Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-n9lxd Total loading time: 1.053 Render date: 2022-09-27T12:53:34.449Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Chapter 6 - Pathophysiology of neuropathic pain: voltage-gated sodium and calcium channels

from Section 2 - The Condition of Neuropathic Pain

Published online by Cambridge University Press:  05 December 2013

Cory Toth
Affiliation:
Department of Neurology, University of Calgary
Dwight E. Moulin
Affiliation:
Department of Clinical Neurological Sciences, University of Western Ontario
Get access

Summary

This chapter focuses on the voltage-gated sodium (Nav) channel and voltage-gated calcium channel (VGCC), since they are essential to pain transmission. The most basic structural plan of a eukaryotic voltage-gated ion channel consists of four sub-units surrounding a central pore, through which ions pass. Sodium channel inactivation is modulated by many factors, including toxins, disease states, mutations, and therapeutic drugs. In neurons, activation of VGCC in response to depolarized membrane potential leads to calcium entry, mediating calcium-dependent enzyme activation, gene expression, or release of neurotransmitters. Two main classes of VGCC have been reported, the T-type or low voltage activated (LVA) and the high voltage activated (HVA) channels. To manage different etiologies of neuropathic pain, a variety of therapeutic targets must be available. Drugs directed at specific targets, such as those channels expressed in nociceptors, or upregulated after injury, may give the best pain management while minimizing undesirable side effects.
Type
Chapter
Information
Neuropathic Pain
Causes, Management and Understanding
, pp. 65 - 76
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×