We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
References
1
Keay, SD, Liversedge, NH, Mathur, RS, Jenkins, JM. Assisted conception following poor ovarian response to gonadotrophin stimulation. Br J Obstet Gynaecol1997;104(5):521–527.CrossRefGoogle ScholarPubMed
2
Polyzos, NP, Nwoye, M, Corona, R, et al. Live birth rates in Bologna poor responders treated with ovarian stimulation for IVF/ICSI. Reprod Biomed Online2014;28(4):469–474.Google Scholar
3
Ferraretti, AP, La Marca, A, Fauser, BCJM, et al.; ESHRE working group on Poor Ovarian Response Definition. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteriaHum Reprod2011;26(7):1616–1624. https://doi.org/10.1093/humrep/der092.Google Scholar
Humaidan, P, Alviggi, C, Fischer, R, Esteves, SC. The novel POSEIDON stratification of ‘Low prognosis patients in Assisted Reproductive Technology’ and its proposed marker of successful outcome. F1000Res2016;5:2911. doi:10.12688/f1000research.10382.1.Google Scholar
7
Younis, JS. Ovarian aging and implications for fertility female health. Minerva Endocrinol2012;37(1):41–57.Google Scholar
8
De Ziegler, D, Borghese, B, Chapron, C.Endometriosis and infertility: pathophysiology and management. Lancet2010;376(9742):730–738. doi: 10.1016/S0140-6736(10)60490-4.Google Scholar
Wouter, JK, Hehenkamp, NA, Volkers, FJM, et al. Loss of ovarian reserve after uterine artery embolization: a randomized comparison with hysterectomy. Hum Reprod2007;22(7):1996–2005. https://doi.org/10.1093/humrep/dem105.Google Scholar
11
Almog, B, Shehata, F, Sheizaf, B, Tan, SL, Tulandi, T. Effects of ovarian endometrioma on the number of oocytes retrieved for in vitro fertilization.Fertil Steril2011;95(2):525–527.Google Scholar
12
Soto, N, Iñiguez, G, López, P, et al. Anti-Müllerian hormone and inhibin B levels as markers of premature ovarian aging and transition to menopause in type 1 diabetes mellitusHum Reprod2009;24(11):2838–2844. https://doi.org/10.1093/humrep/dep276.CrossRefGoogle ScholarPubMed
13
Chang, H, Chen, M, Lu, M, et al. Iron overload is associated with low anti‐müllerian hormone in women with transfusion‐dependent β‐thalassaemia. BJOG2011;118: 825–831. doi:10.1111/j.1471-0528.2011.02927.x.Google Scholar
14
De Vos, M, Devroey, P, Fauser, BC. Primary ovarian insufficiency.Lancet2010;376(9744):911–921.Google Scholar
15
Fritz, MA, Speroff, L. Clinical Gynecologic Endocrinology and Infertility, 8th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2011.Google Scholar
Broer, SL, Dólleman, M, van Disseldorp, J, et al.; IPD-EXPORT Study Group. Prediction of an excessive response in in vitro fertilization from patient characteristics and ovarian reserve tests and comparison in subgroups: an individual patient data meta-analysis.Fertil Steril2013;100(2):420.e7–429.e7.Google Scholar
18
La Marca, A, Sunkara, SK. Individualization of controlled ovarian stimulation in IVF using ovarian reserve markers: from theory to practice. Hum Reprod Update2014;20(1):124–140. https://doi.org/10.1093/humupd/dmt037.Google Scholar
19
Surrey, S, Schoolcraft, WB. Evaluating strategies for improving ovarian response of the poor responder undergoing assisted reproductive techniques. Fertil Steril2000;73(4):667–676.Google Scholar
Land, JA, Yarmolinskaya, MI, Dumoulin, JC, Evers, JL. High-dose human menopausal gonadotropin stimulation in poor responders does not improve in vitro fertilization outcome. Fertil Steril1996;65(5):961–965.Google Scholar
22
Tarlatzis, BC, Zepiridis, L, Grimbizis, G, Bontis, J. Clinical management of low ovarian response to stimulation for IVF: a systematic review. Hum Reprod Update2003;9(1):61–76.Google Scholar
23
Pandian, Z, McTavish, AR, Aucott, L, Hamilton, MPR, Bhattacharya, S.Interventions for ‘poor responders’ to controlled ovarian hyper stimulation (COH) in in‐vitro fertilisation (IVF). Cochrane Database Syst Rev2010;1:CD004379. doi: 10.1002/14651858.CD004379.pub3.Google Scholar
24
Pu, D, Wu, J, Liu, J. Comparisons of GnRH antagonist versus GnRH agonist protocol in poor ovarian responders undergoing IVF. Hum Reprod2011;26(10):2742–2749. https://doi.org/10.1093/humrep/der240.Google Scholar
25
Sunkara, SK, Coomarasamy, A, Faris, R, Braude, P, Khalaf, Y. Long gonadotropin-releasing hormone agonist versus short agonist versus antagonist regimens in poor responders undergoing in vitro fertilization: a randomized controlled trial.Fertil Steril2014;101(1):147–153.CrossRefGoogle ScholarPubMed
26
Lambalk, CB, Banga, FR, Huirne, JA, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update2017;23(5):560–579. https://doi.org/10.1093/humupd/dmx017.Google Scholar
27
Sunkara, SK, Rittenberg, V, Raine-Fenning, N, et al. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod2011;26:1768–1774.Google Scholar
28
Drakopoulos, P, Blockeel, C, Stoop, D, et al. Conventional ovarian stimulation and single embryo transfer for IVF/ICSI. How many oocytes do we need to maximize cumulative live birth rates after utilization of all fresh and frozen embryos?Hum Reprod2016;31(2):370–376. https://doi.org/10.1093/humrep/dev316.Google Scholar
29
Youssef, MA, van Wely, M, Mochtar, M, et al. Low dosing of gonadotropins in in vitro fertilization cycles for women with poor ovarian reserve: systematic review and meta-analysis. Fertil Steril2017;109(2): 289–301.CrossRefGoogle Scholar
30
Practice Committee of the American Society for Reproductive Medicine. Electronic address: ASRM@asrm.org. Comparison of pregnancy rates for poor responders using IVF with mild ovarian stimulation versus conventional IVF: a guidelineFertil Steril2018;109(6):993–999.Google Scholar
31
Park, J-Y, Su, Y-Q, Ariga, M, et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science2004;303:682–684.CrossRefGoogle ScholarPubMed
32
Lehert, P, Kolibianakis, EM, Venetis, CA, et al. Recombinant human follicle-stimulating hormone (r-hFSH) plus recombinant luteinizing hormone versus r-hFSH alone for ovarian stimulation during assisted reproductive technology: systematic review and meta-analysis. Reprod Biol Endocrinol2014;12:17. https://doi.org/10.1186/1477-7827-12-17.CrossRefGoogle ScholarPubMed
33
Mochtar, MH, Danhof, NA, Ayeleke, RO, Van der Veen, F, van Wely, M.Recombinant luteinizing hormone (rLH) and recombinant follicle stimulating hormone (rFSH) for ovarian stimulation in IVF/ICSI cycles. Cochrane Database Syst Rev2017;5:CD005070. doi: 10.1002/14651858.CD005070.pub3.Google ScholarPubMed
34
Humaidan, P, Chin, W, Rogoff, D, et al. Efficacy and safety of follitropin alfa/lutropin alfa in ART: a randomized controlled trial in poor ovarian responders.Hum Reprod2017;32(7):1537–1538.Google Scholar
35
Alviggi, C, Conforti, A, Esteves, SC, et al. Recombinant luteinizing hormone supplementation in assisted reproductive technology: a systematic review.Fertil Steril2018;109(4):644–664.Google Scholar
36
Fauser, BC, Alper, MM, Ledger, W, et al. Pharmacokinetics and follicular dynamics of corifollitropin alfa versus recombinant FSH during ovarian stimulation for IVF. Reprod Biomed Online2010;21(5):593–601.Google Scholar
37
Polyzos, NP, Devos, M, Humaidan, P, et al. Corifollitropin alfa followed by rFSH in a GnRH antagonist protocol for poor ovarian responder patients: an observational pilot study.Fertil Steril2013;99(2):422–426.CrossRefGoogle Scholar
38
Kolibianakis, EM, Venetis, C.A. CA, J.K. Bosdou JK, et al. Corifollitropin alfa compared with follitropin beta in poor responders undergoing ICSI: a randomized controlled trial. Hum Reprod2015;30(2):432–440. https://doi.org/10.1093/humrep/deu301.CrossRefGoogle ScholarPubMed
39
Fabozzi, G, Giannini, A, Piscitelli, VP, Colicchia, A. Adjuvants therapies for women undergoing IVF: is there any evidence of their safety and efficacy? An updated mini-review. Obstet Gynecol Int J2017;7(4):00254. doi: 10.15406/ogij.2017.07.00254.Google Scholar
40
Casson, PR, Lindsay, MS, Pisarska, MD, Carson, SA, Buster, JE. Dehydroepiandrosterone supplementation augments ovarian stimulation in poor responders: a case series. Hum Reprod2000;15(10):2129–2132.Google Scholar
41
Weil, S, Vendola, K, Zhou, J, Bondy, CA. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab1999;84(8):2951–2956.CrossRefGoogle ScholarPubMed
Nagels, HE, Rishworth, JR, Siristatidis, CS, Kroon, B.Androgens (dehydroepiandrosterone or testosterone) for women undergoing assisted reproduction. Cochrane Database Syst Rev2015;11:CD009749. doi:10.1002/14651858.CD009749.pub2.Google Scholar
44
Zhang, M, Niu, W, Wang, Y, et al. Dehydroepiandrosterone treatment in women with poor ovarian response undergoing IVF or ICSI: a systematic review and meta-analysis. J Assist Reprod Genet2016;33:981–991. doi 10.1007/s10815-016-0713-5.CrossRefGoogle ScholarPubMed
45
Haahr, T, Esteves, SC, Humaidan, P.Individualized controlled ovarian stimulation in expected poor-responders: an update. Reprod Biol Endocrinol2018;16(1):20. doi:10.1186/s12958-018-0342-1.Google Scholar
Yoshimura, Y, Ando, M, Nagamatsu, S, et al. Effects of insulin-like growth factor-I on follicle growth, oocyte maturation, and ovarian steroidogenesis and plasminogen activator activity in the rabbit. Biol Reprod1996;55(1):152–160.CrossRefGoogle ScholarPubMed
48
Kolibianakis, E, Venetis, C, Diedrich, K, Tarlatzis, B, Griessinger, G.Addition of growth hormone to gonadotropins in ovarian stimulation of poor responders treated by in-vitro fertilization: a systemic review and meta-analysis. Hum Reprod Update2009;15:613–622.Google Scholar
49
Jeve, YB, Bhandari, HM. Effective treatment protocol for poor ovarian response: a systematic review and meta-analysis. J Hum Reprod Sci2016;9:70–81.Google Scholar
50
Fanchin, R, Cunha-Filho, JS, Schonäuer, LM, et al. Coordination of early antral follicles by luteal estradiol administration provides a basis for alternative controlled ovarian hyperstimulation regimens. Fertil Steril2003;79:316–321.Google Scholar
51
Fanchin, R, Salomon, L, Castelo‐Branco, A, et al. Luteal estradiol pre‐treatment coordinates follicular growth during controlled ovarian hyperstimulation with GnRH antagonists. Hum Reprod2003;18(12):2698–2703. https://doi.org/10.1093/humrep/deg516.CrossRefGoogle ScholarPubMed
52
Reynolds, KA, Omurtag, KR, Jimenez, PT, et al. Cycle cancellation and pregnancy after luteal estradiol priming in women defined as poor responders: a systematic review and meta-analysis. Hum Reprod2013;28(11):2981–2989.Google Scholar
53
Farquhar, C, Rombauts, L, Kremer, JAM, Lethaby, A, Ayeleke, RO. Oral contraceptive pill, progestogen or oestrogen pretreatment for ovarian stimulation protocols for women undergoing assisted reproductive techniques. Cochrane Database Syst Rev2017;5:CD006109. doi: 10.1002/14651858.CD006109.pub3.Google Scholar
54
Garcia-Velasco, JA, Fatemi, HM. To pill or not to pill in GnRH antagonist cycles: that is the question!Reprod Biomed Online2014;30(1):39–42.Google Scholar
55
Cédrin-Durnerin, B, Bständig, I, Parneix, V, et al. Effects of oral contraceptive, synthetic progestogen or natural estrogen pre-treatments on the hormonal profile and the antral follicle cohort before GnRH antagonist protocol. Hum Reprod2007;22(1):109–116. https://doi.org/10.1093/humrep/del340.Google Scholar
56
Griesinger, G, Kolibianakis, EM, Venetis, C, Diedrich, K, Tarlatzis, B. Oral contraceptive pretreatment significantly reduces ongoing pregnancy likelihood in gonadotropin-releasing hormone antagonist cycles: an updated meta-analysis.Fertil Steril2010;94(6):2382–2384.Google Scholar
57
Bermejo, A, Iglesias, C, Ruiz-Alonso, M, et al. The impact of using the combined oral contraceptive pill for cycle scheduling on gene expression related to endometrial receptivity. Hum Reprod2014;29(6):1271–1278. https://doi.org/10.1093/humrep/deu065.Google Scholar
58
Kuang, Y, Chen, Q, Hong, Q, et al. Double stimulations during the follicular and luteal phases of poor responders in IVF/ICSI programmes (Shanghai protocol). Reprod Biomed Online2014; 29(6):684–691.Google Scholar
Ubaldi, FM, Capalbo, A, Vaiarelli, A, et al. Follicular versus luteal phase ovarian stimulation during the same menstrual cycle (DuoStim) in a reduced ovarian reserve population results in a similar euploid blastocyst formation rate: new insight in ovarian reserve exploitation. Fertil Steril2016;105:1488.e1–1495.e1.Google Scholar
61
Cimadomo, D, Vaiarelli, A, Colamaria, S, et al. Luteal phase anovulatory follicles result in the production of competent oocytes: intra-patient paired case-control study comparing follicular versus luteal phase stimulations in the same ovarian cycle. Hum Reprod2018;33(8):1442–1448. https://doi.org/10.1093/humrep/dey217.Google Scholar
62
Humaidan, P, Ejdrup Bredkjær, H, Bungum, L, et al. GnRH agonist (buserelin) or hCG for ovulation induction in GnRH antagonist IVF/ICSI cycles: a prospective randomized study. Hum Reprod2005;20(5):1213–1220. https://doi.org/10.1093/humrep/deh765.CrossRefGoogle ScholarPubMed
63
Lin, MH, Wu, FS, Lee, RK, et al. Dual trigger with combination of gonadotropin-releasing hormone agonist and human chorionic gonadotropin significantly improves the live-birth rate for normal responders in GnRH-antagonist cycles. Fertil Steril2013;100(5):1296–1302.Google Scholar
64
Zhang, J, Wang, Y, Mao, X, et al. Dual trigger of final oocyte maturation in poor ovarian responders undergoing IVF/ICSI cycles. Reprod Biomed Online2017;35(6):701–707.Google Scholar
65
Eser, A, Devranoğlu, B, Bostanc Ergen, E, Yayla Abide, Ç. Dual trigger with gonadotropin-releasing hormone and human chorionic gonadotropin for poor responders. J Turk Ger Gynecol Assoc2018;19(2):98–103.Google Scholar
66
Cobo, A, Garrido, N, Crespo, J, José, R, Pellicer, A. Accumulation of oocytes: a new strategy for managing low-responder patients. Reprod Biomed Online2012;24(4):424–432.Google Scholar
67
Chatziparasidou, A, Nijs, M, Moisidou, M, et al. Accumulation of oocytes and/or embryos by vitrification: a new strategy for managing poor responder patients undergoing pre implantation diagnosis. F1000Res2014;2:240.Google Scholar
68
Çelik, S, Turgut, NE, Cengiz Çelik, D, et al. The effect of the pooling method on the live birth rate in poor ovarian responders according to the Bologna criteria. Turk J Obstet Gynecol2018;15(1):39–45.Google Scholar
Haahr, T, Esteves, SC, Humaidan, P. Individualized controlled ovarian stimulation in expected poor-responders: an update. Reprod Biol Endocrinol2018;16(1):20. doi:10.1186/s12958-018-0342-1.Google Scholar
71
Sighinolfi, G, Sunkara, SK, La Marca, A. New strategies of ovarian stimulation based on the concept of ovarian follicular waves: from conventional to random and double stimulation. Reprod Biomed Online2018;37(4):489–497.Google Scholar
References
1
Frank, S.Polycystic ovarian syndrome. N Engl J Med1995;333:853–861.Google Scholar
Stein, IF, Leventhal, ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol1935;29:181–191.Google Scholar
4
Balen, A.The pathophysiology of polycystic ovary syndrome: trying to understand PCOS and its endocrinology. Best Pract Res Clin Obstet Gynaecol2004;18:685–706.Google Scholar
5
Dunaif, A, Segal, KR, Futterweit, W, Dobrjansky, A.Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes1989;38:1165–1174.Google Scholar
6
Adashi, EY, Resnick, CE, D’Ercole, AJ, Svoboda, ME, Van Wyk, JJ. Insulin-like growth factors as intraovarian regulators of granulosa cell growth and function. Endocr Rev1985;6:400–420.Google Scholar
7
Barbieri, RL, Makris, A, Randall, RW, et al. Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J Clin Endocrinol Metab1986;62:904–910.CrossRefGoogle ScholarPubMed
8
Nestler, JE, Powers, LP, Matt, DW, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab1991;72:83–89.Google Scholar
9
Zawadzki, JK, Dunaif, A.Diagnostic criteria for polycystic syndrome: towards a rational approach. In: Dunaif, A, Givens, JR, Haseltine, FP, et al., eds. Polycystic ovary syndrome. Boston: Blackwell Scientific; 1992:337–384.Google Scholar
10
Rotterdam ESHRE/ASRM‐Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long‐term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod2004;19(1):41–47.CrossRefGoogle Scholar
11
Lizneva, D, Suturina, L, Walker, W, et al. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril2016;106(1):6–15.Google Scholar
12
Erel, CT, Senturk, LM. The impact of body mass index on assisted reproduction. Curr Opin Obstet Gynecol2009;21:228–235.Google Scholar
13
Balen, AH, Conway, GS, Kaltsas, G, et al. Polycystic ovary syndrome: the spectrum of the disorder in 1741 patients. Hum Reprod1995;10:2107–2111.Google Scholar
14
Kiddy, DS, Sharp, PS, White, DM, et al. Differences in clinical and endocrine features between obese and non-obese subjects with polycystic ovary syndrome: an analysis of 263 consecutive cases. Clin Endocrinol (Oxf)1990;32:213–220.Google Scholar
15
Goldzieher, JW, Axelrod, LR. Clinical and biochemical features of polycystic ovarian disease. Fertil Steril1963;14:631–653.CrossRefGoogle ScholarPubMed
16
Moran, LJ, Pasquali, R, Teede, HJ, Hoeger, KM, Norman, RJ. Treatment of obesity in polycystic ovary syndrome: a position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. Fertil Steril2009;92(6):1966–1982.Google Scholar
17
Practice Committee of the American Society for Reproductive Medicine. Obesity and reproduction: a committee opinion. Fertil Steril2015;104(5):1116–1126.Google Scholar
18
National Institute for Clinical Excellence. Fertility: assessment and treatment for people with fertility problems. Clinical Guideline; London: RCOG Press; 2004.Google Scholar
19
Legro, RS, Kunselman, AR, Brzyski, RG, et al. The Pregnancy in Polycystic Ovary Syndrome II (PPCOS II) trial: rationale and design of a double-blind randomized trial of clomiphene citrate and letrozole for the treatment of infertility in women with polycystic ovary syndrome. Contemp Clin Trials2012;33(3):470–481.Google Scholar
20
Legro, RS, Brzyski, RG, Diamond, MP, et al. Letrozole versus clomiphene for infertility in the polycystic ovary syndrome. N Engl J Med2014;371:119–129.Google Scholar
21
Caserta, D, Adducchio, G, Picchia, S, et al. Metabolic syndrome and polycystic ovary syndrome: an intriguing overlapping. Gynecol Endocrinol2014;30(6):397–402.Google Scholar
22
Salehi, M, Bravo-Vera, R, Sheikh, A, Gouller, A, Poretsky, L.Pathogenesis of polycystic ovary syndrome: what is the role of obesity?Metabolism2004;53(3):358–376.Google Scholar
23
Douchi, T, Kuwahata, R, Yamamoto, S, et al. Relationship of upper body obesity to menstrual disorders. Acta Obstet Gynecol Scand2002;81:147–150.Google Scholar
24
Hartz, AJ, Rupley, DC, Rimm, AA. The association of girth measurements with disease in 32,856 women. Am J Epidemiol1984;119:71–80.Google Scholar
25
Pasquali, R, Pelusi, C, Genghini, S, Cacciari, M, Gambineri, A.Obesity and reproductive disorders in women. Hum Reprod Update2003;9:359–372.Google Scholar
26
Norman, RJ, Masters, SC, Hague, W, et al. Metabolic approaches to the subclassification of polycystic ovary syndrome. Fertil Steril1995;63(2):329–335.Google Scholar
27
Gesink Law, DC, Maclehose, RF, Longnecker, MP. Obesity and time to pregnancy. Hum Reprod2007;22:414–420.Google Scholar
28
Fedorcsak, P, Dale, PO, Storeng, R, et al. Impact of overweight and underweight on assisted reproduction treatment. Hum Reprod2004;19:2523–2528.CrossRefGoogle ScholarPubMed
29
Cedergren, MI. Maternal morbid obesity and the risk of adverse pregnancy outcome. Obstet Gynecol2004;103:219–224.Google Scholar
30
Weiss, JL, Malone, FD, Emig, D, et al. FASTER Research Consortium. Obesity, obstetric complications and cesarean delivery rate: a population-based screening study. Am J Obstet Gynecol2004;190:1091–1097.Google Scholar
31
Metwally, M, Ledger, WL, Li, TC. Reproductive endocrinology and clinical aspects of obesity in women. Ann N Y Acad Sci2008;1127:140–146.Google Scholar
32
Lintsen, AM, Pasker-de Jong, PC, De Boer, EJ, et al. Effects of subfertility cause, smoking and body weight on the success rate of IVF. Hum Reprod2005;20(7):1867–1875.Google Scholar
33
Loveland, JB, McClamrock, HD, Malinow, AM, Sharara, FI. Clinical assisted reproduction: increased body mass index has a deleterious effect on in vitro fertilization outcome. J Assist Reprod Genet2001;18(7):382–386.CrossRefGoogle Scholar
34
Dechaud, H, Anahory, T, Reyftmann, L, et al. Obesity does not adversely affect results in patients who are undergoing in vitro fertilization and embryo transfer. Eur J Obstet Gynecol Reprod Biol2006;127:88–93.Google Scholar
35
Lashen, H, Ledger, W, Bernal, AL, Barlow, D.Extremes of body mass do not adversely affect the outcome of superovulation and in-vitro fertilization. Hum Reprod1999;14:712–715.Google Scholar
36
Martinuzzi, K, Ryan, S, Luna, M, Copperman, AB. Elevated body mass index (BMI) does not adversely affect in vitro fertilization outcome in young women. J Assist Reprod Genet2008;25:169–175.Google Scholar
37
MacKenna, A, Schwarze, JE, Crosby, JA, Zegers-Hochschild, F.Outcome of assisted reproductive technology in overweight and obese women. JBRA Assist Reprod2017;21(2):79–83.CrossRefGoogle ScholarPubMed
38
Balaban, B, Urman, B.Effect of oocyte morphology on embryo development and implantation. Reprod Biomed Online2006;12:608–615.Google Scholar
39
Carrell, DT, Jones, KP, Peterson, CM, et al. Body mass index is inversely related to intrafollicular HCG concentrations, embryo quality and IVF outcome. Reprod Biomed Online2001;3:109–111.Google Scholar
40
Esinler, I, Bozdag, G, Yarali, H.Impact of isolated obesity on ICSI outcome. Reprod Biomed Online2008;17:583–587.CrossRefGoogle ScholarPubMed
41
Wittemer, C, Ohl, J, Bailly, M, et al. Does body mass index of infertile women have an impact on IVF procedure and outcome?J Assist Reprod Genet2000;17:547–552.Google Scholar
42
Jungheim, ES, Moley, KH. Current knowledge of obesity’s effects in the pre- and periconceptional periods and avenues for future research. Am J Obstet Gynecol2010;203(6):525–530.Google Scholar
43
Pandey, S, Pandey, S, Maheshwari, A, Bhattacharya, S.The impact of female obesity on the outcome of fertility treatment. J Hum Reprod Sci2010;3(2):62–67.Google Scholar
44
Metwally, M, Cutting, R, Tipton, A, et al. Effect of increased body mass index on oocyte and embryo quality in IVF patients. Reprod Biomed Online2007;15:532–538.Google Scholar
45
Provost, MP, Acharya, KS, Acharya, CR, et al. Pregnancy outcomes decline with increasing body mass index: analysis of 239,127 fresh autologous in vitro fertilization cycles from the 2008–2010 Society for Assisted Reproductive Technology registry. Fertil Steril2016;105(3):663–669.CrossRefGoogle Scholar
46
Provost, MP, Acharya, KS, Acharya, CR, et al. Pregnancy outcomes decline with increasing recipient body mass index: an analysis of 22,317 fresh donor/recipient cycles from the 2008–2010 Society for Assisted Reproductive Technology Clinic Outcome Reporting System registry. Fertil Steril2016;105(2):364–368.Google Scholar
47
Rittenberg, V, Seshadri, S, Sunkara, SK, et al. Effect of body mass index on IVF treatment outcome: an updated systematic review and meta-analysis. Reprod Biomed Online2011;23(4):421–439.CrossRefGoogle ScholarPubMed
48
Escobar-Morreale, HF, Luque-Ramírez, M, González, F.Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and meta analysis. Fertil Steril2011;95(3):1048–1058.CrossRefGoogle Scholar
49
Paepegaey, AC, Genser, L, Bouillot, JL, et al. High levels of CRP in morbid obesity: the central role of adipose tissue and lessons for clinical practice before and after bariatric surgery. Surg Obes Relat Dis2015;11(1):148–154.Google Scholar
50
Faucher, G, Guénard, F, Bouchard, L, et al. Genetic contribution to C-reactive protein levels in severe obesity. Mol Genet Metab2012;105(3):494–501.Google Scholar
51
Kadowaki, T.Yamauchi, T. Adiponectin and adiponectin receptors. Endocr Rev2005;26:439–451.Google Scholar
52
Yuan, G, Zhou, L, Tang, J, et al. Serum CRP levels are equally elevated in newly diagnosed type 2 diabetes and impaired glucose tolerance and related to adiponectin levels and insulin sensitivity. Diabetes Res clin Pract2006;72(3):244–250.Google Scholar
53
Sieminska, L, Marek, B, Kos-Kudla, B, et al. Serum adiponectin in women with polycystic ovarian syndrome and its relation to clinical, metabolic and endocrine parameters. J Endocrinol Investig2004;27(6):528–534.Google Scholar
54
Kopp, HP, Krzyzanowska, K, Möhlig, M, et al. Effects of marked weight loss on plasma levels of adiponectin, markers of chronic subclinical inflammation and insulin resistance in morbidly obese women. Int J Obes2005;29(7):766–771.Google Scholar
55
Esposito, K, Pontillo, A, Di Palo, C, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA2003;289(14):1799–1804.Google Scholar
56
Woelnerhanssen, B, Peterli, R, Steinert, RE, et al. Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy – a prospective randomized trial. Surg Obes Relat Dis2011;7(5):561–568.Google Scholar
57
Wadden, TA, Foster, GD. Behavioral treatment of obesity. Med Clin N Am2000;84(2):441–461.Google Scholar
58
Wadden, TA, Webb, VL, Moran, CH, Bailer, BA. Lifestyle modification for obesity: new developments in diet, physical activity, and behavior therapy. Circulation2012;125(9):1157–1170.Google Scholar
59
Pucci, A, Finer, N.New medications for treatment of obesity: metabolic and cardiovascular effects. Can J Cardiol2015;31(2):142–152.Google Scholar
60
Apovian, CM, Aronne, LJ, Bessesen, DH, et al. Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab2015;100(2):342–362.Google Scholar
61
Keating, GM, Jarvis, B.Orlistat: in the prevention and treatment of type 2 diabetes mellitus. Drugs2001;61:2107–2119.Google Scholar
62
Inge, TH, Jenkins, TM, Zeller, M, et al. Baseline BMI is a strong predictor of nadir BMI after adolescent gastric bypass. J Pediatr2010;156(1):103–108.Google Scholar
63
Deitel, M, Stone, E, Kassam, HA, Wilk, EJ, Sutherland, DJ. Gynecologic-obstetric changes after loss of massive excess weight following bariatric surgery. J Am Coll Nutr1988;7:147–153.Google Scholar
64
Abiad, F, Abbas, HA, Hamadi, C, Ghazeeri, G.Bariatric surgery in the management of adolescent and adult obese patients with polycystic ovarian syndrome. J Obes Weight Loss Ther2016;6:303.Google Scholar
65
Abiad, F, Khalife, D, Safadi, B, et al. The effect of bariatric surgery on inflammatory markers in women with polycystic ovarian syndrome. Diabetes Metab Syndr2018;12(6):999–1005.Google Scholar
66
Sheiner, E, Levy, A, Silverberg, D, et al. Pregnancy after bariatric surgery is not associated with adverse perinatal outcome. Am J Obstet Gynecol2004;190:1335–1340.Google Scholar
67
Printen, KJ, Scott, D.Pregnancy following gastric bypass for the treatment of morbid obesity. Am Surg1982;48:363–365.Google Scholar
68
Marceau, P, Kaufman, D, Biron, S, et al. Outcome of pregnancies after biliopancreatic diversion. Obes Surg2004;14:318–324.Google Scholar
69
Mutsaerts, MA, van Oers, AM, Groen, H, et al. Randomized trial of a lifestyle program in obese infertile women. N Engl J Med2016;374:1942–1953.CrossRefGoogle ScholarPubMed
70
Einarsson, S, Bergh, C, Friberg, B, et al. Weight reduction intervention for obese infertile women prior to IVF: a randomized controlled trial. Hum Reprod2017;32:1621–1630.Google Scholar
71
Norman, RJ, Mol, BWJ. Successful weight loss interventions before in vitro fertilization: fat chance?Fertil Steril2018;110:581–586.Google Scholar
72
Greenblatt, RB, Barfield, WE, Jungck, EC, Ray, AW. Induction of ovulation with MRL/41. Preliminary report. J Am Med Assoc1961;178:101–104.Google Scholar
73
Ecklund, LC, Usadi, RS. Endocrine and reproductive effects of polycystic ovarian syndrome. Obstet Gynecol Clin North Am2015;42(1):55–65.Google Scholar
74
Practice Committee of the American Society for Reproductive Medicine. Use of clomiphene citrate in infertile women: a committee opinion. Fertil Steril2013;100(2):341–348.CrossRefGoogle Scholar
75
Hammond, MG. Monitoring techniques for improved pregnancy rates during clomifene ovulation induction. Fertil Steril1984;42:499–508.Google Scholar
76
Dickey, RP, Taylor, SN, Curole, DN, et al. Incidence of spontaneous abortion in clomifene pregnancies. Hum Reprod1996;11:2623–2628.Google Scholar
77
Gysler, M, March, CM, Mishell, DR Jr., Bailey, EJ. A decade’s experience with an individualized clomiphene treatment regimen including its effect on the postcoital test. Fertil Steril1982;37:161–167.CrossRefGoogle ScholarPubMed
78
Eden, JA, Place, J, Carter, GD, et al. The effect of clomiphene citrate on follicular phase increase in endometrial thickness and uterine volume. Fertil Steril1989;73:187–190.Google Scholar
79
Bonhoff, AJ, Naether, OG, Johannisson, E.Effects of clomiphene citrate stimulation on endometrial structure in infertile women. Hum Reprod1996;11(4):844–849.Google Scholar
80
Dehbashi, S, Parsanezhad, ME, Alborzi, S, Zarei, A.Effect of clomiphene citrate on endometrium thickness and echogenic patterns. Int J Gynaecol Obstet2003;80(1):49–53.Google Scholar
81
Thompson, LA, Barratt, CL, Thornton, SJ, Bolton, AE, Cooke, ID. The effects of clomiphene citrate and cyclofenil on cervical mucus volume and receptivity over the periovulatory period. Fertil Steril1993;59(1):125–129.Google Scholar
82
Kousta, E, White, DM, Franks, S.Modern use of clomiphene citrate in induction of ovulation. Hum Reprod Update1997;3(4):359–365.Google Scholar
83
Hull, MG, Savage, PE, Bromham, DR, Ismail, AA, Morris, AF. The value of a single serum progesterone measurement in the midluteal phase as a criterion of a potentially fertile cycle (‘ovulation’) derived from treated and untreated conception cycles. Fertil Steril1982;37(3):355–360.Google Scholar
84
Talbert, LM. Clomiphene citrate induction of ovulation. Fertil Steril1983;39(6):742–743.Google Scholar
85
Chaabane, S, Sheehy, O, Monnier, P, et al. Ovarian stimulation, intrauterine insemination, multiple pregnancy and major congenital malformations: a systematic review and meta-analysis-The ART_Rev Study. Curr Drug Saf2016;11(3):222–261.Google Scholar
Oliveira, JB, Baruffi, RL, Mauri, AL, et al. Endometrial ultrasonography as a predictor of pregnancy in an in-vitro fertilization programme after ovarian stimulation and gonadotrophin-releasing hormone and gonadotrophins. Hum Reprod1997;12(11):2515–2518.Google Scholar
88
Schild, RL, Knobloch, C, Dorn, C, et al. Endometrial receptivity in an in vitro fertilization program as assessed by spiral artery blood flow, endometrial thickness, endometrial volume, and uterine artery blood flow. Fertil Steril2001;75:361–366.Google Scholar
89
Wu, Y, Gao, X, Lu, X, et al. Endometrial thickness affects the outcome of in vitro fertilization and embryo transfer in normal responders after GnRH antagonist administration. Reprod Biol Endocrinol2014;12(1):96.CrossRefGoogle ScholarPubMed
90
Wang, Y, Zhu, Y, Sun, Y, et al. Ideal embryo transfer position and endometrial thickness in IVF embryo transfer treatment. Int J Gynecol Obstet2018;143(3):282–288.Google Scholar
91
Lobo, RA, Gysler, M, March, CM, Goebelsmann, U, Mishell, DR Jr. Clinical and laboratory predictors of clomiphene response. Fertil Steril1982;37(2):168–174.CrossRefGoogle ScholarPubMed
92
Douchi, T, Oki, T, Yamasaki, H, et al. Body fat patterning in polycystic ovary syndrome women as a predictor of the response to clomiphene. Acta Obstet Gynecol Scand2004;83:838–841.Google Scholar
93
Imani, B, Eijkemans, MJ, te Velde, ER, Habbema, JD, Fauser, BC. Predictors of chances to conceive in ovulatory patients during clomiphene citrate induction of ovulation in normogonadotropic oligoamenorrheic infertility. J Clin Endocrinol Metab1999;84(5):1617–1622.Google Scholar
94
Gindoff, PR, Jewelewicz, R.Reproductive potential in the older woman. Fertil Steril1986;46(6):989–1001.Google Scholar
95
Rossing, MA, Daling, JR, Weiss, NS, et al. Ovarian tumors in a cohort of infertile women. N Engl J Med1994;331:771–776.Google Scholar
96
Balen, A.Anovulatory infertility and ovulation induction. Policy and Practice subcommittee of the British Fertility Society. Hum Reprod1997;12 (11 Suppl):83–87.Google Scholar
97
Balen, AH, Morley, LC, Misso, M, et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update2016;22(6):687–708.Google Scholar
Mitwally, MF, Biljan, MM, Casper, RF. Pregnancy outcome after the use of an aromatase inhibitor for ovarian stimulation. Am J Obstet Gynecol2005;192(2):381–386.Google Scholar
102
Franik, S, Eltrop, SM, Kremer, JA, Kiesel, L, Farquhar, C.Aromatase inhibitors (letrozole) for subfertile women with polycystic ovary syndrome. Cochrane Database Syst Rev2018;5:CD010287.Google Scholar
103
Biljan, MM, Hemmings, R, Brassard, N.The outcome of 150 babies following the treatment with letrozole or letrozole and gonadotropins. Fertil Steril2005;84:S95.Google Scholar
104
Tulandi, T, Martin, J, Al-Fadhli, R, et al. Congenital malformations among 911 newborns conceived after infertility treatment with letrozole or clomiphene citrate. Fertil Steril2006;85(6):1761–1765.Google Scholar
105
American College of Obstetricians and Gynecologists. Polycystic ovary syndrome. ACOG practice bulletin no. 194. Obstet Gynecol2018;11:131.Google Scholar
106
Velazquez, EM, Mendoza, S, Hamer, T, Sosa, F, Glueck, CJ. Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy. Metabolism1994;43:647–654.Google Scholar
107
Williamson, DF, Pamuk, E, Thun, M, et al. Prospective study of intentional weight loss and mortality in never-smoking overweight US white women aged 40–64 years. Am J Epidemiol1995;141:1128–1141.Google Scholar
108
Kiddy, DS, Hamilton-Fairley, D, Bush, A, et al. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol1992;36:105–111.Google Scholar
109
Crosignani, PG, Colombo, M, Vegetti, W, et al. Overweight and obese anovulatory patients with polycystic ovaries: parallel improvements in anthropometric indices, ovarian physiology and fertility rate induced by diet. Hum Reprod2003;18:1928–1932.CrossRefGoogle ScholarPubMed
110
Harborne, L, Fleming, R, Lyall, H, Norman, J, Sattar, N.Descriptive review of the evidence for the use of metformin in polycystic ovary syndrome. Lancet2003;361:1894–1901.Google Scholar
111
Nawaz, FH, Khalid, R, Naru, T, Rizvi, J. Does continuous use of metformin throughout pregnancy improve pregnancy outcomes in women with polycystic ovarian syndrome?J Obstet Gynaecol Res2008;34(5):832–837.Google Scholar
112
Morley, LC, Tang, TM, Balen, AH. Metformin therapy for the management of infertility in women with polycystic ovary syndrome: Scientific Impact Paper No. 13. BJOG2017;124(12):E306–E313.Google Scholar
113
Legro, RS, Barnhart, HX, Schlaff, WD, et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med2007;356(6):551–566.Google Scholar
114
Moll, E, van der Veen, F, van Wely, M. The role of metformin in polycystic ovary syndrome: a systematic review. Hum Reprod Update2007;13(6):527–537.Google Scholar
115
Palomba, S, Pasquali, R, Orio, JF, Nestler, JE. Clomiphene citrate, metformin or both as first-step approach in treating anovulatory infertility in patients with polycystic ovary syndrome (PCOS): a systematic review of head-to-head randomized controlled studies and meta-analysis. Clin Endocrinol2009;70:311–321.Google Scholar
116
Morley, LC, Tang, T, Yasmin, E, Norman, RJ, Balen, AH. Insulin‐sensitising drugs (metformin, rosiglitazone, pioglitazone, D‐chiro‐inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev2017;11:CD003053.Google Scholar
117
Practice Committee of the American Society for Reproductive Medicine. Role of metformin for ovulation induction in infertile patients with polycystic ovary syndrome (PCOS): a guideline. Fertil Steril2017;108(3):426–441.Google Scholar
118
Elnashar, A, Abdelmageed, E, Fayed, M, Sharaf, M.Clomiphene citrate and dexamethazone in treatment of clomiphene citrate-resistant polycystic ovary syndrome: a prospective placebo-controlled study. Hum Reprod2006;21(7):1805–1808.Google Scholar
119
Esmaeilzadeh, S, Amiri, MG, Basirat, Z, Shirazi, M.Does adding dexamethasone to clomiphene citrate improve ovulation in PCOS patients? A triple-blind randomized clinical trial study. Int J Fertil Steril2011;5(1):9–12.Google Scholar
120
Shabana, AA, Al-Halby, AE, Abd Hamid, ES, El-Naggar, AM. Letrozole with dexamethasone versus clomiphene citrate with dexamethasone for induction of ovulation in polycystic ovary. Menoufia Med J2018;31(1):38–45.Google Scholar
121
Badawy, A, State, O, Abdelgawad, S.N-acetyl cysteine and clomiphene citrate for induction of ovulation in polycystic ovary syndrome: a cross-over trial. Acta Obstet Gynecol Scand2007;86(2):218–222.Google Scholar
122
Lak, TB, Hajshafiha, M, Nanbakhsh, F, Oshnouei, S.N-acetyl cysteine in ovulation induction of PCOS women underwent intrauterine insemination: An RCT. Int J Reprod Biomed2017;15(4):203–206.Google Scholar
References
1
Gjønnaess, H.Ovarian electrocautery in the treatment of women with polycystic ovary syndrome (PCOS): factors affecting the results. Acta Obstet Gynecol Scand1994;73(5):407–412.Google Scholar
2
Li, TC, Saravelos, H, Chow, MS, Chisabingo, R, Cooke, ID. Factors affecting the outcome of laparoscopic ovarian drilling for polycystic ovary syndrome in women with anovulatory infertility. Br J Obstet Gynaecol1998;105:338–344.Google Scholar
3
Armar, NA, McGarrigle, HHG, Honour, J, et al. Laparoscopic ovarian diathermy in the management of anovulatory infertility in women with polycystic ovaries: endocrine changes and clinical outcome. Fertil Steril1990;53:45–49.Google Scholar
4
Balen, AH, Jacobs, HS. A prospective study comparing unilateral and bilateral laparoscopic ovarian diathermy in women with the polycystic ovary syndrome. Fertil Steril1994;62:921–925.Google Scholar
5
Bordewijk, EM, Ng, KY, Rakic, L, et al. Laparoscopic ovarian drilling for ovulation induction in women with anovulatory polycystic ovary syndrome. Cochrane Database Syst Rev2020;2:CD001122.Google Scholar
6
Api, M, Gorgen, H, Cetin, A.Laparoscopic ovarian drilling in polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol2005;119:76–81.Google Scholar
7
Amer, SA, Li, TC, Metwally, M, Emarh, M, Ledger, WL. Randomized controlled trial comparing laparoscopic ovarian diathermy with clomiphene citrate as a first-line method of ovulation induction in women with polycystic ovary syndrome. Hum Reprod2009;24:219–225.Google Scholar
8
Amer, S, Banu, Z, Li, TC, Cooke, ID. Long-term follow-up of patients with polycystic ovary syndrome after laparoscopic ovarian drilling: endocrine and ultrasonographic outcomes. Hum Reprod2002;17(11):2851–2857.Google Scholar
9
Amer, SA, El Shamy, TT, James, C, Yosef, AH, Mohamed, AA. The impact of laparoscopic ovarian drilling on AMH and ovarian reserve: a meta-analysis. Reproduction2017;154(1):R13–R21.Google Scholar
10
Amer, S, Li, TC, Ledger, WL. Ovulation induction using laparoscopic ovarian drilling in women with polycystic ovarian syndrome: predictors of success. Hum Reprod2004;19(8):1719–1724.Google Scholar
11
Balen, AH, Morley, LC, Misso, M, et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update2016;22(6):687–708.Google Scholar
12
Weiss, NS, Nahuis, MJ, Bordewijk, E, et al. Gonadotrophins versus clomifene citrate with or without intrauterine insemination in women with normogonadotropic anovulation and clomifene failure (M-OVIN): a randomised, two-by-two factorial trial. Lancet2018;391(10122):758–765.Google Scholar
13
Weiss, NS, Kostova, E, Nahuis, M, et al. Gonadotrophins for ovulation induction in women with polycystic ovary syndrome. Cochrane Database Syst Rev2019;1:CD010290.Google Scholar
14
Pardo, M, Bancells, N.Artificial insemination with husband’s sperm (AIH). Techniques for sperm selection. Arch Androl1989;22:15–27.Google Scholar
15
Tan, SL, Child, TJ. In-vitro maturation of oocytes from unstimulated polycystic ovaries. Reprod Biomed Online2002;4:18–23.Google Scholar
16
Heijnen, E, Eijkemans, M, Hughes, E, et al. A meta-analysis of outcomes of conventional IVF in women with polycystic ovary syndrome. Hum Reprod Update2006;12(1):13–21.Google Scholar
17
Sha, T, Wang, X, Cheng, W, Yan, Y.A meta-analysis of pregnancy-related outcomes and complications in women with polycystic ovary syndrome undergoing in vitro fertilization. Reprod Biomed Online2019;39(2):281–293.Google Scholar
18
Devroey, P, Polyzos, NP, Blockeel, C. An OHSS-free clinic by segmentation of IVF treatment. Hum Reprod2011;26(10):2593–2597.Google Scholar
19
Trounson, A, Wood, C, Kausche, A.In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil Steril1994;62(2):353–362.Google Scholar
20
Barnes, FL, Crombie, A, Gardner, DK, et al. Blastocyst development and birth after in-vitro maturation of human primary oocytes, intracytoplasmic sperm injection and assisted hatching. Hum Reprod1995;10(12):3243–3247.Google Scholar
21
Benkhalifa, M, Demirol, A, Ménézo, Y, et al. Natural cycle IVF and oocyte in-vitro maturation in polycystic ovary syndrome: a collaborative prospective study. Reprod Biomed Online2009;18(1):29–36.Google Scholar
22
Siristatidis, CS, Maheshwari, A, Vaidakis, D, Bhattacharya, S.In vitro maturation in subfertile women with polycystic ovarian syndrome undergoing assisted reproduction. Cochrane Database Syst Rev2018;11:CD006606.Google Scholar
23
Albano, C, Felberbaum, RE, Smitz, J, et al. Ovarian stimulation with HMG: results of a prospective randomized phase III European study comparing the luteinizing hormone-releasing hormone (LHRH)-antagonist cetrorelix and the LHRH-agonist buserelin. Hum Reprod2000;15(3):526–531.Google Scholar
24
Borm, G, Mannaerts, B. Treatment with the gonadotrophin-releasing hormone antagonist ganirelix in women undergoing ovarian stimulation with recombinant follicle stimulating hormone is effective, safe and convenient: results of a controlled, randomized, multicentre trial. The European Orgalutran Study Group.Hum Reprod2000;15(7):1490–1498.Google Scholar
25
Lambalk, CB, Banga, FR, Huirne, JA, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update2017;23(5):560–579.Google Scholar
26
Shin, JJ, Park, KE, Choi, YM, et al. Early gonadotropin-releasing hormone antagonist protocol in women with polycystic ovary syndrome: a preliminary randomized trial. Clin Exp Reprod Med2018;45(3):135–142.Google Scholar
27
Olivennes, F, Fanchin, R, Bouchard, P, et al. Triggering of ovulation by a gonadotropin-releasing hormone (GnRH) agonist in patients pretreated with a GnRH antagonist. Fertil Steril1996;66:151–153.Google Scholar
28
Fauser, BC, de Jong, D, Olivennes, F, et al. Endocrine profiles after triggering of final oocyte maturation with GnRH agonist after cotreatment with the GnRH antagonist ganirelix during ovarian hyperstimulation for in vitro fertilization. J Clin Endocrinol Metab2002;87:709–715.Google Scholar
29
Griesinger, G, Diedrich, K, Devroey, P, Kolibianakis, EM. GnRH agonist for triggering final oocyte maturation in the GnRH antagonist ovarian hyperstimulation protocol: a systematic review and meta-analysis. Hum Reprod Update2006;12:159–168.Google Scholar
30
Engmann, L, DiLuigi, A, Schmidt, D, et al. The use of gonadotropin-releasing hormone (GnRH) agonist to induce oocyte maturation after cotreatment with GnRH antagonist in high-risk patients undergoing in vitro fertilization prevents the risk of ovarian hyperstimulation syndrome: a prospective randomized controlled study. Fertil Steril2008;89(1):84–91.Google Scholar
31
Kummer, N, Benadiva, C, Feinn, R, et al. Factors that predict the probability of a successful clinical outcome after induction of oocyte maturation with a gonadotropin-releasing hormone agonist. Fertil Steril2011;96(1):63–68.Google Scholar
32
Griffin, D, Benadiva, C, Kummer, N, et al. Dual trigger of oocyte maturation with gonadotropin-releasing hormone agonist and low-dose human chorionic gonadotropin to optimize live birth rates in high responders. Fertil Steril2012;97(6):1316–1320.Google Scholar
33
Humaidan, P, Bredkjær, HE, Westergaard, LG, et al. 1,500 IU human chorionic gonadotropin administered at oocyte retrieval rescues the luteal phase when gonadotropin-releasing hormone agonist is used for ovulation induction: a prospective, randomized, controlled study. Fertil Steril2010;93(3):847–854.Google Scholar
34
Seyhan, A, Ata, B, Polat, M, et al. Severe early ovarian hyperstimulation syndrome following GnRH agonist trigger with the addition of 1500 IU hCG. Hum Reprod2013;28(9):2522–2528.Google Scholar
35
O’Neill, KE, Senapati, S, Maina, I, et al. GnRH agonist with low-dose hCG (dual trigger) is associated with higher risk of severe ovarian hyperstimulation syndrome compared to GnRH agonist alone. J Assist Reprod Genet2016;33(9):1175–1184.Google Scholar
36
Fatemi, HM, Popovic-Todorovic, B.Implantation in assisted reproduction: a look at endometrial receptivity. Reprod Biomed Online2013;27(5):530–538.Google Scholar
37
Garcia-Velasco, JA. Agonist trigger: what is the best approach? Agonist trigger with vitrification of oocytes or embryos. Fertil Steril2012;97(3):527–528.Google Scholar
38
Doronzo, G, Russo, I, Mattiello, L, et al. Insulin activates vascular endothelial growth factor in vascular smooth muscle cells: influence of nitric oxide and of insulin resistance. Eur J Clin Invest2004;34:664–673.Google Scholar
39
Palomba, S, Falbo, A, La Sala, GB. Effects of metformin in women with polycystic ovary syndrome treated with gonadotrophins for in vitro fertilisation and intracytoplasmic sperm injection cycles: a systematic review and meta‐analysis of randomised controlled trials. BJOG2013;120(3):267–276.Google Scholar
40
Palomba, S, Falbo, A, Carrillo, L, et al. Metformin reduces risk of ovarian hyperstimulation syndrome in patients with polycystic ovary syndrome during gonadotropin-stimulated in vitro fertilization cycles: a randomized, controlled trial. Fertil Steril2011;96(6):1384–1390.Google Scholar
41
Abdalmageed, OS, Farghaly, TA, Abdelaleem, AA, et al. Impact of metformin on IVF outcomes in overweight and obese women with polycystic ovary syndrome: a randomized double-blind controlled trial. Reprod Sci2019;26(10):1336–1342.Google Scholar
42
Tso, LO, Costello, MF, Albuquerque, LE, Andriolo, RB, Macedo, CR. Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome. Cochrane Database Syst Rev2014;11:CD006105.Google Scholar
43
Bevilacqua, A, Bizzarri, M.Inositols in insulin signaling and glucose metabolism. Int J Endocrinol2018;2018:1968450.Google Scholar
44
Genazzani, AD, Lanzoni, C, Ricchieri, F, Jasonni, VM. Myo-inositol administration positively affects hyperinsulinemia and hormonal parameters in overweight patients with polycystic ovary syndrome. Gynecol Endocrinol2008;24(3):139–144.Google Scholar
45
Costantino, D, Minozzi, G, Minozzi, E, Guaraldi, C.Metabolic and hormonal effects of myo-inositol in women with polycystic ovary syndrome: a double-blind trial. Eur Rev Med Pharmacol Sci2009;13(2):105–110.Google Scholar
46
Minozzi, M, Nordio, M, Pajalich, R.The combined therapy myo-inositol plus D-chiro-inositol, in a physiological ratio, reduces the cardiovascular risk by improving the lipid profile in PCOS patients. Eur Rev Med Pharmacol Sci2013;17(4):537–540.Google Scholar
47
Gateva, A, Unfer, V, Kamenov, Z.The use of inositol (s) isomers in the management of polycystic ovary syndrome: a comprehensive review. Gynecol Endocrinol2018;34(7):545–550.Google Scholar
48
Facchinetti, F, Orrù, B, Grandi, G, Unfer, V.Short-term effects of metformin and myo-inositol in women with polycystic ovarian syndrome (PCOS): a meta-analysis of randomized clinical trials. Gynecol Endocrinol2019;35(3):198–206.Google Scholar
49
Taieb, J, Grynberg, M, Pierre, A, et al. FSH and its second messenger cAMP stimulate the transcription of human anti-Müllerian hormone in cultured granulosa cells. Mol Endocrinol2011;25(4):645–655.Google Scholar
50
Ciotta, L, Stracquadanio, M, Pagano, I, et al. Effects of myo-inositol supplementation on oocyte’s quality in PCOS patients: a double blind trial. Eur Rev Med Pharmacol Sci2011;15(5):509–514.Google Scholar
51
Unfer, V, Porcaro, G.Updates on the myo-inositol plus D-chiro-inositol combined therapy in polycystic ovary syndrome. Expert Rev Clin Pharmacol2014;7(5):623–631.Google Scholar
52
Colazingari, S, Fiorenza, MT, Carlomagno, G, Najjar, R, Bevilacqua, A.Improvement of mouse embryo quality by myo-inositol supplementation of IVF media. J Assist Reprod Genet2014;31(4):463–469.Google Scholar
53
Papaleo, E, Unfer, V, Baillargeon, JP, et al. Myo-inositol may improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial. Fertil Steril2009;91(5):1750–1754.Google Scholar
54
Laganà, AS, Vitagliano, A, Noventa, M, Ambrosini, G, D’Anna, R.Myo-inositol supplementation reduces the amount of gonadotropins and length of ovarian stimulation in women undergoing IVF: a systematic review and meta-analysis of randomized controlled trials. Arch Gynecol Obstet2018;298(4):675–684.Google Scholar
55
Zheng, X, Lin, D, Zhang, Y, et al. Inositol supplement improves clinical pregnancy rate in infertile women undergoing ovulation induction for ICSI or IVF-ET. Medicine (Baltimore)2017;96(49):e8842.Google Scholar
References
1
Abdalla, HI, Ah-Moye, M, Brinsden, P, et al. The effect of the dose of human chorionic gonadotropin and the type of gonadotropin stimulation on oocyte recovery rates in an in vitro fertilization program. Fertil Steril1987;48(6):958–963.Google Scholar
2
Aboulghar, MA, Mansour, RT. Ovarian hyperstimulation syndrome: classifications and critical analysis of preventive measures. Hum Reprod Update2003;9:275–289.Google Scholar
3
Al-Inany, HG, Youssef, MA, Ayeleke, RO, et al. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev2016;4:CD001750.Google Scholar
4
Alvarez, C, Martí-Bonmatí, L, Novella-Maestre, E, et al. Dopamine agonist cabergoline reduces hemoconcentration and ascites in hyperstimulated women undergoing assisted reproduction. J Clin Endocrinol Metab2007;92(8):2931–2937.Google Scholar
5
Anaya, Y, Mata, DA, Letourneau, J, et al. A novel oocyte maturation trigger using 1500 IU of human chorionic gonadotropin plus 450 IU of follicle-stimulating hormone may decrease ovarian hyperstimulation syndrome across all in vitro fertilization stimulation protocols [published correction appears in J Assist Reprod Genet 2017;35(2):309]. J Assist Reprod Genet2018;35(2):297–307.Google Scholar
6
Serour, GI, Aboulghar, MA, Mansour, R, et al. Complications of medically assisted conception in 3,500 cycles. Fertil Steril 1998;70:638–642.Google Scholar
7
Mathur, RS, Akande, AV, Keay, SD, et al. Distinction between early and late ovarian hyperstimulation syndrome. Fertil Steril2000;73:901–907.Google Scholar
8
Papanikolaou, EG, Pozzobon, C, Kolibianakis, EM, et al. Incidence and prediction of ovarian hyperstimulation syndrome in women undergoing gonadotropin-releasing hormone antagonist in vitro fertilization cycles. Fertil Steril2006;85:112–120.Google Scholar
9
Rizk, B, Smitz, J.Ovarian hyperstimulation syndrome after superovulation for IVF and related procedures. Hum Reprod1992;7:320–327.Google Scholar
10
Rizk, B.Ovarian hyperstimulation syndrome. In: Studd, J, ed. Progress in Obstetrics and Gynecology, Vol. 11. Edinburgh: Churchill Livingstone; 1993:311–349.Google Scholar
11
Rizk, B, Aboulghar, MA. Classification, pathophysiology and management of ovarian hyperstimulation syndrome. In: Brinsden, P, ed. A Textbook of In-vitro Fertilization and Assisted Reproduction, 2nd ed. Carnforth-Lancs, UK: The Parthenon Publishing Group; 1999:131–155.Google Scholar
12
Golan, A, Weissman, A. Symposium: update on prediction and management of OHSS. A modern classification of OHSS. Reprod Biomed Online2009;19(1):28–32. doi: 10.1016/s1472-6483(10)60042-9.Google Scholar
13
Humaidan, P, Quartarolo, J, Papanikolaou, EG. Preventing ovarian hyperstimulation syndrome: guidance for the clinician. Fertil Steril2010;94(2):389–400.Google Scholar
14
Ferrero, H, García-Pascual, CM, Gómez, R, et al. Dopamine receptor 2 activation inhibits ovarian vascular endothelial growth factor secretion in vitro: implications for treatment of ovarian hyperstimulation syndrome with dopamine receptor 2 agonists. Fertil Steril2014;101(5):1411–1418.Google Scholar
Geva, E, Jaffe, RB. Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertil Steril2000;74(3):429–438. doi: 10.1016/s0015-0282(00)00670-1.Google Scholar
17
Naredi, N, Talwar, P, Sandeep, K. VEGF antagonist for the prevention of ovarian hyperstimulation syndrome: current status. Med J Armed Forces India2014;70(1):58–63. doi: 10.1016/j.mjafi.2012.03.005.Google Scholar
18
Kaiser, UB. The pathogenesis of the ovarian hyperstimulation syndrome. N Engl J Med2003;349:729–732.Google Scholar
19
Aboulghar, MA, Mansour, RT, Serour, GI, El Helw, BA, Shaarawy, M. Elevated levels of interleukin-2, soluble interleukin-2 receptor alpha, interleukin-6, soluble interleukin-6 receptor and vascular endothelial growth factor in serum and ascitic fluid of patients with severe ovarian hyperstimulation syndrome. Eur J Obstet Gynecol Reprod Biol1999;87(1):81–85. doi: 10.1016/s0301-2115(99)00082-2.Google Scholar
20
Luke, B, Brown, MB, Morbeck, DE, et al. Factors associated with ovarian hyperstimulation syndrome (OHSS) and its effect on assisted reproductive technology (ART) treatment and outcome. Fertil Steril2010;94(4):1399–1404. doi: 10.1016/j.fertnstert.2009.05.092.Google Scholar
21
Tarlatzi, TB, Venetis, CA, Devreker, F, Englert, Y, Delbaere, A.What is the best predictor of severe ovarian hyperstimulation syndrome in IVF? A cohort study. J Assist Reprod Genet2017;34(10):1341–1351.Google Scholar
22
Iliodromiti, S, Anderson, RA, Nelson, SM. Technical and performance characteristics of anti-Müllerian hormone and antral follicle count as biomarkers of ovarian response. Hum Reprod Update2015;21(6):698–710.Google Scholar
23
Lee, TH, Liu, CH, Huang, CC, et al. Serum anti-mullerian hormone and estradiol levels as predictors of ovarian hyperstimulation syndrome in assisted reproduction technology cycles. Hum Reprod2008;23:160–167.Google Scholar
24
Kwan, I, Bhattacharya, S, McNeil, A, van Rumste, MM. Monitoring of stimulated cycles in assisted reproduction (IVF and ICSI). Cochrane Database Syst Rev2008;2:CD005289. doi: 10.1002/14651858.CD005289.pub2.Google Scholar
25
Kwan, I, Bhattacharya, S, Kang, A, Woolner, A. Monitoring of stimulated cycles in assisted reproduction (IVF and ICSI). Cochrane Database Syst Rev2014;2014(8):CD005289.Google Scholar
26
Nelson, SM. Prevention and management of ovarian hyperstimulation syndrome. Thromb Res2017;151Suppl 1:S61–S64.Google Scholar
27
Papanikolaou, EG, Humaidan, P, Polyzos, NP, Tarlatzis, B.Identification of the high-risk patient for ovarian hyperstimulation syndrome. Semin Reprod Med2010;28(6):458–462.Google Scholar
28
Heijnen, EM, Eijkemans, MJ, De Klerk, C, et al. A mild treatment strategy for in-vitro fertilisation: a randomised non-inferiority trial. Lancet2007;369(9563):743–749.Google Scholar
29
Karimzadeh, MA, Ahmadi, S, Oskouian, H, Rahmani, E.Comparison of mild stimulation and conventional stimulation in ART outcome. Arch Gynecol Obstet2010;281(4):741–746.Google Scholar
30
Casano, S, Guidetti, D, Patriarca, A, et al. MILD ovarian stimulation with GnRH-antagonist vs. long protocol with low dose FSH for non-PCO high responders undergoing IVF: a prospective, randomized study including thawing cycles. J Assist Reprod Genet2012;29(12):1343–1351.Google Scholar
31
Rinaldi, L, Lisi, F, Selman, H.Mild/minimal stimulation protocol for ovarian stimulation of patients at high risk of developing ovarian hyperstimulation syndrome. J Endocrinol Invest2014;37(1):65–70.Google Scholar
32
Onofriescu, A, Bors, A, Luca, A, et al. GnRH antagonist IVF protocol in PCOS. Curr Health Sci J2013;39(1):20–25.Google Scholar
33
Ozmen, B, Sükür, YE, Seval, MM, et al. Dual suppression with oral contraceptive pills in GnRH antagonist cycles for patients with polycystic ovary syndrome undergoing intracytoplasmic sperm injection. Eur J Obstet Gynecol Reprod Biol2014;183:137–140.Google Scholar
34
Xing, W, Lin, H, Li, Y, et al. Is the GnRH antagonist protocol effective at preventing OHSS for potentially high responders undergoing IVF/ICSI?PLoS One2015; 10(10):e0140286.Google Scholar
35
Yu, R, Lin, J, Zhao, JZ, et al. Study on clinical effect on infertility women with polycystic ovary syndrome treated by in vitro maturation and in vitro fertilization-embryo transfer. Zhonghua Fu Chan Ke Za Zhi2012;47(4):250–254.Google Scholar
36
Das, M, Son, WY, Buckett, W, Tulandi, T, Holzer, H.In-vitro maturation versus IVF with GnRH antagonist for women with polycystic ovary syndrome: treatment outcome and rates of ovarian hyperstimulation syndrome. Reprod Biomed Online2014;29(5):545–551.Google Scholar
37
Walls, ML, Hunter, T, Ryan, JP, et al. In vitro maturation as an alternative to standard in vitro fertilization for patients diagnosed with polycystic ovaries: a comparative analysis of fresh, frozen and cumulative cycle outcomes. Hum Reprod2015;30(1):88–96.Google Scholar
Sher, G, Zouves, C, Feinman, M, Maassarani, G. ‘Prolonged coasting’: an effective method for preventing severe ovarian hyperstimulation syndrome in patients undergoing in-vitro fertilization. Hum Reprod1995;10(12):3107–3109.Google Scholar
40
Kovács, P, Mátyás, S, Kaali, SG. Effect of coasting on cycle outcome during in vitro fertilization/intracytoplasmic sperm injection cycles in hyper-responders. Fertil Steril2006;85(4):913–917.Google Scholar
41
D’Angelo, A, Brown, J, Amso, NN. Coasting (withholding gonadotrophins) for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev2011;6:CD002811.Google Scholar
42
Kosmas, IP, Zikopoulos, K, Georgiou, I, et al. Low-dose HCG may improve pregnancy rates and lower OHSS in antagonist cycles: a meta-analysis. Reprod Biomed Online2009; 19(5):619–630.Google Scholar
43
Tiboni, GM, Colangelo, EC, Ponzano, A.Reducing the trigger dose of recombinant hCG in high-responder patients attending an assisted reproductive technology program: an observational study. Drug Des Devel Ther2016;10:1691–1694.Google Scholar
44
Gülekli, B, Göde, F, Sertkaya, Z, Işık, AZ. Gonadotropin-releasing hormone agonist triggering is effective, even at a low dose, for final oocyte maturation in ART cycles: case series.J Turk Ger Gynecol Assoc2015;16(1):35–40.Google Scholar
45
Casper, RF. Introduction: gonadotropin-releasing hormone agonist triggering of final follicular maturation for in vitro fertilization. Fertil Steril2015;103(4):865–866.Google Scholar
46
Youssef, MA, Van der Veen, F, Al-Inany, HG, et al. Gonadotropin-releasing hormone agonist versus HCG for oocyte triggering in antagonist-assisted reproductive technology. Cochrane Database Syst Rev2014;10:CD008046.Google Scholar
47
Youssef, MA, van Wely, M, Hassan, MA, et al. Can dopamine agonists reduce the incidence and severity of OHSS in IVF/ICSI treatment cycles? A systematic review and meta-analysis. Hum Reprod Update2010;16(5):459–466.Google Scholar
48
Baumgarten, M, Polanski, L, Campbell, B, Raine-Fenning, N.Do dopamine agonists prevent or reduce the severity of ovarian hyperstimulation syndrome in women undergoing assisted reproduction? A systematic review and meta-analysis. Hum Fertil2013;16(3):168–174.Google Scholar
49
Kasum, M, Vrčić, H, Stanić, P, et al. Dopamine agonists in prevention of ovarian hyperstimulation syndrome. Gynecol Endocrinol2014;30(12):845–849.Google Scholar
50
Leitao, VM, Moroni, RM, Seko, LM, Nastri, CO, Martins, WP. Cabergoline for the prevention of ovarian hyperstimulation syndrome: systematic review and meta-analysis of randomized controlled trials. Fertil Steril2014;101(3):664–675.Google Scholar
51
Gokmen, O, Ugur, M, Ekin, M, et al. Intravenous albumin versus hydroxyethyl starch for the prevention of ovarian hyperstimulation in an in vitro fertilization programme: a prospective randomized placebo controlled study. Eur J Obstet Gynecol Reprod Biol2001;96(2):187–192.Google Scholar
52
Youssef, MA, Mourad, S.Volume expanders for the prevention of ovarian hyperstimulation syndrome. Cochrane Database Syst Rev2016;8:CD001302.Google Scholar
53
Naredi, N, Karunakaran, S.Calcium gluconate infusion is as effective as the vascular endothelial growth factor antagonist cabergoline for the prevention of ovarian hyperstimulation syndrome. J Hum Reprod Sci2013;6(4):248–252. doi: 10.4103/0974-1208.126293.Google Scholar
54
Boothroyd, C, Karia, S, Andreadis, N, et al.; Australasian CREI Consensus Expert Panel on Trial evidence (ACCEPT) group. Consensus statement on prevention and detection of ovarian hyperstimulation syndrome. Aust N Z J Obstet Gynaecol2015;55(6):523–534.Google Scholar
55
Borges, E Jr., Braga, DP, Setti, AS, et al. Strategies for the management of OHSS: results from freezing-all cycles. JBRA Assist Reprod2016;20(1):8–12.Google Scholar
56
He, Q, Xu, J, Cui, S, Li, H, Zhang, C. Relationship between letrozole administration during the luteal phase after oocyte retrieval and the early-stage ovarian hyperstimulation syndrome occurrence.Zhonghua Fu Chan Ke Za Zhi2014;49(12):909–913.Google Scholar
57
Wang, YQ, Luo, J, Xu, WM, et al. Can steroidal ovarian suppression during the luteal phase after oocyte retrieval reduce the risk of severe OHSS?J Ovarian Res2015;8:63.Google Scholar
58
Cheng, ZX, Kong, G, Zhang, CL, Zhao, YN. Letrozole versus gonadotropin-releasing hormone antagonist during luteal phase in the prevention of ovarian hyperstimulation syndrome: a randomized controlled trial. Zhonghua Fu Chan Ke Za Zhi2020;55(1):9–14.Google Scholar
59
Kol, S, Homburg, R, Alsbjerg, B, Humaidan, P.The gonadotropin-releasing hormone antagonist protocol–the protocol of choice for the polycystic ovary syndrome patient undergoing controlled ovarian stimulation. Acta Obstet Gynecol Scand2012;91(6):643–647.Google Scholar
60
Toftager, M, Bogstad, J, Bryndorf, T, et al. Risk of severe ovarian hyperstimulation syndrome in GnRH antagonist versus GnRH agonist protocol: RCT including 1050 first IVF/ICSI cycles. Hum Reprod2016;31(6):1253–1264.Google Scholar
61
Lambalk, CB, Banga, FR, Huirne, JA, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient typeHum Reprod Update2017;23(5):560–579.Google Scholar
62
Verberg, MF, Macklon, NS, Nargund, G, et al. Mild ovarian stimulation for IVF. Hum Reprod Update2009;15(1):13–29.Google Scholar
63
Zegers-Hochschild, F, Adamson, GD, de Mouzon, J, et al. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology, 2009. Hum Reprod2009;24(11):2683–2687.Google Scholar
64
Baart, EB, Martini, E, Eijkemans, MJ, et al. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod2007;22(4):980–988.Google Scholar
65
Nargund, G, Datta, AK, Fauser, B.Mild stimulation for in vitro fertilization. Fertil Steril2017;108:558–567.Google Scholar
66
Roque, M, Haahr, T, Geber, S, Esteves, SC, Humaidan, P.Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes. Hum Reprod Update2019;25(1):2–14.Google Scholar
67
Yang, ZY, Chian, RC. Development of in vitro maturation techniques for clinical applications. Fertil Steril2017;108(4):577–584.Google Scholar
68
Siristatidis, CS, Maheshwari, A, Vaidakis, D, Bhattacharya, S.In vitro maturation in subfertile women with polycystic ovarian syndrome undergoing assisted reproduction. Cochrane Database Syst Rev2018;11(11):CD006606.Google Scholar
69
D’Angelo, A, Amso, NN, Hassan, R.Coasting (withholding gonadotrophins) for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev2017;5:CD002811. doi: 10.1002/14651858.CD002811.pub4.Google Scholar
70
Humaidan, P, Bredkjær, HE, Bungum, L, et al. GnRH agonist (buserelin) or hCG for ovulation induction in GnRH antagonist IVF/ICSI cycles: a prospective randomized study. Huan Reprod2005;20(5):1213–1220.Google Scholar
71
Pirard, C, Donnez, J, Loumaye, E.GnRH agonist as luteal phase support in assisted reproduction technique cycles: results of a pilot study. Hum Reprod2006;21(7):1894–1900.Google Scholar
72
Kol, S.Luteolysis induced by a gonadotropin-releasing hormone agonist is the key to prevention of ovarian hyperstimulation syndrome. Fertil Steril2004;81(1):1–5.Google Scholar
73
Simon, C, Cano, F, Valbuena, D, Remohi, J, Pellicer, A. Clinical evidence for a detrimental effect on uterine receptivity of high serum estradiol concentrations in high and normal responders. Hum Reprod1995;10:2432–2437.Google Scholar
74
Haahr, T, Roque, M, Esteves, SC, Humaidan, P.GnRH agonist trigger and LH activity luteal phase support versus hCG trigger and conventional luteal phase support in fresh embryo transfer IVF/ICSI cycles-a systematic PRISMA review and meta-analysis. Front Endocrinol (Lausanne)2017;8:116.Google Scholar
75
Castillo, JC, Haahr, T, Martínez-Moya, M, Humaidan, P.Gonadotropin-releasing hormone agonist for ovulation trigger – OHSS prevention and use of modified luteal phase support for fresh embryo transfer. Ups J Med Sci2020;125(2):131–137.Google Scholar
76
Martínez, F, Mancini, F, Solé, M, et al. Antagonist rescue of agonist IVF cycle at risk of OHSS: a case series. Gynecol Endocrinol2014;30:145–148.Google Scholar
77
Tso, LO, Costello, MF, Albuquerque, LE, Andriolo, RB, Macedo, CR. Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome. Cochrane Database Syst Rev2014;11:CD006105.Google Scholar
78
Mourad, S, Brown, J, Farquhar, C.Interventions for the prevention of OHSS in ART cycles: an overview of Cochrane reviews. Cochrane Database Syst Rev2017;1: CD012103. doi: 10.1002/14651858.CD012103.pub2.Google Scholar
79
Jacob, SL, Brewer, C, Tang, T, et al. A short course of metformin does not reduce OHSS in a GnRH antagonist cycle for women with PCOS undergoing IVF: a randomised placebo-controlled trial. Hum Reprod2016;31(12):2756–2764.Google Scholar
80
Eftekhar, M, Deghani Firoozabadi, R, Khani, P, Ziaei Bideh, E, Forghani, H.Effect of laparoscopic ovarian drilling on outcomes of in vitro fertilization in clomiphene-resistant women with polycystic ovary syndrome. Int J Fertil Steril2016;10(1):42–47. doi: 10.22074/ijfs.2016.4767.Google Scholar
81
Seyam, E, Hefzy, E.Laparoscopic ovarian drilling versus GnRH antagonist combined with cabergoline as a prophylaxis against the re-development of ovarian hyperstimulation syndrome. Gynecol Endocrinol2018;34(7):616–622. doi: 10.1080/09513590.2018.1425989.Google Scholar
82
Ramzy, A, Al-Inany, H, Aboulfoutouh, I.Ultrasonographic guided ovarian stroma hydrocoagulation for ovarian stimulation in polycystic ovary syndrome. Acta Obstet Gynecol Scand2001;80:1046–1050.Google Scholar
83
McNatty, KP, Smith, DM, Makris, A, et al. The intraovarian sites of androgen and estrogen formation in women with normal and hyperandrogenic ovaries as judged by in vitro experiments. J Clin Endocrinol Metab1980;50(4):755–763.Google Scholar
84
Badawy, A, Khiary, M, Ragab, A, Hassan, M, Sherief, L.Ultrasound-guided transvaginal ovarian needle drilling (UTND) for treatment of polycystic ovary syndrome: a randomized controlled trial. Fertil Steril2009;91(4):1164–1167.Google Scholar
85
Zhang, J, Tang, L, Kong, L, et al. Ultrasound-guided transvaginal ovarian needle drilling for clomiphene-resistant polycystic ovarian syndrome in subfertile women [published online ahead of print, 2019 Jul 31]. Cochrane Database Syst Rev2019;7(7):CD008583.Google Scholar
86
Nargund, G, Hutchison, L, Scaramuzzi, R, Campbell, S.Low-dose HCG is useful in preventing OHSS in high-risk women without adversely affecting the outcome of IVF cycles. Reprod Biomed Online2007;14(6):682–685. doi: 10.1016/s1472-6483(10)60668-2.Google Scholar
87
Chen, X, Chen, S, He, Y, et al. Minimum dose of hCG to trigger final oocyte maturation and prevent OHSS in a long GnRHa protocol. J Huazhong Univ Sci Technol2013;33:133–136.Google Scholar
88
Tsoumpou, I, Muglu, J, Gelbaya, TA, Nardo, LG. Symposium: update on prediction and management of OHSS. Optimal dose of HCG for final oocyte maturation in IVF cycles: absence of evidence?Reprod Biomed Online2009;19(1):52–58.Google Scholar
89
Tapanainen, JS, Lapolt, PS, Perlas, E, Hsueh, AJ. Induction of ovarian follicle luteinization by recombinant follicle-stimulating hormone. Endocrinology1993;133(6):2875–2880.Google Scholar
90
Zelinski-Wooten, MB, Hutchison, JS, Hess, DL, WoIf, DP, Stouffer, RL. A bolus of recombinant human follicle stimulating hormone at midcycle induces periovulatory events following multiple follicular development in macaques. Hum Reprod1998;13(3):554–560.Google Scholar
91
Busso, CE, Garcia-Velasco, JA, Simon, C, Pellicer, A.Prevention of OHSS: current strategies and new insights. Middle East Fertil Soc J2010;15(4):223–230.Google Scholar
92
Knoepfelmacher, M, Danilovic, DL, Rosa Nasser, RH, Mendonca, BB. Effectiveness of treating ovarian hyperstimulation syndrome with cabergoline in two patients with gonadotropin‐producing pituitary adenomas. Fertil Steril2006;86(3):719.e15–719.e18.Google Scholar
Kissler, S, Neidhardt, B, Siebzehnrübl, E, et al. The detrimental role of colloidal volume substitutes in severe ovarian hyperstimulation syndrome: a case report. Eur J Obstet Gynecol Reprod Biol2001;99(1):131–134.Google Scholar
95
Morris, RS, Wong, IL, Kirkman, E, Gentschein, E, Paulson, RJ. Inhibition of ovarian-derived prorenin to angiotensin cascade in the treatmentof ovarian hyperstimulation syndrome. Hum Reprod1995;10:1355–1358.Google Scholar
96
Gurgan, T, Demirol, A, Guven, S, et al. Intravenous calcium infusion as a novel preventive therapy of ovarian hyperstimulation syndrome for patients with polycystic ovarian syndrome. Fertil Steril2011;96(1):53–57.Google Scholar
97
El-Khayat, W, Elsadek, M.Calcium infusion for the prevention of ovarian hyperstimulation syndrome: a double-blind randomized controlled trial. Fertil Steril2015;103(1):101–105. doi: 10.1016/j.fertnstert.2014.09.046.Google Scholar
98
Naredi, N, Singh, SK, Lele, P, Nagraj, N.Severe ovarian hyperstimulation syndrome: can we eliminate it through a multipronged approach?Med J Armed Forces India2018;74(1):44–50. doi: 10.1016/j.mjafi.2017.04.006.Google Scholar
99
Davenport, MJ, Vollenhoven, B, Talmor, AJ. Gonadotropin-releasing hormone-agonist triggering and a freeze-all approach: the final step in eliminating ovarian hyperstimulation syndrome?Obstet Gynecol Surv2017;72(5):296–308.Google Scholar
100
Atkinson, P, Koch, J, Ledger, WL. GnRH agonist trigger and a freeze-all strategy to prevent ovarian hyperstimulation syndrome: a retrospective study of OHSS risk and pregnancy rates. Aust N Z J Obstet Gynaecol2014;54(6):581–585.Google Scholar
101
Shin, JJ, Jeong, Y, Nho, E, Jee, BC. Clinical outcomes of frozen embryo transfer cycles after freeze-all policy to prevent ovarian hyperstimulation syndrome. Obstet Gynecol Sci2018;61(4):497–504.Google Scholar
102
D’Angelo, A, Amso, NN. Embryo freezing for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev2007;3:CD002806. doi: 10.1002/14651858.CD002806.pub2.Google Scholar
103
Chen, ZJ, Shi, Y, Sun, Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med2016;375(6):523–533.Google Scholar
104
Chen, Y, Yang, T, Hao, C, Zhao, J.A retrospective study of letrozole treatment prior to human chorionic gonadotropin in women with polycystic ovary syndrome undergoing in vitro fertilization at risk of ovarian hyperstimulation syndrome. Med Sci Monit2018;24:4248–4253.Google Scholar
105
Tshzmachyan, R, Hambartsoumian, E.The role of letrozole (LE) in controlled ovarian stimulation (COS) in patients at high risk to develop ovarian hyper stimulation syndrome (OHSS). A prospective randomized controlled pilot study.J Gynecol Obstet Hum Reprod2020;49(2):101643. doi: 10.1016/j.jogoh.2019.101643.Google Scholar
106
Mai, Q, Hu, X, Yang, G, et al. Effect of letrozole on moderate and severe early-onset ovarian hyperstimulation syndrome in high-risk women: a prospective randomized trial. Am J Obstet Gynecol2017;216(1):42.e1–42.e10.Google Scholar
107
Zeng, C, Shang, J, Jin, AM, et al. The effect of luteal GnRH antagonist on moderate and severe early ovarian hyperstimulation syndrome during in vitro fertilization treatment: a prospective cohort study. Arch Gynecol Obstet2019;300(1):223–233.Google Scholar
108
Lainas, GT, Kolibianakis, EM, Sfontouris, IA, et al. Pregnancy and neonatal outcomes following luteal GnRH antagonist administration in patients with severe early OHSS. Hum Reprod2013;28(7):1929–1942. doi: 10.1093/humrep/det114.Google Scholar
109
Lainas, GT, Kolibianakis, EM, Sfontouris, IA, et al. Serum vascular endothelial growth factor levels following luteal gonadotrophin-releasing hormone antagonist administration in women with severe early ovarian hyperstimulation syndrome. BJOG2014;121(7):848–855.Google Scholar
110
Rizk, B, Rizk, CB, Nawar, MG, Garcia-Velasco, JA, Sallam, HN. Ultrasonography in the prediction and management of ovarian hyperstimulation syndrome In: Rizk, B, ed. Ultrasonography in Reproductive Medicine and Infertility. Cambridge, UK : Cambridge University Press; 2010:299–312.Google Scholar
111
Salmassi, A, Mettler, L, Hedderich, J, et al. Cut-off levels of anti-Mullerian hormone for the prediction of ovarian response, in vitro fertilization outcome and ovarian hyperstimulation syndrome. Int J Fertil Steril2015;9(2):157–167.Google Scholar
112
Vembu, R, Reddy, NS. Serum AMH level to predict the hyper response in women with PCOS and non-PCOS undergoing controlled ovarian stimulation in ART. J Hum Reprod Sci2017;10(2):91–94. doi: 10.4103/jhrs.JHRS_15_16.Google Scholar
113
Steward, RG, Lan, L, Shah, AA, et al. Oocyte number as a predictor for ovarian hyperstimulation syndrome and live birth: an analysis of 256,381 in vitro fertilization cycles. Fertil Steril2014;101(4):967–973.Google Scholar
References
1
Ferrero, H, García-Pascual, CM, Gómez, R, et al. Dopamine receptor 2 activation inhibits ovarian vascular endothelial growth factor secretion in vitro: implications for treatment of ovarian hyperstimulation syndrome with dopamine receptor 2 agonists. Fertil Steril2014;101(5):1411–1418.Google Scholar
Aboulghar, MA, Mansour, RT. Ovarian hyperstimulation syndrome: classifications and critical analysis of preventive measures. Hum Reprod Update2003;9:275–289.Google Scholar
4
Mathur, RS, Akande, AV, Keay, SD, Hunt, LP, Jenkins, JM. Distinction between early and late ovarian hyperstimulation syndrome. Fertil Steril2000;73(5):901–907.Google Scholar
5
Gebril, A, Hamoda, H, Mathur, R.Outpatient management of severe ovarian hyperstimulation syndrome: a systematic review and a review of existing guidelines. Hum Fertil (Camb)2018;21(2):98–105.Google Scholar
6
Smith, LP, Hacker, MR, Alper, MM. Patients with severe ovarian hyperstimulation syndrome can be managed safely with aggressive outpatient transvaginal paracentesis. Fertil Steril2009;92(6):1953–1959.Google Scholar
7
Rizk, B, Aboulghar, MA. Classification, pathophysiology and management of ovarian hyperstimulation syndrome. In: Brinsden, P, ed. A Textbook of In-vitro Fertilization and Assisted Reproduction, 2nd ed. Carnforth-Lancs, UK. The Parthenon Publishing Group; 1999:131–155.Google Scholar
8
Lainas, GT, Kolibianakis, EM, Sfontouris, IA, et al. Outpatient management of severe early OHSS by administration of GnRH antagonist in the luteal phase: an observational cohort study. Reprod Biol Endocrinol2012;10:69.Google Scholar
9
Lainas, GT, Kolibianakis, EM, Sfontouris, IA, et al. Pregnancy and neonatal outcomes following luteal GnRH antagonist administration in patients with severe early OHSS. Hum Reprod2013;28(7):1929–1942.Google Scholar
10
Deng, L, Li, XL, Ye, DS, et al. A second dose of GnRHa in combination with luteal GnRH antagonist may eliminate ovarian hyperstimulation syndrome in women with ≥30 follicles measuring ≥11 mm in diameter on trigger day and/or pre-trigger peak estradiol exceeding 10 000 pg/mL.Curr Med Sci2019;39(2):278–284.Google Scholar
11
Abramov, Y, Fatum, M, Abrahomov, D, et al. Hydroxyethyl starch versus human albumin for the treatment of severe ovarian hyperstimulation syndrome: a preliminary report. Fertil Steril2001;75:1228–1230.Google Scholar
12
Gamzu, R, Almog, B, Levin, Y, et al. Efficacy of hydroxyethyl starch and Haemaccel for the treatment of severe ovarian hyperstimulation syndrome. Fertil Steril2002;77:1302–1303.Google Scholar
13
Minami, T, Mph, , Yamana, H, et al. Artificial colloids versus human albumin for the treatment of ovarian hyperstimulation syndrome: a retrospective cohort study. Int J Reprod Biomed2019;17(10):709–716.Google Scholar
14
Rizk, B.Ovarian Hyperstimulation Syndrome: Epidemiology, Pathophysiology, Prevention and Management. Cambridge, UK: Cambridge University Press; 2006.Google Scholar
15
Fabregues Tassies, D, Reverter, JC, Reverter, JC, et al. Prevalence of thrombophilia in women with severe ovarian hyperstimulation syndrome and cost-effectiveness of screening. Fertil Steril2004;81:989–995.Google Scholar
16
Mikhail, S, Rizk, RMB, Nawar, MG, Rizk, CB. Thrombophilia and implantation failure. In: Rizk, B, Garcia-Velasco, JA, Sallam, HN, Makrigiannakis, A, eds. Infertility and Assisted Reproduction. Cambridge, UK: Cambridge University Press; 2008:407–415.Google Scholar
17
Serour, GI, Aboulghar, MA, Mansour, R, et al. Complications of medically assisted conception in 3,500 cycles. Fertil Steril1998;70:638–642.Google Scholar
18
Lee, TH, Liu, CH, Huang, CC, et al. Serum anti-mullerian hormone and estradiol levels as predictors of ovarian hyperstimulation syndrome in assisted reproduction technology cycles. Hum Reprod2008;23:160–167.Google Scholar
19
Lambalk, CB, Banga, FR, Huirne, JA, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type.Hum Reprod Update2017;23(5):560–579.Google Scholar
20
Çağlar Aytaç, P, Kalaycı, H, Yetkinel, S, et al. Effect of pigtail catheter application on obstetric outcomes in in vitro fertilization/intracytoplasmic sperm injection pregnancies following hyperstimulation syndrome. Turk J Obstet Gynecol2017;14(2):94–99.Google Scholar
21
Abuzeid, M, Warda, H, Joseph, S, et al. Outpatient management of severe ovarian hyperstimulation syndrome (OHSS) with placement of pigtail catheter. Facts Views Vis Obgyn2014;6(1):31–37.Google Scholar
22
Ozgun, MT, Batukan, C, Oner, G, et al. Removal of ascites up to 7.5 liters on one occasion and 45 liters in total may be safe in patients with severe ovarian hyperstimulation syndrome. Gynecol Endocrinol2008;24(11):656–658.Google Scholar
23
Agarwal, N, Ghosh, S, Bathwal, S, Chakravarty, B.Large-volume paracentesis, up to 27 L, with adjuvant vaginal cabergoline in the case of severe ovarian hyperstimulation syndrome with successful pregnancy outcome: a case report. J Hum Reprod Sci2017;10(3):235–237.Google Scholar
24
Raziel, A, Friedler, S, Schachter, M, et al. Transvaginal drainage of ascites as an alternative to abdominal paracentesis in patients with severe ovarian hyperstimulation syndrome, obesity, and generalized edema. Fertil Steril1998;69(4):780–783.Google Scholar
25
Brinsden, PR, Wada, I, Tan, SL, et al. Diagnosis, prevention and management of ovarian hyperstimulation syndrome. Br J Obstet Gynecol1995;102:767–772.Google Scholar
26
Practice Committee of the American Society for Reproductive Medicine. Electronic address: ASRM@asrm.org; Practice Committee of the American Society for Reproductive Medicine. Prevention and treatment of moderate and severe ovarian hyperstimulation syndrome: a guideline. Fertil Steril2016;106(7):1634–1647.Google Scholar
27
Tan, BK, Mathur, R.Management of ovarian hyperstimulation syndrome. Produced on behalf of the BFS Policy and Practice Committee. Hum Fertil (Camb)2013;16(3):151–159.Google Scholar
Spitzer, D, Wirleitner, B, Steiner, H, Zech, NH. Adnexal torsion in pregnancy after assisted reproduction – case study and review of the literature. Geburtshilfe Frauenheilkd2012;72(8):716–720.Google Scholar
30
Tsai, HC, Kuo, TN, Chung, MT, et al. Acute abdomen in early pregnancy due to ovarian torsion following successful in vitro fertilization treatment. Taiwan J Obstet Gynecol2015;54(4):438–441.Google Scholar
31
Busso, C, Fernandez-Sanchez, M, Garcia-Velasco, JA, et al. The non-ergot derived dopamine agonist quinagolide in prevention of early ovarian hyperstimulation syndrome in IVF patients: a randomized, double-blind, placebo-controlled trial. Hum Reprod2010;25(4):995–1004. doi: 10.1093/humrep/deq005.Google Scholar
32
Kanayama, S, Kaniwa, H, Tomimoto, M, et al. Laparoscopic detorsion of the ovary in ovarian hyperstimulation syndrome during the sixth week of gestation: a case report and review. Int J Surg Case Rep2019;59:50–53.Google Scholar
33
Orvieto, R, Vanni, VS. Ovarian hyperstimulation syndrome following GnRH agonist trigger-think ectopic. J Assist Reprod Genet2017;34(9):1161–1165. doi: 10.1007/s10815-017-0960-0.Google Scholar
34
Weiss, A, Beck-Fruchter, R, Golan, J, et al. Ectopic pregnancy risk factors for ART patients undergoing the GnRH antagonist protocol: a retrospective study. Reprod Biol Endocrinol2016;14:12.Google Scholar
35
Chang, HJ, Suh, CS. Ectopic pregnancy after assisted reproductive technology: what are the risk factors?Curr Opin Obstet Gynecol2010;22(3):202–207.Google Scholar
36
Navot, D, Bergh, PA, Laufer, N. Ovarian hyperstimulation syndrome in novel reproductive technologies: prevention and treatment. Fertil Steril1992;58:249–261.Google Scholar
37
Fiedler, K, Ezcurra, D.Predicting and preventing ovarian hyperstimulation syndrome (OHSS): the need for individualized not standardized treatment. Reprod Biol Endocrinol2012;10:32.Google Scholar
References
1
Nelson, SM, Pastuszek, E, Kloss, G, et al. Two new automated, compared with two enzyme-linked immunosorbent, antimüllerian hormone assays. Fertil Steril2015;104(4):1016–1021.Google Scholar
2
Iliodromiti, S, Salje, B, Dewailly, D, et al. Non-equivalence of anti-Müllerian hormone automated assays – clinical implications for use as a companion diagnostic for individualised gonadotrophin dosing. Hum Reprod2017;32(8):1710–1715.Google Scholar
3
Broekmans, FJ, de Ziegler, D, Howles, CM, et al. The antral follicle count: practical recommendations for better standardization. Fert Steril2010;94(3):1044–1051.Google Scholar
4
Haadsma, ML, Bukman, A, Groen, H, et al. The number of small antral follicles (2–6 mm) determines the outcome of endocrine ovarian reserve tests in a subfertile population. Hum Reprod2007;22(7):1925–1931.Google Scholar
5
Bosch, E, Labarta, E, Pellicer, A.Does cumulative live birth plateau beyond a certain ovarian response?Fertil Steril2017;108(6):943.Google Scholar
6
Drakopoulos, P, Blockeel, C, Stoop, D, et al. Conventional ovarian stimulation and single embryo transfer for IVF/ICSI. How many oocytes do we need to maximize cumulative live birth rates after utilization of all fresh and frozen embryos?Hum Reprod2016;31(2):370–376.Google Scholar
7
Sunkara, SK, Rittenberg, V, Raine-Fenning, N, et al. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod2011;26(7):1768–1774.Google Scholar
8
Steward, RG, Lan, L, Shah, AA, et al. Oocyte number as a predictor for ovarian hyperstimulation syndrome and live birth: an analysis of 256,381 in vitro fertilization cycles. Fertil Steril2014;101(4):967–973.Google Scholar
9
Baker, VL, Brown, MB, Luke, B, Conrad, KP. Association of number of retrieved oocytes with live birth rate and birth weight: an analysis of 231,815 cycles of in vitro fertilization. Fertil Steril2015;103(4):931–938.Google Scholar
10
Briggs, R, Kovacs, G, MacLachlan, V, Motteram, C, Baker, HG. Can you ever collect too many oocytes?Hum Reprod2014;30(1):81–87.Google Scholar
11
Arce, JC, Andersen, AN, Fernández-Sánchez, M, et al. Ovarian response to recombinant human follicle-stimulating hormone: a randomized, antimüllerian hormone–stratified, dose–response trial in women undergoing in vitro fertilization/intracytoplasmic sperm injection. Fertil Steril2014;102(6):1633–1640.Google Scholar
12
Kolibianakis, EM, Griesinger, G, Venetis, CA. GnRH antagonists vs. long GnRH agonists in IVF: significant flaws in a meta-analysis lead to invalid conclusions. Hum Reprod Update2017;24(2):242–243.Google Scholar
13
Kolibianakis, EM, Venetis, CA, Kalogeropoulou, L, Papanikolaou, E, Tarlatzis, BC. Fixed versus flexible gonadotropin-releasing hormone antagonist administration in in vitro fertilization: a randomized controlled trial. Fertil Steril2011;95:558–562.Google Scholar
14
Al-Inany, HG, Youssef, MA, Ayeleke, RO, et al. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev2016;4:CD001750.Google Scholar
15
Xiao, JS, Su, CM, Zeng, XT. Comparisons of GnRH antagonist versus GnRH agonist protocol in supposed normal ovarian responders undergoing IVF: a systematic review and meta-analysis. PLoS One2014;9:e106854.Google Scholar
16
Lambalk, CB, Banga, FR, Huirne, JA, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update2017;23:560–579.Google Scholar
17
Mol, BW, Bossuyt, PM, Sunkara, SK, et al. Personalized ovarian stimulation for assisted reproductive technology: study design considerations to move from hype to added value for patients. Fertil Steril2018;109(6):968–979.Google Scholar
18
Devroey, P, Tournaye, H, Van Steirteghem, A, Hendrix, P, Out, HJ. The use of a 100 IU starting dose of recombinant follicle stimulating hormone (Puregon) in in-vitro fertilization. Hum Reprod1998;13:565–566.Google Scholar
19
Out, HJ, Lindenberg, S, Mikkelsen, AL, et al. A prospective, randomized, double-blind clinical trial to study the efficacy and efficiency of a fixed dose of recombinant follicle stimulating hormone (Puregon) in women undergoing ovarian stimulation. Hum Reprod1999;14:622–627.Google Scholar
20
Out, HJ, Braat, DD, Lintsen, BM, et al. Increasing the daily dose of recombinant follicle stimulating hormone (Puregon) does not compensate for the age-related decline in retrievable oocytes after ovarian stimulation. Hum Reprod2000;15:29–35.Google Scholar
21
Out, HJ, David, I, Ron-El, R, et al. A randomized, double blind clinical trial using fixed daily doses of 100 or 200 IU of recombinant FSH in ICSI cycles. Hum Reprod2001;16:1104–1109.Google Scholar
22
Sterrenburg, MD, Veltman-Verhulst, SM, Eijkemans, MJ, et al. Clinical outcomes in relation to the daily dose of recombinant follicle-stimulating hormone for ovarian stimulation in in vitro fertilization in presumed normal responders younger than 39 years: a meta-analysis. Hum Reprod Update2011;17:184–196.Google Scholar
23
Van der Meer, M, Hompes, PG, Scheele, F, et al. Follicle stimulating hormone (FSH) dynamics of low dose step-up ovulation induction with FSH in patients with polycystic ovary syndrome. Hum Reprod1994;9:1612–1617.Google Scholar
24
Popovic-Todorovic, B, Loft, A, Lindhard, A, et al. A prospective study of predictive factors of ovarian response in ‘standard’ IVF/ICSI patients treated with recombinant FSH. A suggestion for a recombinant FSH dosage normogram. Hum Reprod2003;18:781–787.CrossRefGoogle ScholarPubMed
25
Howles, CM, Saunders, H, Alam, V, Engrand, P; FSH Treatment Guidelines Clinical Panel. Predictive factors and a corresponding treatment algorithm for controlled ovarian stimulation in patients treated with recombinant human follicle stimulating hormone (follitropin alfa) during assisted reproduction technology (ART) procedures. An analysis of 1378 patients.Curr Med Res Opin2006;22:907–918.Google Scholar
26
Popovic-Todorovic, B, Loft, A, Ejdrup Bredkjæer, H, et al. A prospective randomized clinical trial comparing an individual dose of recombinant FSH based on predictive factors versus a ‘standard’ dose of 150 IU/day in ‘standard’ patients undergoing IVF/ICSI treatment. Hum Reprod2003;18:2275–2282.Google Scholar
27
Olivennes, F, Howles, CM, Borini, A, et al. Individualizing FSH dose for assisted reproduction using a novel algorithm: the CONSORT study. Reprod Biomed Online2009;18:195–204.Google Scholar
28
Broekmans, FJ, Kwee, J, Hendriks, DJ, Mol, BW, Lambalk, CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update2006;12:685–718.Google Scholar
29
Broer, SL, van Disseldorp, J, Broeze, KA, et al. Added value of ovarian reserve testing on patient characteristics in the prediction of ovarian response and ongoing pregnancy: an individual patient data approach. Hum Reprod Update2013;19:26–36.Google Scholar
30
Aflatoonian, A, Oskouian, H, Ahmadi, S, Oskouian, L.Prediction of high ovarian response to controlled ovarian hyperstimulation: anti-Mullerian hormone versus small antral follicle count (2-6 mm). J Assist Reprod Genet2009;26:319–325.Google Scholar
31
Magnusson, A, Kallen, K, Thurin-Kjellberg, A, Bergh, C.The number of oocytes retrieved during IVF: a balance between efficacy and safety. Hum Reprod2018;33:58–64.Google Scholar
32
Friis Petersen, J, Løkkegaard, E, Andersen, LF, et al. A randomized controlled trial of AMH-based individualized FSH dosing in a GnRH antagonist protocol for IVF. Hum Reprod Open2019;2019(1):hoz003.Google Scholar
33
Nyboe Andersen, A, Nelson, SM, Fauser, BC, et al. Individualized versus conventional ovarian stimulation for in vitro fertilization: a multicenter, randomized, controlled, assessor blinded, phase three non-inferiority trial. Fertil Steril2017;107:396.e4.Google Scholar
34
Lensen, SF, Wilkinson, J, Leijdekkers, JA, et al. Individualised gonadotropin dose selection using markers of ovarian reserve for women undergoing in vitro fertilization plus intracytoplasmic sperm injection (IVF/ICSI). Cochrane Database Syst Rev2018;2:CD012693.Google Scholar
35
Lan, VT, Linh, NK, Tuong, HM, Wong, PC, Howles, CM. Anti-mullerian hormone versus antral follicle count for defining the starting dose of FSH. Reprod Biomed Online2013;27:390–399.Google Scholar
36
Van Tilborg, TC, Torrance, HL, Oudshoorn, SC, et al. Individualized versus standard FSH dosing in women starting IVF/ICSI: an RCT. Part 1: The predicted poor responder. Hum Reprod2017;32:2496–2505.Google Scholar
37
Youssef, MA, Van Wely, M, Al-Inany, H, et al. A mild ovarian stimulation strategy in women with poor ovarian reserve undergoing IVF: a multicenter randomized non-inferiority trial. Hum Reprod2016;32(1):112–118.Google ScholarPubMed
38
Oudendijk, JF, Yarde, F, Eijkemans, MJ, Broekmans, FJ, Broer, SL. The poor responder in IVF: is the prognosis always poor? A systematic review. Hum Reprod Update2012;18:1–11.Google Scholar
39
Hamdine, O, Eijkemans, MJC, Lentjes, EGW, et al. Antimullerian hormone: prediction of cumulative live birth in gonadotropin-releasing hormone antagonist treatment for in vitro fertilization. Fertil Steril2015;104:898.e2.CrossRefGoogle ScholarPubMed
40
Esteves, SC, Roque, M, Bedoschi, GM, et al. Defining low prognosis patients undergoing assisted reproductive technology: POSEIDON criteria–the why. Front Endocrinol (Lausanne)2018;9:461.Google Scholar
41
Mochtar, MH, Van der Veen, F, Ziech, M, van Wely, M, Musters, A.Recombinant luteinizing hormone (rLH) for controlled ovarian hyperstimulation in assisted reproductive cycles. Cochrane Database Syst Rev2007;2:CD005070.Google Scholar
42
Lahoud, R, Ryan, J, Illingworth, P, Quinn, F, Costello, M.Recombinant LH supplementation in patients with a relative reduction in LH levels during IVF/ICSI cycles: a prospective randomized controlled trial. Eur J Obstet Gynecol Reprod Biol2017;210:300–305.Google Scholar
43
Humaidan, P, Chin, W, Rogoff, D, et al. Efficacy and safety of follitropin alfa/lutropin alfa in ART: a randomized controlled trial in poor ovarian responders. Hum Reprod2017;32:544–555.Google Scholar
44
Griesinger, G, Boostanfar, R, Gordon, K, et al. Corifollitropin alfa versus recombinant follicle-stimulating hormone: an individual patient data meta-analysis. Reprod Biomed Online2016;33:56–60.CrossRefGoogle ScholarPubMed
References
1
Temkin, O.Soranus’ Gynaecology. Baltimore: John Hopkins University Press; 1956:xlix, 258 pp.Google Scholar
2
Herting, AT, Rock, J, Adams, EC. A description of 34 human ova within the first 17 days of development. Dev Dyn1956;98:435–493.Google Scholar
3
Navot, D, Scott, RT, Droesch, K, et al. The window of embryo transfer and the efficiency of human conception in vitro. Fertil Steril1991;55(1):114–118. doi:10.1016/s0015-0282(16)54069-2.Google Scholar
4
Harper, MJ. The implantation window. Baillieres Clin Obstet Gynaecol1992;6(2):351–371.Google Scholar
5
Wilcox, AJ, Baird, DD, Weinberg, CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med1999;340(23):1796–1799. doi:10.1056/nejm199906103402304.Google Scholar
6
Grasso, A, Balaguer, N, Vilella, F.Receptividad endometrial: expresión génica y otros biomarcadores. In:García-Velasco, JA, ed. Cuadernos de Medicina Reproductiva, Vol. 23, No. 3. Edita Anarr. Nuevo Siglo,S.L.; 2017:45–57.Google Scholar
7
Miravet-Valenciano, JA, Balaguer, N, Vilella, F, Simon, C.Molecular diagnosis of endometrial receptivity. In: Simón, C, Giudice, L, eds. The Endometrial Factor, A Reproductive Precision Medicine Approach. Boca Raton: