Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T10:30:13.999Z Has data issue: false hasContentIssue false

8 - A Review of Non-Mosasaurid (Dolichosaur and Aigialosaur) Mosasaurians and Their Relationships to Snakes

from Part II - Palaeontology and the Marine-Origin Hypothesis

Published online by Cambridge University Press:  30 July 2022

David J. Gower
Affiliation:
Natural History Museum, London
Hussam Zaher
Affiliation:
Universidade de São Paulo
Get access

Summary

Mosasaurian phylogenetics has been one of the most controversial topics in squamate systematics, with various studies and authors arguing in favor of a varanoid affinity (the Varanoid Hypothesis), a snake affinity (the Pythonomorph and Ophidiomorph Hypotheses) or only distant affinities to these lineages (the Stem-scleroglossan Hypothesis). We review the classification history of mosasaurians over the past two centuries, focusing on non-mosasaurid mosasaurians (dolichosaurs and aigialosaurs). A reappraisal is provided based on a new phylogenetic analysis. Our results clearly support the Varanoid Hypothesis. The Pythonomorph and Ophidiomorph Hypotheses are reviewed, and characters traditionally inferred to support these hypotheses are discussed and reinterpreted. Taxonomic sampling and fossil completeness likely play a major role—our (hopefully improved) phylogenetic hypothesis being based on denser taxon sampling and more complete character scoring resulting from additional studies, including the application of modern imaging techniques. Based on current data, our interpretation is that a particularly close phylogenetic relationship between mosasaurians and snakes can be rejected.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Evans, S. E., Manabe, M., Noro, M., Isajis, S., and Yamaguchi, M., A longbodied lizard from the Lower Cretaceous of Japan. Paleontology, 49 (2006), 11431165.Google Scholar
Polcyn, M. J., Tchernov, E., and Jacobs, L. L., The Cretaceous biogeography of the eastern Mediterranean with a description of a new basal mosasauroid from ‘Ein Yabrud, Israel. In Tomida, Y., Rich, T.H. and Vickers–Rich, P., eds., Proceedings of the Second Gondwanan Dinosaur Symposium (1999), pp. 259290.Google Scholar
Russell, D. A., Systematics and morphology of American mosasaurs. Bulletin of the Peabody Museum of Natural History, 23 (1967), 1241.Google Scholar
DeBraga, M. and Carroll, R. L., The origin of mosasaurs as a model of macroevolutionary patterns and processes. Evolutionary Biology, 27 (1993), 245322.Google Scholar
Polcyn, M. J., Jacobs, L. L., Araújo, R., Schulp, A. S., and Mateus, O., Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 400 (2014), 1727.Google Scholar
Gallagher, W. B., Miller, K. G., Sherrell, R. M., et al., On the last mosasaurs: Late Maastrichtian mosasaurs and the Cretaceous-Paleogene boundary in New Jersey. Bulletin de la Société Géologique de France, 183 (2012), 145150.CrossRefGoogle Scholar
Pieters, F. F., Rompen, P. G., Jagt, J. W., and Bardet, N., A new look at Faujas de Saint-Fond’s fantastic story on the provenance and acquisition of the type specimen of Mosasaurus hoffmanni Mantell, 1829. Bulletin de la Société géologique de France, 183 (2012), 5565.Google Scholar
Carroll, R. L. and Debraga, M., Aigialosaurs: mid-Cretaceous varanoid lizards. Journal of Vertebrate Paleontology, 12 (1992), 6686.CrossRefGoogle Scholar
Lingham-Soliar, T., Anatomy and functional morphology of the largest marine reptile known, Mosasaurus hoffmanni (Mosasauridae, Reptilia) from the Upper Cretaceous, Upper Maastrichtian of the Netherlands. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 347 (1995), 155172.Google Scholar
Bell, G. L., A phylogenetic revision of North American and Adriatic Mosasauroidea. In Callaway, J. M. and Nicholls, E. L., eds., Ancient Marine Reptiles (Academic Press: Cambridge, 1997), pp. 293332.CrossRefGoogle Scholar
Rieppel, O. and Zaher, H., The intramandibular joint in squamates, and the phylogenetic relationships of the fossil snake Pachyrhachis problematicus Haas. Fieldiana Geology, 43 (2000), 169.Google Scholar
Bardet, N. S., Suberbiola, X. P., Iarochene, M., Bouya, B., and Amaghzaz, M., A new species of Halisaurus from the Late Cretaceous phosphates of Morocco, and the phylogenetical relationships of the Halisaurinae (Squamata: Mosasauridae). Zoological Journal of the Linnean Society, 143 (2005), 447472.Google Scholar
Bell, G. L. and Polcyn, M. J., Dallasaurus turneri, a new primitive mosasauroid from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata). Netherlands Journal of Geosciences, 84, Special Issue 3 (2005), 177194.CrossRefGoogle Scholar
Lindgren, J., The first record of Hainosaurus (Reptilia: Mosasauridae) from Sweden. Journal of Paleontology, 79 (2005), 11571165.Google Scholar
Conrad, J. L., Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310 (2008), 1182.CrossRefGoogle Scholar
Caldwell, M. W. and Palci, A., A new species of marine ophidiomorph lizard, Adriosaurus skrbinensis, from the Upper Cretaceous of Slovenia. Journal of Vertebrate Paleontology, 30 (2010), 747755.Google Scholar
Conrad, J. L., Ast, J. C., Montanari, S., and Norell, M. A., A combined evidence phylogenetic analysis of Anguimorpha (Reptilia: Squamata). Cladistics, 27 (2011), 230277.Google Scholar
Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., and Behlke, A., Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53 (2012), 3308.CrossRefGoogle Scholar
Madzia, D. and Conrad, J., Mosasauridae. In de Queiroz, K. C., Cantino, P. D. and Gauthier, J. A., eds., Phylonyms: A Companion to the PhyloCode (Boca Raton: CRC Press, 2020), pp. 11031108.Google Scholar
Gervais, P., Zoologie et Paléontologie Generale (Paris: A. Bertrand, 1852).Google Scholar
Gorjanović-Kramberger, K., Aigialosaurus, eine neue Eidechse aus den Kreideschiefern der Insel Lesina, mit Rücksicht auf die bereits beschriebenen Lacertiden von Comen und Lesina. Glasnik hrvatskoga naravoslovnoga drustva (Societas historico-naturalis croatica) u Zagrebu, 7 (1892), 74106.Google Scholar
Polcyn, M. J. and Bell, G. L., Coniasaurus crassidens and its bearing on varanoid-mosasauroid relationships. Journal of Vertebrate Paleontology, Supplement , 14 (1994), 42A.Google Scholar
Caldwell, M. W., Squamate phylogeny and the relationships of snakes and mosasauroids. Zoological Journal of the Linnean Society, 125 (1999), 115147.Google Scholar
Reeder, T. W., Townsend, T. M., Mulcahy, D. G., et al., Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS One, 10 (2015), e0118199.Google Scholar
Lee, M. S. Y. and Caldwell, M. W., Adriosaurus and the affinities of mosasaurs, dolichosaurs, and snakes. Journal of Paleontology, 74 (2000), 915937.Google Scholar
Pierce, S. and Caldwell, M. W., Redescription and phylogenetic position of the Adriatic (Upper Cretaceous; Cenomanian) dolichosaur, Pontosaurus lesinensis (Kornhuber, 1873). Journal of Vertebrate Paleontology, 24 (2004), 376389.Google Scholar
Caldwell, M. W., Description and phylogenetic relationships of a new species of Coniasaurus Owen, 1850 (Squamata). Journal of Vertebrate Paleontology, 19 (1999), 438455.Google Scholar
Lee, M. S. Y. and Scanlon, J. D., The Cretaceous marine squamate Mesoleptos and the origin of snakes. Bulletin of the Natural History Museum London (Zoology Series), 68 (2002), 131142.Google Scholar
Haber, A. and Polcyn, M. J., A new marine varanoid from the Cenomanian of the Middle East. Netherlands Journal of Geosciences, 84, Special Issue 3 (2005), 247255 Google Scholar
Jacobs, L. L., Ferguson, K., Polcyn, M. J., and Rennison, C., Cretaceous δ[13]C stratigraphy and the age of dolichosaurs and early mosasaurs. Netherlands Journal of Geosciences, 84, Special Issue 3 (2005), 257268.CrossRefGoogle Scholar
Mekarski, M. C., Japundžić, D., Krizmanić, K., and Caldwell, M. W., Description of a new basal mosasauroid from the Late Cretaceous of Croatia, with comments on the evolution of the mosasauroid forelimb. Journal of Vertebrate Paleontology, 39 (2019), DOI: 10.1080/02724634.2019.1577872.Google Scholar
Caldwell, M. W. and Lee, M. S. Y., Reevaluation of the Cretaceous marine lizard Acteosaurus crassicostatus Calligaris, 1993 . Journal of Paleontology, 78 (2004), 617619.Google Scholar
Seiffert, J., Upper Jurassic lizards from central Portugal. Memórias do Serviço Geológico de Portugal (Nova Série), 22 (1973), 185.Google Scholar
Polcyn, M. J. and Bell, G. L., Russellosaurus coheni n. gen., n. sp., a 92 million-year-old mosasaur from Texas (USA), and the definition of the parafamily Russellosaurina. Netherlands Journal of Geosciences, 84, Special Issue 3 (2005), 321333.Google Scholar
Dutchak, A. R., A review of the taxonomy and systematic of aigialosaurs. Netherlands Journal of Geosciences, 84, Special Issue 3 (2005), 221229.Google Scholar
Dutchak, A.R. and Caldwell, M.W., A redescription of Aigialosaurus (= Opetiosaurus) bucchichi (Kornhuber, 1901) (Squamata: Aigialosauridae) with comments on mosasauroid systematics. Journal of Vertebrate Paleontology, 29 (2009), 437452.Google Scholar
Smith, K. T. and Buchy, M. L., A new aigialosaur (Squamata: Anguimorpha) with soft tissues remains from the Upper Cretaceous of Nuevo León, Mexico. Journal of Vertebrate Paleontology, 28 (2008), 8594.Google Scholar
McDowell, S. B. and Bogert, C. M., The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards. Bulletin of the American Museum of Natural History, 105 (1954), 1142.Google Scholar
Rieppel, O., The Phylogeny of Anguinomorph Lizards (Basel: Birkhauser Verlag, 1980).Google Scholar
Estes, R., de Queiroz, K., and Gauthier, J. A., Phylogenetic relationships within Squamata. In Estes, R. P., ed., Phylogenetic Relationships of the Lizard Families (Stanford University Press: Stanford, 1988), pp. 119282.Google Scholar
Cuvier, G. C. F., Sur le grand animal fossile des carriéres de Maestricht. Annales du Muséum National d’Histoire Naturelle, 12 (1808) 145176.Google Scholar
Mantell, G., A tabular arrangement of the organic remains of the county of Sussex. Transactions of the Geological Society of London, 3 (1829), 201216.CrossRefGoogle Scholar
Goldfuss, A., The skull structure of the Mosasaurus, explained by means of a description of a new species of this genus. Transactions of the Kansas Academy of Science, 116 (2013), 2746.Google Scholar
Owen, R., Description of the fossil reptiles of the Chalk Formation. In Dixon, F., ed., The geology and fossils of the Tertiary and Cretaceous Formations of Sussex (Longman, Brown, Green, and Longman: London, 1850), pp. 378404.Google Scholar
Cope, E. D., On the reptilian orders, Pythonomorpha and Streptosauria. Proceedings of the Boston Society of Natural History, 12 (1869), 250266.Google Scholar
Owen, R., On the rank and affinities in the reptilian class of the Mosasauridae, Gervais. Quarterly Journal of the Geological Society of London, 33 (1877), 682715.Google Scholar
Marsh, O. C., New characters of mosasauroid reptiles. American Journal of Science, 19 (1880, 8387.Google Scholar
Baur, G. H. C. L., On the characters and systematic position of the large sea-lizards, Mosasauridae. Science, 405 (1890), 262.Google Scholar
Williston, S. W., The relationships and habits of the mosasaurs. The Journal of Geology, 12 (1904), 4351.Google Scholar
Nopcsa, F., Eidolosaurus und Pachyophis, zwei neue Neocom-Reptilien. Palaeontographica, 65 (1923), 99154.Google Scholar
Boulenger, G. A., Notes on the osteology of Heloderma horridum and H. suspectum, with remarks on the systematic position of the Helodermatidæ and on the vertebræ of the Lacertilia. Proceedings of the Zoological Society of London, 59 (1891), 109–118.Google Scholar
Cope, E. D., Reply to Dr. Bauer’s critique on my paper on the paroccipital bone of the scaled reptiles and the systematic position of the Pythonomorpha. American Naturalist, 29 (1895), 10031005.Google Scholar
Osborn, H. F., A complete mosasaur skeleton, osseous and cartilaginous. Bulletin of the American Museum of Natural History, 1 (1899), 167188.Google Scholar
Fejérváry, G. J., Contributions to a monography on fossil Varanidae and on Megalanidae. Annales Historico-Naturales Musei Nationalis Hungarici, 16 (1918), 341467.Google Scholar
Camp, C. L., Classification of the lizards. Bulletin of the American Museum of Natural History, 48 (1923), 289-481.Google Scholar
Bellairs, A. A., Observations on the snout of Varanus, and a comparison with that of other lizards and snakes. Journal of Anatomy, 83 (1949), 116.Google Scholar
Underwood, G., Lanthanotus and the anguinomorphan lizards: a critical review. Copeia, 1957 (1957), 2030.Google Scholar
Borsuk-Białlynicka, M., Anguimorphans and related lizards from the Late Cretaceous of the Gobi Desert, Mongolia. Palaeontologica Polonica, 46 (1984), 5105.Google Scholar
Lee, M. S. Y., The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society of London, Series B, 352 (1997), 5391.Google Scholar
Caldwell, M. W., The Origin of Snakes: Morphology and the Fossil Record (Boca Raton: CRC Press, 2020).Google Scholar
Caldwell, M. W., A New Species of ‘Pontosaurus’ (Squamata, Pythonomorpha) from the Upper Cretaceous of Lebanon and a phylogenetic analysis of Pythonomorpha. Società Italiana di Scienze Naturali, 34 (2006), 144.Google Scholar
Paparella, I., Palci, A., Nicosia, U. and Caldwell, M. W., A new fossil marine lizard with soft tissues from the Late Cretaceous of southern Italy. Royal Society Open Science, 6 (2018), 172411.Google Scholar
Simões, T. R., Caldwell, M. W., Tałanda, M., et al., The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature, 557 (2018), 706709.Google Scholar
Palci, A. and Caldwell, M. W., Redescription of Acteosaurus tommasinii von Meyer, 1860, and a discussion of evolutionary trends within the clade Ophidiomorpha. Journal of Vertebrate Paleontology, 30 (2010), 94108.Google Scholar
Cornalia, E. and Chiozza, L., Cenni geologici sull’ Istria. Giornale dell’ I. R. Instituto Lombardo, 3 (1852), 135.Google Scholar
von Meyer, H., Acteosaurus tommasinii aus dem schwarzen Kreide-Schiefer von Comen am Karste. Palaeontographica, 7 (1860), 223231.Google Scholar
Kornhuber, A., Carsosaurus Marchesettii, ein neuer fossiler Lacertilier aus den Kreideschichten des Karstes bei Komen. Abhandlungen der kaiserlich-königlichen geologischen Reichsanstalt zu Wien, 17 (1893), 115.Google Scholar
Kornhuber, A., A., Opetiosaurus Bucchichi, eine neue fossile Eidechse aus der unteren Kreide von Lesina in Dalmatien. Abhandlungen der kaiserlich-königlichen geologischen Reichsanstalt zu Wien, 17 (1901), 124.Google Scholar
Calligaris, R., Acteosaurus crassicostatus nuova specie di Dolichosauridae negli Strati Calcarei Ittiolitici di Comeno. Atti Museo Civico di Storia Naturale di Trieste, 45 (1993), 2934.Google Scholar
Hallermann, J., The ethmoidal region of Dibamus taylori (Squamata: Dibamidae), with a phylogenetic hypothesis on dibamid relationships within Squamata. Zoological Journal of the Linnean Society, 122 (1998), 385426.Google Scholar
Evans, S. E. and Barbadillo, L. J., A shortlimbed lizard from the Lower Cretaceous of Spain. Special Papers in Palaeontology, 60 (1999), 7385.Google Scholar
Gao, K. Q. and Norell, M. A., Taxonomic revision of Carusia (Reptilia: Squamata) from the Late Cretaceous of the Gobi Desert, and phylogenetic relationships of anguimorphan lizards. American Museum Novitates, 3230 (1998), 151.Google Scholar
Rieppel, O., Conrad, J. L., and Maisano, J. A., New morphological data for Eosaniwa koehni Haubold, 1977 and a revised phylogenetic analysis. Journal of Paleontology, 81 (2007), 760769.Google Scholar
Yi, H. Y. and Norell, M. A., New materials of Estesia mongoliensis (Squamata: Anguimorpha) and the evolution of venom grooves in lizards. American Museum Novitates, 3767 (2013), 131.Google Scholar
Vidal, N. and Hedges, S.B., The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. Comptes Rendus Biologies, 328 (2005), 10001008.Google Scholar
Wiens, J. J., Kuczynski, C. A., Townsend, T., et al., Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology, 59 (2010), 674688.Google Scholar
Pyron, R. A., Burbrink, F.T., and Wiens, J. J., A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13 (2013), 153.Google Scholar
Streicher, J. W. and Wiens, J. J., Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biological Letters, 13 (2017), e20170393.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Townsend, T. M., Larson, A., Louis, E., and Macey, J. R., Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology, 53 (2004), 735757.Google Scholar
Vidal, N. and Hedges, S.B., The molecular evolutionary tree of lizards, snakes, and amphisbaenians. Comptes Rendus Biologies, 332 (2009), 129139.Google Scholar
Simões, T. R., Vernygora, O., Caldwell, M. W., and Pierce, S. E., Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nature Communications, 11 (2020), 114.Google Scholar
Simões, T. R., Caldwell, M. W., Palci, A., and Nydam, R. L., Giant taxon‐character matrices: quality of character constructions remains critical regardless of size. Cladistics, 33 (2017) 198219.Google Scholar
Simões, T. R., Vernygora, O., Paparella, I., Jimenez-Huidobro, P., and Caldwell, M. W., Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group. PLoS ONE, 12 (2017), e0176773.Google Scholar
Laing, A. M., Doyle, S., Gold, M. E. L., et al., Giant taxon-character matrices: The future of morphological systematics. Cladistics, 34 (2017), 333335.Google Scholar
Madzia, D. and Cau, A., Inferring ‘weak spots’ in phylogenetic trees: application to mosasauroid nomenclature. PeerJ, 5 (2017), e3782.Google Scholar
Simões, T. R., Caldwell, M. W., Palci, A., and Nydam, R. L., Giant taxon-character matrices II: a response to Laing et al. (2017). Cladistics, 34 (2017), 702707.Google Scholar
Gauthier, J. A., Kluge, A. G., and Rowe, T., Amniote phylogeny and the importance of fossils. Cladistics, 4 (1988), 105209.Google Scholar
Donoghue, M. J., Doyle, J. A., Gauthier, J., Kluge, A. G., and Rowe, T., The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics. 20 (1989), 431460.Google Scholar
Mekarski, M. M., The Origin and Evolution of Aquatic Adaptations in Cretaceous Squamates (Unpublished PhD Thesis: University of Alberta, 2017).Google Scholar
Diedrich, C., Ein dentale von Coniosaurus crassidens Owen (Varanoidea) aus dem Ober-Cenoman von Halle/Westf (NW-Deutschland). Geologie und Paläontologie in Westfalen, 47 (1997), 4351.Google Scholar
Scanlon, J. D. and Hocknull, S.A., A dolichosaurid lizard from the latest Albian (mid-Cretaceous) Winton Formation, Queensland, Australia. Transactions of the Kansas Academy of Science, Fort Hays Studies Special Issue – Proceedings of the Second Mosasaur Meeting (2008), 131–136.Google Scholar
Goloboff, P. A. and Catalano, S. A., TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32 (2016), 221238.Google Scholar
Lee, M. S. Y., Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biological Journal of the Linnean Society, 65 (1998), 369453.Google Scholar
Zaher, H., The phylogenetic position of Pachyrhachis within snakes (Squamata, Lepidosauria). Journal of Vertebrate Paleontology, 18 (1998), 13.Google Scholar
Zaher, H. and Rieppel, O., Tooth implantation and replacement in squamates, with special reference to mosasaur lizards and snakes. American Museum Novitates, 3271 (1999), 119.Google Scholar
Caldwell, M. W., Budney, L. A., and Lamoureux, D. O., Histology of tooth attachment tissues in the Late Cretaceous mosasaurid Platecarpus. Journal of Vertebrate Paleontology, 23 (2003), 622630.Google Scholar
Caldwell, M. W. and Palci, A., A new basal mosasauroid from the Cenomanian (U. Cretaceous) of Slovenia with a review of mosasauroid phylogeny and evolution. Journal of Vertebrate Paleontology, 27 (2007), 863883.Google Scholar
Rieppel, O. and Kearney, M., Tooth replacement in the Late Cretaceous mosasaur Clidastes . Journal of Herpetology, 39 (2005), 688692.Google Scholar
Luan, X., Walker, C., Dangaria, S., et al., The mosasaur tooth attachment apparatus as paradigm for the evolution of the gnathostome periodontium. Evolution & Development, 11 (2009), 247259.Google Scholar
Caldwell, M. W., Ontogeny, anatomy and attachment of the dentition in mosasaurs (Mosasauridae: Squamata). Zoological Journal of the Linnean Society, 149 (2007), 687700.Google Scholar
LeBlanc, A. R., Lamoureux, D. O., and Caldwell, M. W., Mosasaurs and snakes have a periodontal ligament: timing and extent of calcification, not tissue complexity, determines tooth attachment mode in reptiles. Journal of Anatomy, 231 (2017), 869885.Google Scholar
Gomez, C., Özbudak, E. M., Wunderlich, J., et al., Control of segment number in vertebrate embryos. Nature, 454 (2008), 335339.Google Scholar
Woltering, M. J., From lizard to snake; behind the evolution of an extreme body plan. Current Genomics, 13 (2012), 289299.CrossRefGoogle ScholarPubMed
Montero, R., Daza, J. D., Bauer, A. M., and Abdala, V., How common are cranial sesamoids among squamates? Journal of Morphology, 278 (2017), 14001411.Google Scholar
Ollonen, J., Silva, F. O., Mahlow, K., and Di–Poi, N., Skull development, ossification pattern, and adult shape in the emerging lizard model organism Pogona vitticeps: a comparative analysis with other squamates. Frontiers in Physiology, 9 (2018), 278.Google Scholar
Garberoglio, F. F., Apesteguía, S., Simões, T. R., et al., New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science Advances, 5 (2019), eaax5833.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×