Published online by Cambridge University Press: 20 August 2009
Historical introduction
The p-adic theory of logarithmic forms has a long history, following closely the results in the complex domain; and it has been applied to Leopoldt's conjecture on p-adic regulators (for abelian extensions of Q, see Ax 1965 and Brumer 1967), to polynomial and exponential Diophantine equations, to the problem of the greatest prime divisors of polynomials or binary forms, to linear recurrence sequences (see Shorey & Tijdeman 1986), to knot theory (see Riley 1990) and to the abc-conjecture (see Stewart & Tijdeman 1986, Stewart & Yu 1991, 2001), etc. The present report will emphasize the evolution of the theory of p-adic logarithmic forms and its application to the abc-conjecture.
Mahler (1932) proved the p-adic analogue of the Hermite–Lindemann theorem. In 1935, he obtained a p-adic analogue of the Gel'fond–Schneider Theorem. During the course of this work, he founded the p-adic theory of analytic functions.
Gel'fond (1940) proved a quantitative result on linear forms in two p-adic logarithms in analogy with his classic work on Hilbert's seventh problem relating to two complex logarithms. Schinzel (1967) refined Gel'fond's results, giving completely explicit bounds.
At the end of his 1952 book, Gel'fond wrote ‘Nontrivial lower bounds for linear forms, with integral coefficients, of an arbitrary number of logarithms of algebraic numbers, obtained effectively by methods of the theory of transcendental numbers, will be of extraordinarily great significance in the solution of very difficult problems of modern number theory.’
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.