scholar
Kashtan, C. E., Ding, J., Garosi, G. et al. Alport syndrome: a unified classification of collagen IV α345: a position paper of the Alport Syndrome Classification Working Group. Kidney Int 2018; 93: 1045–51.Google Scholar
Jais, J. P., Knebelmann, B., Giatris, I. et al. X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: A ‘European Community Alport Syndrome Concerted Action’ study. J Am Soc Nephrol 2003; 14: 2603–10.Google Scholar
Malone, A. F., Phelan, P. J., Hall, G. et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int 2014; 86: 1253–59.Google Scholar
Savige, J., Storey, H., Watson, E. et al. Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria. Eur J Hum Genet 2021; 29: 118697.Google Scholar
Jais, J. P., Knebelmann, B., Giatris, I. et al. X-linked Alport syndrome: natural history in 195 families and genotype-phenotype correlations in males. J Am Soc Nephrol 2000; 11: 64957.Google Scholar
Yamamura, T., Horinouchi, T., Nagano, C. et al. Genotype-phenotype correlations influence the response to angiotensin-targeting drugs in Japanese patients with male X-linked Alport syndrome. Kidney Int 2020; 98: 160514.Google Scholar
Nozu, K., Nakanishi, K., Abe, Y. et al. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol 2019; 23: 15868.Google Scholar
Gross, O., Netzer, K. O., Lambrecht, R., Seibold, S., Weber, M.. Meta-analysis of genotype-phenotype correlation in X-linked Alport syndrome: impact on clinical counselling. Nephrol Dial Transplant 2002; 17: 121827.Google Scholar
Savige, J., Sheth, S., Leys, A. et al. Ocular features in Alport syndrome: pathogenesis and clinical significance. Clin J Am Soc Nephrol 2015; 10: 7039.Google Scholar
Lee, J. M., Nozu, K., Choi, D. E. et al. Features of autosomal recessive Alport syndrome: a systematic review. J Clin Med 2019; 8: 178.Google Scholar
Furlano, M., Martinez, V., Pybus, M. et al. Clinical and genetic features of autosomal dominant Alport syndrome: a cohort series. Am J Kidney Dis 2021; 78: 560–70.Google Scholar
Randels, M., Collinson, S., Starborg, T. et al. Three-dimensional electron microscopy reveals the evolution of glomerular barrier injury. Sci Rep 2016; 6: 35068.Google Scholar
Wickman, L., Hodgin, J. B., Wang, S. Q. et al. Podocyte depletion in thin GBM and Alport syndrome. PLoS ONE 2018; 11: e0155255.Google Scholar
Savige, J., Ariani, F., Mari, F. et al. Expert consensus guidelines for the genetic diagnosis of Alport syndrome. Ped Nephrol 2019; 34: 1175–89.Google Scholar
Torra, R., Furlano, M., Ars, E.. How genomics reclassifies diseases: the case of Alport syndrome. Clin Kidney J 2020; 13: 933–35.Google Scholar
Gross, O., Beirowski, B., Koepke, M. L. et al. Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome. Kidney Int 2003; 63: 43846.Google Scholar
Gross, O., Licht, C., Anders, H. J. et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int 2012; 81: 494501.Google Scholar
Gross, O., Tonshoff, B., Weber, L. T. et al. GPN study group and EARLY PRO-TECT Alport Investigators: a multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport’s syndrome. Kidney Int 2020; 97: 127586.Google Scholar
Kashtan, C. E., Gross, O.. Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for 2020. Published correction appears in Pediatr Nephrol 2021; 36: 731.Google Scholar
Torra, R., Furlano, M.. New therapeutic options for Alport syndrome. Nephrol Dial Transplant 2019; 34: 1272–9.Google Scholar
Quinlan, C., Rheault, M. N.. Genetic basis of type IV collagen disorders of the kidney. CJASN 2021; CJN.19171220.Google Scholar
Savige, J., Rana, K., Tonna, S. et al. Thin basement membrane nephropathy. Kidney Int 2003; 64: 1169–78.Google Scholar
Wang, Y. Y., Rana, K., Tonna, S., Lin, T., Sin, L., Savige, J.. COL4A3 mutations and their clinical consequences in thin basement membrane nephropathy (TBMN). Kidney Int 2004; 65: 786–90.Google Scholar
Savige, J.. A further genetic cause of thin basement membrane nephropathy. Nephrol Dial Transplant 2016; 31: 1758–60.Google Scholar
Tryggvasan, K., Patrakka, J.. Thin basement membrane nephropathy. J Am Soc Nephrol 2006; 17: 813–22.Google Scholar
Haas, M.. Alport syndrome and thin glomerular basement membrane nephropathy. A practical approach to diagnosis. Arch Pathol Lab Med 2009; 133: 2224–32.Google Scholar
Lemmink, H. H., Nillesen, W. N., Mochizuki, T. et al. Benign familial haematuria due to mutation of the type IV collagen α4 gene. J Clin Invest 1996; 9: 1114–18.Google Scholar
Frasca, G. M., Onetti-Muda, A., Mari, F. et al. Thin glomerular basement membrane disease: clinical significance of a morphological diagnosis-a collaborative study of the Italian Renal Immunopathology Group. Nephrol Dial Transplant 2005; 20: 545–51.Google Scholar
Thomas, D. M., Coles, G. A., Griffiths, D. F., Williams, J. D.. Perm selectivity in thin basement membrane nephropathy. J Clin Invest 1994; 93: 1881–4.Google Scholar
Berthoux, F. C., Laurent, B., Alamartine, E., Diab, N.. New subgroup of primary IgA nephritis with thin glomerular basement membrane (GBM): syndrome or association. Nephrol Dial Transplant 1996; 11: 558–9.Google Scholar
Taguchi, T., von Bassewitz, D. B., Grundmann, E., Takebayashi, S.. Ultrastructural changes of glomerular basement membrane in IgA nephritis: relationship to hematuria. Ultrastruct Pathol 1988; 12: 1726.Google Scholar
Das, A. K., Pickett, T. M., Tungekar, M. F.. Glomerular basement membrane thickness-a comparison of two methods of measurement in patients with unexplained hematuria. Nephrol Dial Transplant 1996; 11: 1256–60.Google Scholar
Dische, F. E.. Measurement of glomerular basement membrane thickness and its application to the diagnosis of thin-membrane nephropathy. Arch Pathol Lab Med 1992; 116: 43–9.Google Scholar
Tiebosch, A. T. M. G., Frederik, P. M., van Breda Vriesman, P. J. C. et al. Thin-basement-membrane nephropathy in adults with persistent hematuria. N Eng J Med 1989; 320: 1418.Google Scholar
Foster, K., Markowitz, G. S., D’Agati, V. D.. Pathology of thin basement membrane nephropathy. Semin Nephrol 2005; 25: 149–58.Google Scholar
Vogler, C., McAdam, A. J., Homan, S. M.. Glomerular basement membrane and lamina densa in infants and children: an ultrastructural evaluation. Pediatr Pathol 1987; 7: 527–34.Google Scholar
Collar, J. E., Ladva, S., Cairns, T. D. H., Cattell, V.. Red cell traverse through thin glomerular basement membranes. Kidney Int 2001; 59: 2069–72.Google Scholar
Deltas, C., Pierides, A., Voskarides, K.. The role of molecular genetics in diagnosing familial hematuria(s). Pediatr Nephrol 2012; 27: 1221–31.Google Scholar
Pierides, A., Voskarides, K., Kkolou, M., Hadjigavriel, M., Deltas, C.. X-linked, COL4A5 hypomorphic Alport mutations such as G624D and P628L may only exhibit thin basement membrane nephropathy with microhematuria and late onset kidney failure. Hippokatia 2013; 17: 207–13.Google Scholar
Koskarides, K., Demosthenous, P., Papazachariou, L. et al. Epistatic role of the MYH9/APOL1 region on familial hematuria genes. PLoS ONE 2013; 8(3): e57925.Google Scholar
Gale, D., Deren Oygar, D., Lin F, F. et al. A novel COL4A1 frameshift mutation in familial kidney disease: the importance of the C-terminal NC1 domain of type IV collagen. Nephrol Dial Transplant 2016; 31: 1908–14.Google Scholar
Ghoumid, J., Petit, F., Holder-Espinasse, M. et al. Nail-patella syndrome: clinical and molecular data in 55 families missing the hypothesis of a genetic heterogeneity. Eur J Hum Genet 2016; 24: 4450.Google Scholar
Boyer, O., Woerner, S., Yang, F. et al. LMX1B mutations cause hereditary FSGS without extrarenal involvement. J Am Soc Nephrol 2013; 24: 1216–22.Google Scholar
Harita, Y., Kitanaka, S., Isojima, T., Ashida, A., Hattori, M.. Spectrum of LMX1B mutations: from nail-patella syndrome to isolated nephropathy. Pediatr Nephrol 2017; 32: 1845–50.Google Scholar
Morello, R., Zhou, G., Dreyer, S. D. et al. Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome. Nat Genet 2001; 27: 205–8.Google Scholar
Heidet, L., Bongers, E. M. H. F., Sich, M. et al. In vivo expression of putative LMX1B targets in nail-patella syndrome kidneys. Am J Pathol 2003; 163: 145–55.Google Scholar
Miner, J. H., Morello, R., Andrews, K. L. et al. Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. J Clin Invest 2002; 109: 106572.Google Scholar
Rohr, C., Prestel, J., Heidet, L. et al. The LIM-homeodomain transcription factor Lmx1b plays a crucial role in podocytes. J Clin Invest 2002; 109: 1073–82.Google Scholar
Bongers, E. M. H. F., Gubler, M. C., Knoers, N. V. A. M.. Nail-patella syndrome. Overview on clinical and molecular findings. Pediatr Nephrol 2002; 17: 703–12.Google Scholar
Lemley, K. V.. Kidney disease in nail-patella syndrome. Pediatr Nephrol 2009; 24: 2345–54.Google Scholar
Sweeney, E., Fryer, A., Mountford, R., Green, A., McIntoch, I.. Nail patella syndrome: a review of the phenotype aided by developmental biology. J Med Genet 2003; 40: 153–62.Google Scholar
Harita, Y., Urae, S., Akashio, R. et al. Clinical and genetic characterization of nephropathy in patients with nail-patella syndrome. Eur J Hum Genet 2020; 28: 1414–21.Google Scholar
Aboobacker, I. N., Krishnakumar, A., Narayanan, S. et al. Nail-patella syndrome: a rare cause of nephrotic syndrome in pregnancy. Indian J Nephrol 2018; 28: 76–8.Google Scholar
Konomoto, T., Imamura, H., Orita, M. et al. Clinical and histological findings of autosomal dominant renal-limited disease with LMX1B mutation. Nephrology 2016; 21: 765–73.Google Scholar
Pinto e Vairo, F., Pichurin, P. N., Fervenza, F. C. et al. Nail-patella-like renal disease masquerading as Fabry disease on kidney biopsy: a case report. BMC Nephrology 2020; 21: 341.Google Scholar
Zenker, M., Aigner, T., Wendler, O. et al. Human laminin β2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 2004; 13: 2625–32.Google Scholar
Chew, C., Lennon, R.. Basement membrane defects in genetic kidney diseases. Front Pediatr 2018; 6: 11.Google Scholar
Pierson, M., Cordier, J., Hervouuet, F., Rauber, G.. An unusual congenital and familial congenital malformative combination involving the eye and kidney. J Genet Hum 1963; 12: 184213.Google Scholar
Nishiyama, K., Kurokawa, M., Torio, M. et al. Gastrointestinal symptoms as an extended clinical feature of Pierson syndrome: a case report and review of the literature. BMC Medical Genetics 2020; 21: 80.Google Scholar
Kulali, F., Calkavur, S., Basaran, C. et al. A new mutation associated with Pierson syndrome. Arch Argent Pediatr 2020; 118: e288–91.Google Scholar
Hasselbacher, K., Wiggins, R. C., Matejas, V. et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int 2006; 70: 1008–12.Google Scholar
Sakuraya, K., Nozu, K., Murakami, H. et al. An extremely mild clinical course in a case with LAMB2-associated nephritis diagnosed with next-generation sequencing. CEN Case Rep 2021; 10: 35963.Google Scholar
Kikkawa, Y., Hashimoto, T., Takizawa, K. et al. Laminin β2 variants associated with isolated nephropathy that impact matrix regulation. JCI Insight 2021; 22: e145908.Google Scholar
Zenker, M., Pierson, M., Jonveaux, P., Reis, A.. Demonstration of two novel LAMB2 mutations in the original Pierson syndrome family reported 42 years ago. Am J Med Genet A 2005; 138: 734.Google Scholar
Arakawa, M., Fueki, H., Hirano, H. et al. Idiopathic mesangio-degenerative glomerulopathy. Jpn J Nephrol 1979; 21: 914–15.Google Scholar
Imbasciati, E., Gherardi, G., Morozumi, K. et al. Collagen type III glomerulopathy: a new idiopathic glomerular disease. Am J Nephrol 1991; 11: 4229.Google Scholar
Bao, H., Chen, H., Zhu, X. et al. Clinical and morphological features of collagen type III glomerulopathy: a report of nine cases from a single institution. Histopathology 2015; 67: 56876.Google Scholar
Miyake, M., Katayama, K., Ehara, T. et al. Collagenofibrotic glomerulopathy. Intern Med 2021; 60: 91115.Google Scholar
Rortveit, R., Lingaas, F., Bonsdorff, T. et al. A canine autosomal recessive model of collagen type III glomerulopathy. Lab Invest 2012; 92: 148391.Google Scholar
Duggal, R., Nada, R., Singh Rayat, C. et al. Collagenofibrotic glomerulopathy-a review. Clin Kidney J 2012; 5: 712.Google Scholar
Yasuda, T., Imai, H., Nakamoto, Y. et al. Collagenofibrotic glomerulopathy: a systemic disease. Am J Kidney Dis 1999; 33: 1237.Google Scholar
Manocha, A., Gupta, P.. Collagenofibrotic glomerulopathy: a rare diagnosis and seldom thought of differential for nodular glomerular mesangial expansion. J Clin Diagn Res 2020; 14: ED01ED02.Google Scholar
Mizuiri, S., Hasegawa, A., Kikuchi, A. et al. A case of collagenofibrotic glomerulopathy associated with hepatic perisinusoidal fibrosis. Nephron 1993; 63: 1837.Google Scholar
Gubler, M. C., Dommergues, J. P., Foulard, M. et al. Collagen type III glomerulopathy: a new type of hereditary nephropathy. Pediatr Nephrol 1993; 7: 35460.Google Scholar
Salcedo, J. R.. An autosomal recessive disorder with glomerular basement membrane abnormalities similar to those seen in nail patella syndrome: report of a kindred. Am J Med Genet 1984; 19: 57984.Google Scholar
Aoki, T., Hayashi, K., Morinaga, T. et al. Two brothers with collagenofibrotic glomerulopathy. CEN Case Rep 2015; 4: 859.Google Scholar
Alsaad, K. O., Edrees, B., Rahim, K. A. et al. Collagenofibrotic (collagen type III) glomerulopathy in association with diabetic nephropathy. Saudi J Kidney Dis Transpl 2017; 28: 898905.Google Scholar
Vogt, B. A., Wyatt, R. J., Burke, B. A. et al. Inherited factor H deficiency and collagen type III glomerulopathy. Pediatr Nephrol 1995; 9: 11–15.Google Scholar
Suzuki, T., Okubo, S., Ikezumii, Y. et al. Favourable course of collagenofibrotic glomerulopathy after kidney transplantation and questionnaire survey about the prognosis of collagenofibrotic glomerulopathy. Nihon Jinzo Gakkai Shi 2004; 46: 3604.Google Scholar
Ferreira, R. D. R., Custodio, F. B., Guimaraes, C. S. O., Correa, R. R. M., Reis, M. A.. Collagenofibrotic glomerulopathy: three case reports in Brazil. Diagn Pathol 2009; 4: 33.Google Scholar
Fukami, K., Yamagishi, S., Minezaki, T. et al. First reported case of collagenofibrotic glomerulopathy with a full house pattern of immune deposits. Clin Nephrol 2014; 81: 2905.Google Scholar
Guo, Q., Liu, L., Nie, P., Luo, P.. Telmisartan alleviated collagen type III glomerulopathy: a case report with literature review. Exp Ther Med 2020; 20: 140.Google Scholar

References

Noris, M., Remuzzi, G.. Genetics of immune-mediated glomerular diseases: Focus on complement. Semin Nephrol. 2017;37:447–63.Google Scholar
Couser, W. G.. Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol. 2012;23:381–99.Google Scholar
O’Shaughnessy, M. M., Hogan, S. L., Thompson, B. D., Coppo, R., Fogo, A. B., Jennette, J. C.. Glomerular disease frequencies by race, sex and region: Results from the International Kidney Biopsy Survey. Nephrol Dial Transplant. 2018;33:661–9.Google Scholar
Sugiyama, H., Yokoyama, H., Sato, H., et al. Japan Renal Biopsy Registry and Japan Kidney Disease Registry: Committee report for 2009 and 2010. Clin Exp Nephrol. 2013;17:15573.Google Scholar
Cho, B. S., Hahn, W. H., Cheong, H. I., et al. A nationwide study of mass urine screening tests on Korean school children and implications for chronic kidney disease management. Clin Exp Nephrol. 2013;17:20510.Google Scholar
Shibano, T., Takagi, N., Maekawa, K., Mae, H., Hattori, M., Takeshima, Y., Tanizawa, T.. Epidemiological survey and clinical investigation of pediatric IgA nephropathy. Clin Exp Nephrol. 2016;20:111–17.Google Scholar
Mizerska-Wasiak, M., Turczyn, A., Such, A., et al. IgA nephropathy in children: a multicenter study in Poland. Adv Exp Med Biol. 2016;952:7584.Google Scholar
Coppo, R.. Pediatric IgA nephropathy in Europe. Kidney Dis (Basel). 2019;5:1828.Google Scholar
Gharavi, A. G., Kiryluk, K., Choi, M., et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet. 2011;43:321–7.Google Scholar
Rheault, M. N., Wenderfer, S. E.. Evolving epidemiology of pediatric glomerular disease. Clin J Am Soc Nephrol. 2018;13:977–8.Google Scholar
Yeo, S. C., Cheung, C. K., Barratt, J.. New insights into the pathogenesis of IgA nephropathy. Pediatr Nephrol. 2018;33:763–77.Google Scholar
Park, H. J., Hahn, W. H., Suh, J. S., et al. Association between toll-like receptor 10 (TLR10) gene polymorphisms and childhood IgA nephropathy. Eur J Pediatr. 2011;170:503–9.Google Scholar
Donadio, M. E., Loiacono, E., Peruzzi, L., et al. Toll-like receptors, immunoproteasome and regulatory T cells in children with Henoch-Schönlein purpura and primary IgA nephropathy. Pediatr Nephrol. 2014;29:1545–51.Google Scholar
Coppo, R., Robert, T.. IgA nephropathy in children and in adults: Two separate entities or the same disease? J Nephrol. 2020;33:1219–29.Google Scholar
Coppo, R., Lofaro, D., Camilla, R. R., et al. Risk factors for progression in children and young adults with IgA nephropathy: An analysis of 261 cases from the VALIGA European cohort. Pediatr Nephrol. 2017;32:139–50. Erratum in: Pediatr Nephrol. 2017;32:19394.Google Scholar
Espinosa, M., Ortega, R., Sánchez, M., et al. Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol. 2014;9:897904.Google Scholar
Fabiano, R. C. G., de Almeida, A. S., Bambirra, E. A., Oliveira, E. A., Silva, A. C. S. E., Pinheiro, S. V. B.. Mesangial C4d deposition may predict progression of kidney disease in pediatric patients with IgA nephropathy. Pediatr Nephrol. 2017;32:121120.Google Scholar
Suzuki, H., Ohsawa, I., Kodama, F., et al. Fluctuation of serum C3 levels reflects disease activity and metabolic background in patients with IgA nephropathy. J Nephrol. 2013;26:70815.Google Scholar
Coppo, R.. Pediatric IgA nephropathy in Europe. Kidney Dis (Basel). 2019;5:182–8.Google Scholar
Mizerska-Wasiak, M., Maldyk, J., Panczyk-Tomaszewska, M., et al. Increased serum IgA in children with IgA nephropathy, severity of kidney biopsy findings and long-term outcomes. Adv Exp Med Biol. 2015;873:7986.Google Scholar
Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Roberts, I. S., Cook, H. T., et al. The Oxford classification of IgA nephropathy: Pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76:546–56.Google Scholar
Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Cattran, D.C., Coppo, R., et al., The Oxford classification of IgA nephropathy: Rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76:534–45.Google Scholar
Rivera, F., López-Gómez, J. M., Pérez-García, R., Spanish Registry of Glomerulonephritis. Clinicopathologic correlations of renal pathology in Spain. Kidney Int. 2004;66:898904.Google Scholar
D’Arrigo, R Tripepi, G., Russo, M. L., et al. Is there long-term value of pathology scoring in immunoglobulin A nephropathy? A validation study of the Oxford Classification for IgA Nephropathy (VALIGA) update. Nephrol Dial Transplant. 2020;35:1002–9.Google Scholar
Roos, A., Rastaldi, M. P., Calvaresi, N., et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol. 2006;17:1724–34.Google Scholar
Espinosa, M., Ortega, R., Sánchez, M., Segarra, A.: Spanish Group for Study of Glomerular Diseases (GLOSEN). Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol. 2014;9:897904.Google Scholar
Lee, S. M. K., Rao, V. M., Franklin, W. A., et al. IgA nephropathy: Morphologic predictors of progressive renal disease. Hum Pathol. 1982;13:314–22. 23.Google Scholar
Haas, M.. Histologic subclassification of IgA nephropathy: A clinicopathologic study of 244 cases. Am J Kid Dis 1997; 29: 829–42.Google Scholar
Haas, M., Verhave, J. C., Liu, Z. H., et al. A multicenter study of the predictive value of crescents in IgA nephropathy. J Am Soc Nephrol. 2017;28:691701. Published correction appears in J Am Soc Nephrol. 2017;28:1665.Google Scholar
Roberts, I. S.. Pathology of IgA nephropathy. Nat Rev Nephrol. 2014;10:445–54.Google Scholar
Trimarchi, H., Barratt, J., Cattran, D. C., et al. Oxford Classification of IgA nephropathy 2016: An update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017;91:1014–21.Google Scholar
Hastings, M.C., Rizk, D. V., Kiryluk, K., et al. IgA vasculitis with nephritis: Update of pathogenesis with clinical implications. Pediatr Nephrol. 2022;37:719–33.Google Scholar
Blyth, C. C., Robertson, P. W., Rosenberg, A. R.. Post-streptococcal glomerulonephritis in Sydney: A 16-year retrospective review. J Paediatr Child Health. 2007;43:446.Google Scholar
Kanjanabuch, T., Kittikowit, W., Eiam-Ong, S.. An update on acute postinfectious glomerulonephritis worldwide. Nat Rev Nephrol. 2009;5:259–69.Google Scholar
VanDeVoorde, R. G. 3rd. Acute poststreptococcal glomerulonephritis: The most common acute glomerulonephritis. Pediatr Rev. 2015;36:312.Google Scholar
Satoskar, A. A., Parikh, S. V., Nadasdy, T.. Epidemiology, pathogenesis, treatment and outcomes of infection-associated glomerulonephritis. Nat Rev Nephrol. 2020;16:3250.Google Scholar
Nast, C. C.. Infection-related glomerulonephritis: Changing demographics and outcomes. Adv Chronic Kidney Dis. 2012;19:6875.Google Scholar
Glassock, R. J., Alvarado, A., Prosek, J., et al. Staphylococcus-related glomerulonephritis and poststreptococcal glomerulonephritis: Why defining “post” is important in understanding and treating infection-related glomerulonephritis. Am J Kidney Dis. 2015;65:826–32.Google Scholar
Rodríguez-Iturbe, B., Batsford, S.. Pathogenesis of poststreptococcal glomerulonephritis a century after Clemens von Pirquet. Kidney Int. 2007;71:1094–104.Google Scholar
Satoskar, A. A., Nadasdy, T. S. F., Silva, F. G.. Acute postinfectious glomerulonephritis and glomerulonephritis caused by persistent bacterial infection. In Jennette, J. C., Olson, J. L., Silva, F. G., D’Agati, V. D. (eds) Heptinstall’s Pathology of the Kidney. 7th ed. Philadelphia: Wolters Kluwer. 2014. P. 367436.Google Scholar
Kambham, N.. Postinfectious glomerulonephritis. Adv Anat Pathol. 2012;19:338–47.Google Scholar
Sotsiou, F., Dimitriadis, G., Liapis, H.. Diagnostic dilemmas in atypical postinfectious glomerulonephritis. Semin Diagn Pathol. 2002;19:146–59.Google Scholar
Sethi, S., Fervenza, F. C., Zhang, Y., et al. Atypical postinfectious glomerulonephritis is associated with abnormalities in the alternative pathway of complement. Kidney Int. 2013;83;293–9.Google Scholar
Haas, M., Racusen, L. C., Bagnasco, S. M.. IgA-dominant postinfectious glomerulonephritis: A report of 13 cases with common ultrastructural features. Hum Pathol. 2008;39:1309–16.Google Scholar
Nasr, S. H., D’Agati, V. D.. IgA-dominant postinfectious glomerulonephritis: A new twist on an old disease. Nephron Clin Pract. 2011;119:c18c25; discussion c26.Google Scholar
Haffner, D., Schindera, F., Aschoff, A., et al. The clinical spectrum of shunt nephritis. Nephrol Dial Transplant. 1997;12:1143–8.Google Scholar
Zhou, X. J.. Membranoproliferative glomerulonephritis. In Jennette, J. C., Olson, J. L., Silva, F. G., D’Agati, V. D. (eds) Heptinstall’s Pathology of the Kidney. 7th ed. Philadelphia: Wolters Kluwer. 2014. P. 30139.Google Scholar
Sethi, S., Fervenza, F. C.. Membranoproliferative glomerulonephritis: A new look at an old entity. N Engl J Med. 2012;366:1119–31.Google Scholar
D’Agati, V. D., Bomback, A. S.. C3 glomerulopathy: What’s in a name? Kidney Int. 2012;82:37981.Google Scholar
Pickering, M. C., D’Agati, V. D., Nester, C. M., et al. C3 glomerulopathy: Consensus report. Kidney Int. 2013;84(6):1079–89.Google Scholar
Servais, A., Noël, L. H., Frémeaux-Bacchi V & Lesavre P C3 glomerulopathy. Contrib Nephrol. 2013;181:185–93.Google Scholar
Fakhouri, F., Fremeaux-Bacchi, V., Noel, L. H., et al. C3 glomerulopathy: A new classification. Nat Rev Nephrol. 2010;6:494–9.Google Scholar
Sethi, S., Fervenza, F. C., Zhang, Y., et al. Proliferative glomerulonephritis secondary to dysfunction of the alternative pathway of complement. Clin J Am Soc Nephrol. 2011;6:1009–17.Google Scholar
Sethi, S., Nester, C. M., Smith, R. J.. Membranoproliferative glomerulonephritis and C3 glomerulopathy: Resolving the confusion. Kidney Int. 2012;81(5):434–41.Google Scholar
Hou, J., Markowitz, G. S., Herlitz, L. C., et al. Toward a working definition of C3 glomerulopathy by immunofluorescence. Kidney Int. 2014;85:450–6.Google Scholar
Smith, R. J. H., Appel, G. B., Blom, A. M., et al. C3 glomerulopathy - understanding a rare complement-driven renal disease. Nat Rev Nephrol. 2019;15:129–43.Google Scholar
Gale, D. P., de Jorge, E. G., Cook, H. T., et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet. 2010;376:794801.Google Scholar
Appel, G. B., Cook, H. T., Hageman, G., et al. Membranoproliferative glomerulonephritis type II (dense deposit disease): An update. J Am Soc Nephrol. 2005;16:1392–403.Google Scholar
Walker, P. D., Ferrario, F., Joh, K., Bonsib, S. M.. Dense deposit disease is not a membranoproliferative glomerulonephritis. Mod Pathol. 2007;20:605–16.Google Scholar
Smith, R. J., Alexander, J., Barlow, P. N., Botto, M., et al. New approaches to the treatment of dense deposit disease. J Am Soc Nephrol. 2007;18:2447–56.Google Scholar
Nasr, S. H., Valeri, A. M., Appel, G. B., et al. Dense deposit disease: Clinicopathologic study of 32 pediatric and adult patients. Clin J Am Soc Nephrol. 2009;4:2232.Google Scholar
Lu, D. F., Moon, M., Lanning, L. D., McCarthy, A. M., Smith, R. J.. Clinical features and outcomes of 98 children and adults with dense deposit disease. Pediatr Nephrol. 2012;27:77381.Google Scholar
Prema, K. S. J., Kurien, A. A., Gopalakrishnan, N., Walker, P. D., Larsen, C. P.. Dense deposit disease: A greatly increased biopsy incidence in India versus the USA. Clin Kidney J. 2019;12:476–82.Google Scholar
Marinozzi, M. C., Roumenina, L. T., Chauvet, S., et al. Anti-factor B and anti-C3b autoantibodies in C3 glomerulopathy and Ig associated membranoproliferative GN. J Am Soc Nephrol. 2017;28:1603–13.Google Scholar
Bomback, A. S., Smith, R. J., Barile, G. R., et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol. 2012;7:74876.Google Scholar
Zuber, J., Fakhouri, F., Roumenina, L. T., Loirat, C., Fremeaux-Bacchi, V.. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol. 2012;8:643–57.Google Scholar
Oosterveld, M. J., Garrelfs, M. R., Hoppe, B., et al. Eculizumab in pediatric dense deposit disease. Clin J Am Soc Nephrol. 2015;10:1773–82.Google Scholar
Kasahara, K., Gotoh, Y., Majima, H., Takeda, A., Mizuno, M.. Eculizumab for pediatric dense deposit disease: A case report and literature review. Clin Nephrol Case Stud. 2020;8:96102.Google Scholar
Zand, L., Lorenz, E. C., Cosio, F. G., et al. Clinical findings, pathology, and outcomes of C3GN after kidney transplantation. J Am Soc Nephrol. 2014;25:111017.Google Scholar
Hiraki, L. T., Benseler, S. M., Tyrrell, P. N., et al. Clinical and laboratory characteristics and long-term outcome of pediatric systemic lupus erythematosus: A longitudinal study. J Pediatr. 2008;152:550–6.Google Scholar
Cooper, G. S., Parks, C. G., Treadwell, E. L., et al. Differences by race, sex and age in the clinical and immunologic features of recently diagnosed systemic lupus erythematosus patients in the southeastern United States. Lupus 2002;11:161–7.Google Scholar
Lehman, T. J., McCurdy, D. K., Bernstein, B. H., et al. Systemic lupus erythematosus in the first decade of life. Pediatrics. 1989;83:235–9.Google Scholar
Watson, B., Leone, V., Pilkington, C., et al. Disease activity, severity, and damage in the UK Juvenile-Onset Systemic Lupus Erythematosus Cohort. Arthritis Rheum. 2012;64:2356–65.Google Scholar
das Chagas Medeiros, M. M., Bezerra, M. C., Braga, F. N., et al. Clinical and immunological aspects and outcome of a Brazilian cohort of 414 patients with systemic lupus erythematosus (SLE): Comparison between childhood-onset, adult-onset, and late-onset SLE. Lupus 2016;25:355–63.Google Scholar
Brunner, H. I., Gladman, D. D., Ibañez, D., et al. Difference in disease features between childhood-onset and adult-onset systemic lupus erythematosus. Arthritis Rheum. 2008;58:556–62.Google Scholar
Hersh, A. O., von Scheven, E., Yazdany, J., et al. Differences in long-term disease activity and treatment of adult patients with childhood- and adult-onset systemic lupus erythematosus. Arthritis Rheum. 2009;61:1320.Google Scholar
Hoffman, I. E., Lauwerys, B. R., De Keyser, F., et al. Juvenile-onset systemic lupus erythematosus: Different clinical and serological pattern than adult-onset systemic lupus erythematosus. Ann Rheum Dis. 2009;68:412–15.Google Scholar
Barsalou, J., Levy, D. M., Silverman, E. D.. An update on childhood-onset systemic lupus erythematosus. Curr Opin Rheumatol. 2013;25:616–22.Google Scholar
Bajema, I. M., Wilhelmus, S., Alpers, C. E., et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: Clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int. 2018;93:789–96.Google Scholar
Sethi, S., Madden, B. J., Debiec, H., et al. Exotosin-1/exotosin-2 associated membranous nephropathy. J Am Soc Nephrol. 2019;30:1123–36.Google Scholar
Zappitelli, M., Duffy, C. M., Bernard, C., Gupta, I. R.. Evaluation of activity, chronicity and tubulointerstitial indices for childhood lupus nephritis. Pediatr Nephrol. 2008;23:83–91.Google Scholar
Mina, R., Abulaban, K., Klein-Gitelman, M. S., Eberhard, B. A.. Validation of the lupus nephritis clinical indices in childhood-onset systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2016;68:195202.Google Scholar
Wenderfer, S. E., Eldin, K. I. W.. Lupus nephritis. Pediatr Clin North Am. 2019;66:8799.Google Scholar
Oliva-Damaso, N., Payan, J., Oliva-Damaso, E., Pereda, T., Bomback, A. S.. Lupus podocytopathy: An overview. Adv Chronic Kidney Dis. 2019;26:369–75.Google Scholar
Beck, L. H. Jr, Bonegio, R. G., Lambeau, G., et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361:1121.Google Scholar
Tomas, N. M., Beck, L. H. Jr, Meyer-Schwesinger, C., et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med. 2014;371:2277–87.Google Scholar
Sethi, S., Debiec, H., Madden, B., et al. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int. 2020;97:163–74.Google Scholar
Sethi, S., Madden, B. J., Debiec, H., et al. Exotosin-1/exotosin-2 associated membranous nephropathy. J Am Soc Nephrol. 2019;30:1123–36.Google Scholar
Sethi, S., Debiec, H., Madden, B., et al. Semaphorin 3B–associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients. Kidney Int. 2020;98:1253–64.Google Scholar
Xu, X., Wang, G., Chen, N., et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J Am Soc Nephrol. 2016;27:3739–46.Google Scholar
Sanchez-Rodriguez, E., Southard, C. T., Kiryluk, K.. GWAS-based discoveries in IgA nephropathy, membranous nephropathy, and steroid-sensitive nephrotic syndrome. Clin J Am Soc Nephrol. 2021;16(3):458–66.Google Scholar
Vivarelli, M., Emma, F., Pellé, T., et al. Genetic homogeneity but IgG subclass-dependent clinical variability of alloimmune membranous nephropathy with anti-neutral endopeptidase antibodies. Kidney Int. 2015;87:602–9.Google Scholar
Debiec, H., Nauta, J., Coulet, F., et al. Role of truncating mutations in MME gene in fetomaternal alloimmunisation and antenatal glomerulopathies. Lancet. 2004;364(9441):1252–9.Google Scholar
Cossey, L. N., Walker, P. D., Larsen, C. P.. Phospholipase A2 receptor staining in pediatric idiopathic membranous glomerulopathy. Pediatr Nephrol. 2013;28:2307–11.Google Scholar
Larsen, C. P., Boils, C. L., Cossey, L. N., Sharma, S. G., Walker, P. D.. Clinicopathologic features of membranous-like glomerulopathy with masked IgG kappa deposits. Kidney Int Rep. 2016;24:299305.Google Scholar
Makker, S. P.. Treatment of membranous nephropathy in children. Semin Nephrol. 2003;23:379–85.Google Scholar
Menon, S., Valentini, R. P.. Membranous nephropathy in children: Clinical presentation and therapeutic approach. Pediatr Nephrol. 2010;25:1419–28.Google Scholar
Malatesta-Muncher, R., Eldin, K. W., Beck, L. H. Jr, Michael, M.. Idiopathic membranous nephropathy in children treated with rituximab: Report of two cases. Pediatr Nephrol. 2018;33:1089–92.Google Scholar
Swartz, S. J., Eldin, K. W., Hicks, M. J.,, et al. Minimal change disease with IgM+ immunofluorescence: A subtype of nephrotic syndrome. Pediatr Nephrol. 2009;24:1187–92.Google Scholar
Zheng, L. P., Wang, H., Zhang, J. J.. Clinical-pathological characteristics of IgM nephropathy in 34 children. Zhongguo Dang Dai Er Ke Za Zhi. 2010;12:338–40.Google Scholar
Mubarak, M., Kazi, J. I, Shakeel, S., Lanewala, A, Hashmi, S., Akhter, F.. Clinicopathologic characteristics and steroid response of IgM nephropathy in children presenting with idiopathic nephrotic syndrome. APMIS. 2011;119:180–6.Google Scholar
Shakeel, S., Mubarak, M., Kazi, J. I., Lanewala, A.. The prevalence and clinicopathological profile of IgM nephropathy in children with steroid-resistant nephrotic syndrome at a single centre in Pakistan. J Clin Pathol. 2012;65:1072–6.Google Scholar
Juozapaite, S., Cerkauskiene, R., Laurinavicius, A., Jankauskiene, A.. The impact of IgM deposits on the outcome of nephrotic syndrome in children. BMC Nephrol. 2017;18:260.Google Scholar
Kanemoto, K., Ito, H., Anzai, M., et al. Clinical significance of IgM and C1q deposition in the mesangium in pediatric idiopathic nephrotic syndrome. J Nephrol. 2013;26:30614.Google Scholar
Betjes, M. G., Roodnat, J. I.. Resolution of IgM nephropathy after rituximab treatment. Am J Kidney Dis. 2009;53:105962.Google Scholar
Myllymaki, J., Saha, H., Mustonen, J., et al. IgM nephropathy: Clinical picture and long-term prognosis. Am J Kidney Dis. 2003;41:343.Google Scholar
Jennette, J. C., Hipp, C. G.. C1q nephropathy: A distinct pathologic entity usually causing nephrotic syndrome. Am J Kidney Dis. 1985;6:103–10.Google Scholar
Jennette, J. C., Hipp, C. G.. Immunohistopathologic evaluation of C1q in 800 renal biopsy specimens. Am J Clin Pathol. 1985;83:415–20.Google Scholar
Markowitz, G. S., Schwimmer, J. A., Stokes, M. B., et al. C1q nephropathy: A variant of focal segmental glomerulosclerosis. Kidney Int. 2003;64:1232–40.Google Scholar
Vizjak, A., Ferluga, D., Rozic, M., et al. Pathology, clinical presentations, and outcomes of C1q nephropathy. J Am Soc Nephrol. 2008;19:2237–44.Google Scholar
Srivastava, T., Chadha, V.. C1q nephropathy presenting as rapidly progressive crescentic glomerulonephritis. Clin Exp Nephrol. 2000;14:9769.Google Scholar
Mii, A., Shimizu, A., Masuda, Y., et al. Current status and issues of C1q nephropathy. Clin Exp Nephrol. 2009;13:263–74.Google Scholar
Hisano, S., Fukuma, Y., Segawa, Y., et al. Clinicopathologic correlation and outcome of C1q nephropathy. Clin J Am Soc Nephrol. 2008;3:1637–43.Google Scholar
Gunasekara, V. N., Sebire, N. J., Tullus, K.. C1q nephropathy in children: Clinical characteristics and outcome. Pediatr Nephrol. 2014;29:407–13.Google Scholar
Sharman, A., Furness, P., Feehally, J.. Distinguishing C1q nephropathy from lupus nephritis. Nephrol Dial Transplant. 2004;19:14206.Google Scholar
Lau, K. K., Gaber, L. W., Santos, N. M. D., Wyatt, R. J.. C1q nephropathy: Features at presentation and outcome. Pediatr Nephrol. 2005;20:744–9.Google Scholar
Fukuma, Y., Hisano, S., Segawa, Y., et al. Clinicopathologic correlation of C1q nephropathy in children. Am J Kidney Dis. 2006;47:412–18.Google Scholar
Hashimoto, S., Ogawa, Y., Ishida, T., et al. Steroid-sensitive nephrotic syndrome associated with positive C1q immunofluorescence. Clin Exp Nephrol. 2004;8:266–9.Google Scholar
Fakhouri, F., Darré, S., Droz, D., et al. Mesangial IgG glomerulonephritis: A distinct type of primary glomerulonephritis. J Am Soc Nephrol. 2002;13:379–87.Google Scholar
Lim, B. J., Hong, S. W., Jeong, H. J.. IgG nephropathy - confusion and overlap with C1q nephropathy. Clin Nephrol. 2009;72:360–5.Google Scholar
Kharroubi, M., Ben Fatma, L., Rais, L., Jebali, H., Mami, I., Zouaghi, M. K.. Primary glomerulonephritis with predominant mesangial immunoglobulin G deposits. Tunis Med. 2018;96:442–4.Google Scholar
Jourde-Chiche, N., Moal, V., Daniel, L., Purgus, R.. Early IgG glomerulonephritis recurrence in a kidney transplant recipient. Clin Nephrol. 2008;70:340–3.Google Scholar

References

Grabowski, G. A., Desnick, R. J., Ludman, M. D., Kafonek, S. D., Kwiterovich, P. O., Bernstein, J.. The kidney in metabolic disorders. In Edelmann, CM, Bernstein, J, Meadow, SR eds. Pediatric Kidney Disease. 2nd ed. Little, Brown; 1992. P. 1599–623.Google Scholar
Emma, F., van’t Hoff, W. G., Dionisi Vici, C.. Renal manifestations of metabolic disorders in children. In Avner, E, Harmon, W, Niaudet, P, Yoshikawa, N, Emma, F, Goldstein, S eds. Pediatric Nephrology. Springer, Berlin, Heidelberg; 2016. P 1569–607.Google Scholar
Groth, C. G., Ringdén, O. Transplantation in relation to the treatment of inherited disease. Transplantation. 1984;38:31927.Google Scholar
Kayler, L. K., Merion, R. M., Lee, S., Sung, R. S., Punch, J. D., Rudich, S. M., et al. Long-term survival after liver transplantation in children with metabolic disorders. Pediatr Transplant. 2002;6:295300.Google Scholar
Sirac, C., Bridoux, F., Essig, M., Devuyst, O., Touchard, G., Cogné, M.. Toward understanding renal Fanconi syndrome: Step by step advances through experimental models. Contrib Nephrol. 2011;169:247–61.Google Scholar
Finn, L. S.. Renal disease caused by inborn errors of metabolism, storage diseases, and hemoglobinopathies. In: Jennette, JC, D’Agati, VD, Olson, JL, Silva, FG eds. Heptinstall’s Pathology of the Kidney. 7th ed. Wolters Kluwer Health; 2015. P 1223–78.Google Scholar
Ferreira, C. R., Gahl, W. A.. Lysosomal storage diseases. Transl Sci Rare Dis. 2017;2:171.Google Scholar
Faraggiana, T., Churg, J.. Renal lipidoses: A review. Hum Pathol. 1987;18:661–79.Google Scholar
Hicks, J., Wartchow, E., Mierau, G.. Glycogen storage diseases: A brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment. Ultrastruct Pathol. 2011;35:183–96.Google Scholar
Eikrem, Ø., Skrunes, R., Tøndel, C., Leh, S., Houge, G., Svarstad, E., et al. Pathomechanisms of renal Fabry disease. Cell Tissue Res. 2017;369:5362.Google Scholar
Tondel, C., Bostad, L., Hirth, A., Svarstad, E.. Renal biopsy findings in children and adolescents with Fabry disease and minimal albuminuria. Am J Kidney Dis. 2008;51:767–76.Google Scholar
Laney, D. A., Peck, D. S., Atherton, A. M., Manwaring, L. P., Christensen, K. M., Shankar, S. P., et al. Fabry disease in infancy and early childhood: A systematic literature review. Genet Med. 2015;17:323–30.Google Scholar
Nowak, A., Mechtler, T. P., Hornemann, T., Gawinecka, J., Theswet, E., Hilz, M. J., et al. Genotype, phenotype and disease severity reflected by serum LysoGb3 levels in patients with Fabry disease. Mol Genet Metab. 2018;123:148–53.Google Scholar
Najafian, B., Svarstad, E., Bostad, L., Gubler, M. C., Tondel, C., Whitley, C., et al. Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int. 2011;79:663–70.Google Scholar
Chimenz, R., Chirico, V., Cuppari, C., Ceravolo, G., Concolino, D., Monardo, P., et al. Fabry disease and kidney involvement: Starting from childhood to understand the future. Pediatr Nephrol. 2022;37:95103.Google Scholar
Thurberg, B. L., Rennke, H., Colvin, R. B., Dikman, S., Gordon, R. E., Collins, A. B., et al. Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int. 2002;62:1933–46.Google Scholar
Barisoni, L., Jennette, J. C., Colvin, R., Sitaraman, S., Bragat, A., Castelli, J., et al. Novel quantitative method to evaluate globotriaosylceramide inclusions in renal peritubular capillaries by virtual microscopy in patients with fabry disease. Arch Pathol Lab Med. 2012;136:816–24.Google Scholar
Fogo, A. B., Bostad, L., Svarstad, E., Cook, W. J., Moll, S., Barbey, F., et al. Scoring system for renal pathology in Fabry disease: Report of the International Study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant. 2010;25:2168–77.Google Scholar
Skrunes, R., Tondel, C., Leh, S., Larsen, K. K., Houge, G., Davidsen, E. S., et al. Long-term dose-dependent agalsidase effects on kidney histology in Fabry disease. Clin J Am Soc Nephrol. 2017;12:1470–9.Google Scholar
Bracamonte, E. R., Kowalewska, J., Starr, J., Gitomer, J., Alpers, C. E.. Iatrogenic phospholipidosis mimicking Fabry disease. Am J Kidney Dis. 2006;48:844–50.Google Scholar
Lei, L., Oh, G., Sutherland, S., Abra, G., Higgins, J., Sibley, R., et al. Myelin bodies in LMX1B-associated nephropath: potential for misdiagnosis. Pediatr Nephrol. 2020;35:1647–57.Google Scholar
Spada, M., Baron, R., Elliott, P. M., Falissard, B., Hilz, M. J., Monserrat, L., et al. The effect of enzyme replacement therapy on clinical outcomes in paediatric patients with Fabry disease: A systematic literature review by a European panel of experts. Mol Genet Metab. 2019;126:212–23.Google Scholar
McGovern, M. M., Wasserstein, M. P., Giugliani, R., Bembi, B., Vanier, M. T., Mengel, E., et al. A prospective, cross-sectional survey study of the natural history of Niemann-Pick disease type B. Pediatrics. 2008;122:e3419.Google Scholar
Takebayashi, S., von Bassewitz, D. B., Themann, H.. Ultrastructural alterations of the kidney in generalized gangliosidosis GM1. Virchows Arch B Cell Pathol. 1970;5:301–13.Google Scholar
Annunziata, I., d’Azzo, A.. Galactosialidosis: Historic aspects and overview of investigated and emerging treatment options. Expert Opin Orphan Drugs. 2017;5:131–41.Google Scholar
Majno, G., Joris, I.. Cells, Tissues, and Disease: Principles of General Pathology. 2nd ed. Oxford University Press: New York; 2004. P. 145–54.Google Scholar
Olkkonen, V. M., Ikonen, E.. Genetic defects of intracellular-membrane transport. N Engl J Med. 2000;343:1095–104.Google Scholar
Plante, M., Claveau, S., Lepage, P., Lavoi, E. M., Brunet, S., Roquis, D., et al. Mucolipidosis II: A single causal mutation in the N-acetylglucosamine-1-phosphotransferase gene (GNPTAB) in a French Canadian founder population. Clin Genet. 2008;73:236–44.Google Scholar
Okada, S., Owada, M., Sakiyama, T., Yutaka, T., Ogawa, M.. I-cell disease: Clinical studies of 21 Japanese cases. Clin Genet. 1985;28:207–15.Google Scholar
Khan, S. A., Tomatsu, S. C.. Mucolipidoses overview: Past, present, and future. Int J Mol Sci. 2020;21(18).Google Scholar
Renwick, N., Nasr, S. H., Chung, W. K., Garvin, J., Markowitz, G. S., Marboe, C., et al. Foamy podocytes. Am J Kidney Dis. 2003;41(4):891–6.Google Scholar
Tüysüz, B., Ercan-Sencicek, A. G., Canpolat, N., Koparır, A., Yılmaz, S., Kılıçaslan, I., et al. Renal involvement in patients with mucolipidosis IIIalpha/beta: Causal relation or co-occurrence? Am J Med Genet A. 2016;170a:1187–95.Google Scholar
Hu, J., Lu, J. Y., Wong, A. M., Hynan, L. S., Birnbaum, S. G., Yilmaz, D. S., et al. Intravenous high-dose enzyme replacement therapy with recombinant palmitoyl-protein thioesterase reduces visceral lysosomal storage and modestly prolongs survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2012;107:213–21.Google Scholar
Meng, Y., Sohar, I., Wang, L., Sleat, D. E., Lobel, P.. Systemic administration of tripeptidyl peptidase I in a mouse model of late infantile neuronal ceroid lipofuscinosis: Effect of glycan modification. PLoS ONE. 2012;7:e40509.Google Scholar
Järvelä, I., Lehtovirta, M., Tikkanen, R., Kyttälä, A., Jalanko, A.. Defective intracellular transport of CLN3 is the molecular basis of Batten disease (JNCL). Hum Mol Genet. 1999;8:1091–8.Google Scholar
Golubek, A. A., Kida, E., Walus, M., Kaczmarski, W., Wujek, P., Wisniewski, K.. CLN3 disease process: Missense point mutations and protein depletion in vitro. Eur J Paediatr Neurol. 2001;5 (Suppl A):81–8.Google Scholar
Saito, T., Matsunaga, A., Fukunaga, M., Nagahama, K., Hara, S., Muso, E.. Apolipoprotein E-related glomerular disorders. Kidney Int. 2020;97:279–88.Google Scholar
Kawanishi, K., Sawada, A., Ochi, A., Moriyama, T., Mitobe, M., Mochizuki, T., et al. Glomerulopathy with homozygous apolipoprotein e2: A report of three cases and review of the literature. Case Rep Nephrol Urol. 2013;3:12835.Google Scholar
Saito, T., Sato, H., Kudo, K., Oikawa, S., Shibata, T., Hara, Y., et al. Lipoprotein glomerulopathy: Glomerular lipoprotein thrombi in a patient with hyperlipoproteinemia. Am J Kidney Dis. 1989;13:148–53.Google Scholar
Hu, Z., Huang, S., Wu, Y., Liu, Y., Liu, X., Su, D., et al. Hereditary features, treatment, and prognosis of the lipoprotein glomerulopathy in patients with the APOE Kyoto mutation. Kidney Int. 2014;85:416–24.Google Scholar
Saito, T., Oikawa, S., Sato, H., Sato, T., Ito, S., Sasaki, J.. Lipoprotein glomerulopathy: Significance of lipoprotein and ultrastructural features. Kidney Int Suppl. 1999;71:S37–41.Google Scholar
Norum, K. R., Remaley, A. T., Miettinen, H. E., Strøm, E. H., Balbo, B. E. P., Sampaio, C., et al. Lecithin:cholesterol acyltransferase: Symposium on 50 years of biomedical research from its discovery to latest findings. J Lipid Res. 2020;61:1142–9.Google Scholar
Ossoli, A., Neufeld, E. B., Thacker, S. G., Vaisman, B., Pryor, M., Freeman, L. A., et al. Lipoprotein X causes renal disease in LCAT deficiency. PLoS ONE. 2016;11:e0150083.Google Scholar
Holleboom, A. G., Kuivenhoven, J. A., van Olden, C. C., Peter, J., Schimmel, A. W., Levels, J. H., et al. Proteinuria in early childhood due to familial LCAT deficiency caused by loss of a disulfide bond in lecithin:cholesterol acyl transferase. Atherosclerosis. 2011;216:161–5.Google Scholar
Saeedi, R., Li, M., Frohlich, J.. A review on lecithin:cholesterol acyltransferase deficiency. Clin Biochem. 2015;48:472–5.Google Scholar
Pavanello, C., Ossoli, A., Arca, M., D’Erasmo, L., Boscutti, G., Gesualdo, L., et al. Progression of chronic kidney disease in familial LCAT deficiency: A follow-up of the Italian cohort. J Lipid Res. 2020;61:1784–8.Google Scholar
Strøm, E. H., Sund, S., Reier-Nilsen, M., Dørje, C, Leren, T. P.. Lecithin:cholesterol acyltransferase (LCAT) deficiency: Renal lesions with early graft recurrence. Ultrastruct Pathol. 2011;35:139–45.Google Scholar
Kamath, B. M., Podkameni, G., Hutchinson, A. L., Leonard, L. D., Gerfen, J., Krantz, I. D., et al. Renal anomalies in Alagille syndrome: A disease-defining feature. Am J Med Genet A. 2012;158a:85–9.Google Scholar
Bissonnette, M. L. Z., Lane, J. C., Chang, A.. Extreme renal pathology in Alagille syndrome. Kidney Int Rep. 2016;2:493–7.Google Scholar
Franceschetti, S., Canafoglia, L.. Sialidoses. Epileptic Disord. 2016;18(S2):8993.Google Scholar
Maroofian, R., Schuele, I., Najafi, M., Bakey, Z., Rad, A., Antony, D., et al. Parental whole-exome sequencing enables sialidosis type II diagnosis due to an NEU1 missense mutation as an underlying cause of nephrotic syndrome in the child. Kidney Int Rep. 2018;3:1454–63.Google Scholar
Khan, A., Sergi, C.. Sialidosis: A review of morphology and molecular biology of a rare pediatric disorder. Diagnostics (Basel). 2018;8:9.Google Scholar
Chen, W., Yang, S., Shi, H., Guan, W., Dong, Y., Wang, Y., et al. Histological studies of renal biopsy in a boy with nephrosialidosis. Ultrastruct Pathol. 2011;35:168–71.Google Scholar
Sláma, T., Garbade, S. F., Kölker, S., Hoffmann, G. F., Ries, M.. Quantitative natural history characterization in a cohort of 142 published cases of patients with galactosialidosis-A cross-sectional study. J Inherit Metab Dis. 2019;42:295302.Google Scholar
Ketterer, S., Gomez-Auli, A., Hillebrand, L. E., Petrera, A., Ketscher, A., Reinheckel, T.. Inherited diseases caused by mutations in cathepsin protease genes. FEBS J. 2017;284:1437–54.Google Scholar
Hicks, J., Wartchow, E., Mierau, G.. Glycogen storage diseases: A brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment. Ultrastruct Pathol. 2011;35:183–96.Google Scholar
Martens, D. H., Rake, J. P., Navis, G., Fidler, V., van Dael, C. M., Smit, G. P.. Renal function in glycogen storage disease type I, natural course, and renopreservative effects of ACE inhibition. Clin J Am Soc Nephrol. 2009;4:1741–6.Google Scholar
Chen, Y. T.. Type I glycogen storage disease: Kidney involvement, pathogenesis and its treatment. Pediatr Nephrol. 1991;5:71–6.Google Scholar
de Lonlay, P., Seta, N., Barrot, S., Chabrol, B., Drouin, V., Gabriel, B. M., et al. A broad spectrum of clinical presentations in congenital disorders of glycosylation I: A series of 26 cases. J Med Genet. 2001;38(1):1419.Google Scholar
Sinha, M. D., Horsfield, C., Komaromy, D., Booth, C. J., Champion, M. P.. Congenital disorders of glycosylation: A rare cause of nephrotic syndrome. Nephrol Dial Transplant. 2009;24:2591–4.Google Scholar
Marcovecchia, M. L., Chiarelli, F.. Diabetic nephropathy in children. In Avner, E, Harmon, W, Niaudet, P, Yoshikawa, N, Emma, F, Goldstein, S eds. Pediatric Nephrology. Springer, Berlin, Heidelberg; 2016. P1545–68.Google Scholar
Reinehr, T.. Type 2 diabetes mellitus in children and adolescents. World J Diabetes. 2013;4:270–81.Google Scholar
Dabelea, D., Mayer-Davis, E. J., Saydah, S., Imperatore, G., Linder, B., Divers, J., et al. Prevance of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311:1778–86.Google Scholar
Gross, J. L., de Azevedo, M. J., Silviero, S. P., Canani, L. H., Caramori, M. L., Zelmanowitz, T.. Diabetic nephropathy: Diagnosis, prevention and treatment. Diabetes Care. 2005;28:164–76.Google Scholar
Mokha, J. S., Srinivasan, S. R., Dasmahapatra, P., Fernandez, C., Chen, W., Xu, J., et al. Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study. BMC Pediatr. 2010;10:73.Google Scholar
Ford, E. S., Li, C.. Defining the metabolic syndrome in children and adolescents. J Pediatr. 2008;152:160–4.Google Scholar
Lee, S., Bacha, F., Gungo, N., Arslanian, S.. Comparison of different definitions of pediatric metabolic syndrome: Relation to abdominal adiposity, insulin resistance, adiponectin, and inflammatory biomarkers. J Pediatr. 2008;152:177–84.Google Scholar
Sanad, M., Gharib, A.. Evaluation of microalbuminuria in obese children and its relation to metabolic syndrome. Pediatr Nephrol. 2011;26:2193–9.Google Scholar
Baumgartner, M. R., Horster, F., Dionosi-Vici, C., Haliloglu, G., Karall, D., Chapman, K. A., et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.Google Scholar
Cosson, M. A., Benoist, J. F., Touati, G., Déchaux, M., Royer, N., Grandin, L., et al. Long-term outcome in methylmalonic aciduria: A series of 30 French patients. Mol Genet Metab. 2009;97:172–8.Google Scholar
Ha, T. S., Lee, J. S., Hing, E. J.. Delay of renal progression in methylmalonic acidurias using angiotensin II inhibitors: A case report. J Nephrol. 2008;21:793–6.Google Scholar
Gaines, J. J.. The pathology of alkaptonuric ochronosis. Hum Pathol. 1989;20:406.Google Scholar
Venkataseshan, V. S., Chandra, B., Graziano, V., Steinlauf, P., Marquet, E., Irmiere, V., et al. Alkaptonuria and renal failure: A case report and review of literature. Mod Pathol. 1992;5:464–71.Google Scholar
Malowany, J. I., Butany, J.. Pathology of sickle cell disease. Semin Diagn Pathol. 2012;29:4955.Google Scholar
Modell, B., Darlison, M.. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86:480–7.Google Scholar
Pham, P. T., Pham, P. C., Wilkinson, A. H., Lew, S. Q.. Renal abnormalities in sickle cell disease. Kidney Int. 2000;57:18.Google Scholar
Wigfall, D. R., Ware, R. E., Burchinal, M. R., Kinney, T. R., Foreman, J. W.. Prevalence and clinical correlates of glomerulopathy in children with sickle cell disease. J Pediatr. 2000;136:74953.Google Scholar
McPherson Yee, M., Jabbar, S. F., Osunkwo, I., Clement, L., Lane, P. A., Eckman, J. R., et al. Chronic kidney disease and albuminuria in children with sickle cell disease. Clin J Am Soc Nephrol. 2011;6:2628–33.Google Scholar

References

Kyle, R. A.. Amyloidosis: A convoluted story. Br J Haematol. 2001;114:529–38.Google Scholar
Hashkes, P. J.. 50 years ago in The Journal of Pediatrics: Amyloidosis in childhood. J Pediatr. 2019;205:54.Google Scholar
Rowczenio, D., Stensland, M., de Souza, G. A., et al. Renal amyloidosis associated with 5 novel variants in the fibrinogen A alpha chain protein. Kidney Int Rep. 2017;2:461–9.Google Scholar
Palsdottir, A., Snorradottir, A. O., Thorsteinsson, L.. Hereditary cystatin C amyloid angiopathy: Genetic, clinical, and pathological aspects. Brain Pathol. 2006;16:55–9.Google Scholar
Bilginer, Y., Akpolat, T., Ozen, S.. Renal amyloidosis in children. Pediatr Nephrol. 2011;26:1215–27.Google Scholar
Alzyoud, R., Alsweiti, M., Maittah, H., et al. Familial Mediterranean fever in Jordanian children: Single centre experience. Mediterr J Rheumatol. 2018;29:211–16.Google Scholar
Gattorno, M., Hofer, M., Federici, S., et al. Classification criteria for autoinflammatory recurrent fevers. Ann Rheum Dis. 2019;78:1025–32.Google Scholar
Yazılıtaş, F., Çakıcı, E. K., Kurt Şükür, E. D., et al. Clinicopathological assessment of kidney biopsies in children with familial Mediterranean fever: A single-center experience. Nephron. 2020;144:222–7.Google Scholar
Westermark, G. T., Fändrich, M., Westermark, P.. AA amyloidosis: Pathogenesis and targeted therapy. Ann Rev Pathol. 2015;10:321–44.Google Scholar
Garg, N., Jain, S., Chauhan, S., et al. Clinicopathological spectrum of renal amyloidosis in young. Saudi J Kidney Dis Transpl. 2020;31:1085–90.Google Scholar
Kang, H. G., Bybee, A., Ha, I. S., et al. Hereditary amyloidosis in early childhood associated with a novel insertion-deletion (indel) in the fibrinogen Aalpha chain gene. Kidney Int. 2005;68:1994–8.Google Scholar
Wechalekar, A. D., Gillmore, J. D., Hawkins, P. N.. Systemic amyloidosis. Lancet. 2016;387:2641–54.Google Scholar
Kidd, J., Carl, D. E.. Renal amyloidosis. Curr Probl Cancer. 2016;40:209–19.Google Scholar
Gupta, A., Bagri, N. K., Tripathy, S. K., et al. Successful use of tocilizumab in amyloidosis secondary to systemic juvenile idiopathic arthritis. Rheumatol Int. 2020;40:153–9.