Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-lmg95 Total loading time: 0.705 Render date: 2021-10-21T18:58:26.538Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Book contents

28 - Formulas for preterm and term infants

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Deborah L. O'Connor
Affiliation:
University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
Joan Brennan
Affiliation:
University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Introduction

Breastfeeding is the gold standard and strongly preferred method of feeding healthy term infants. The American Academy of Pediatrics recommends human milk as the exclusive nutrient source for feeding full-term infants for the first 6 months after birth and indicates that it should be continued with the addition of solid foods, until 12 months of life. Likewise, the Canadian Pediatric Society recommends exclusive breastfeeding for a minimum of 4 months and suggests that it may continue for up to 2 years and beyond. The duration of exclusive breastfeeding by the latter authoritative body is currently under review. Recently the World Health Organization made the recommendation that full-term infants be exclusively breastfed until the introduction of complementary foods at 6 months with continued breastfeeding thereafter. The scientific rationale for recommending breastfeeding as the preferred feeding choice is extensively reviewed elsewhere in this book.

In the event that breastfeeding is contraindicated or a mother chooses not to breastfeed, a commercially prepared infant formula is the next best option. The American Academy of Pediatrics recommends that when breastfeeding is not initiated or is discontinued before an infant's first birthday, a standard cow's milk-based formula is the feeding of choice for term-born infants. Canadian Health officials recommend use of cow's milk-based, iron-fortified formulas until 9–12 months of age. Available data suggest that approximately 70% of North American women currently initiate breastfeeding. At 6 months postpartum, however, only 32.5% of American women are still breastfeeding.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Canadian Paediatric Society, Dietitians of Canada and Health Canada. Nutrition for Healthy Term Infants. Ottawa, ON: Minister of Public Works and Government Services; 1998.
American Academy of Pediatrics, Committee on Nutrition. Pediatric Nutrition Handbook. 4th edn. Elk Grove Village, IL; AAP 1998.
World Health Organization. Global Strategies for Infant and Young Child Feeding. Resolution Passes at: Fifty-fourth World Health Assembly; May 9, 2001.
Statistics Canada. National Longitudinal Survey on Children and Youth, 1994/1995 and 1996/1997 Data. Ottawa, ON: Statistics Canada; 2001.
Ryan, A. S., Wenjun, Z., Acosta, A.Breastfeeding continues to increase into the new millennium. Pediatrics 2002;110:1103–9.CrossRefGoogle ScholarPubMed
Fomon, S. J.Infant formula feeding in the 20th century: formula and Beikost. J. Nutr. 2001;131:409S–20S.CrossRefGoogle ScholarPubMed
Anderson, S. A., Chinn, H. I., Fisher, K. D.History and current status of infant formulas. Am. J. Clin. Nutr. 1982;35:381–97.CrossRefGoogle ScholarPubMed
Friel, J. K., Andrews, W. L., Edgecombe, C.et al.Eighteen-month follow-up of infants fed evaporated milk formula. Can. J. Public Health 1999;90:240–3.Google ScholarPubMed
Fomon, S. J., Ziegler, E. E.Renal solute load and potential renal solute load in infancy. J. Pediatr. 1999;134:11–14.CrossRefGoogle ScholarPubMed
Raiten, D. J., Talbot, J. M., Waters, J. H.Assessment of nutrient requirements for infant formulas. J. Nutr. 1998;128:2059S–293S.Google Scholar
Nutrition Committee of the Canadian Paediatric Society. Nutrient needs and feeding of preterm infants. Can. Med. Assoc. J. 1995;152:1765–85.
Widdowson, E. M., Spray, C. M.Chemical development in utero. Arch. Dis. Child. 1951;26:205–14.CrossRefGoogle ScholarPubMed
Usher, R., McLean, F.Intrauterine growth of live-born Caucasian infants at sea level: standards obtained from measurements in 7 dimensions of infants born between 25 and 44 weeks of gestation. J. Pediatr. 1969;74:901–10.CrossRefGoogle ScholarPubMed
Food and Drug Administration: Rules and regulations. Nutrient requirements for infant formulas (21 CFR Part 107). Fed. Reg. 1985:50:45106–8.
Klein, C. J.Nutrient requirements for preterm infant formulas. J. Nutr. 2002;132:1395S–577S.CrossRefGoogle ScholarPubMed
George, D. E., DeFrancesca, B. A. Human milk comparison to cow milk. In: Lebenthal, E., ed. Textbook of Gastroenterology and Nutrition in Infancy. 2nd ed. New York, NY: Raven Press; 1989:239–61.Google Scholar
Lonnerdal, B, Atkinson, S. A. Human milk proteins. In: Jenson, R. G., ed. Handbook of Milk Composition. San Diego, CA: Academic Press; 1995:351–68.Google Scholar
Benson, J., Neylan, M., Masor, M., Paule, C., O'Connor, D.Approaches and considerations in determining the protein and amino acid composition of term and preterm infant formula. Int. Dairy J. 1998;8:405–12.CrossRefGoogle Scholar
Kunz, C., Lonnerdal, B.Re-evaluation of the whey protein/casein ratio of human milk. Acta Paediatr. 1992;81:107–12.CrossRefGoogle ScholarPubMed
Lonnerdal, B. Nutritional importance of non-protein nitrogen. In Raiha, N. C., ed. Nestle Nutrition Workshop Series. New York, NY: Raven Press; 1994:105–16.Google Scholar
Alston-Mills, B. Nonprotein nitrogen compounds in bovine milk. In Jenson, R. G., ed. Handbook of Milk Composition. San Diego, CA: Academic Press, 1995:468–72.Google Scholar
Atkinson, S. A, Lonnerdal, B. Nonprotein nitrogen fractions of human milk. In: Jenson, R. G., ed. Handbook of Milk Composition. San Diego, CA: Academic Press; 1995:369–87.Google Scholar
Health Canada Health Protection Branch. Guidelines for the composition and clinical testing of formulas for preterm infants. Report of an Ad Hoc Expert Consultation to the Health Protection Branch, Health Canada. Ottawa, ON: Canadian Government Publishing Center; 1995.
Lawrence, R. A., Lawrence, R. M.Breast Feeding: A Guide for the Medical Profession. 5th edn. St. Louis, MO: Mosby; 1999.Google Scholar
Jensen, R. G., Bitman, J., Carlson, S. E. et al. Human milk lipids. In Jensen, R. G., ed. Handbook of Milk Composition. San Diego, CA: Academic Press.; 1995:495–542.Google Scholar
Jensen, R. G., Newburg, D. S. Bovine milk lipids. In Jensen, R. G., ed. Handbook of Milk Composition. San Diego, CA: Academic Press Inc.; 1995:543–75.Google Scholar
Newburg, D. S, Neubauer, S. H. Carbohydrates in milks: analysis, quantities and significance. In: Jensen, R. G., ed. Handbook of Milk Composition. San Diego, CA: Academic Press; 1995:273–349.Google Scholar
Atkinson, S. A., Alston-Mills, B., Lonnerdal, B., Neville, M. C. Major minerals and ionic constituents of human and bovine milks. In Jensen, R. G., ed. Handbook of Milk Composition. San Diego, CA: Academic Press; 1995:593–622.Google Scholar
Ziegler, E. E., Fomon, S. J.Potential renal solute load of infant formulas. J. Nutr. 1989;119:1785–8.CrossRefGoogle ScholarPubMed
Fuchs, G. J., Gastanaduy, A. S., Suskind, R. M.Comparative metabolic study of older infants fed infant formula, transition formula, or whole cow's milk. Nutr. Res. 1992;12:1467–78.CrossRefGoogle Scholar
Fomon, S. J.Nutrition of Normal Infants. St. Louis, MO: Mosby; 1993.Google Scholar
O'Connor, D., Masor, M., Paule, C., Benson, J. Amino acid composition of cow's milk and human requirements. In Welch, R. A. S., ed. Milk Composition, Production and Biotechnology. Wallingford, UK: CAB International; 1997:203–13.Google Scholar
Paule, C., Wahrenberger, D., Jones, W., Kuchan, M., Masor, M.A novel method to evaluate the amino acid response to infant formulas. FASEB J. 1996;10:A554.Google Scholar
Yogman, M. W., Zeisel, S. H.Diet and sleep patterns in newborn infants. N. Engl. J. Med. 1983;309:1147–9.CrossRefGoogle ScholarPubMed
Heine, W. E.The significance of tryptophan in infant nutrition. Adv. Exp. Med. Biol. 1999;467:705–10.CrossRefGoogle ScholarPubMed
Oberlander, T. F., Barr, R. G., Young, S. N., Brian, J. A.Short-term effects of feed composition on sleeping and crying in newborns. Pediatrics 1992;90:733–40.Google ScholarPubMed
Steinberg, L. A., O'Connell, N. C., Hatch, T. F., Picciano, M. F., Birch, L. L.Tryptophan intake influences infants' sleep latency. J. Nutr. 1992;122:1781–91.CrossRefGoogle ScholarPubMed
Rassin, D. K. Essential and non-essential amino acids in neonatal nutrition. In: Raiha, N. C. ed. Protein Metabolism During Infancy. New York, NY: Raven Press; 1994:183–95.Google Scholar
Fried, M. D., Khoshoo, V., Secker, D. J.et al.Decrease in gastric emptying time and episodes of regurgitation in children with spastic quadriplegia fed a whey-based formula. J. Pediatr. 1992;120:569–72.CrossRefGoogle ScholarPubMed
Khoshoo, V., Zembo, M., King, A.et al.Incidence of gastroesophageal reflux with whey- and casein-based formulas in infants and in children with severe neurological impairment. J. Pediatr. Gastroenterol. Nutr. 1996;22:48–55.CrossRefGoogle ScholarPubMed
Billeaud, C., Guillet, J., Sandler, B.Gastric emptying in infants with or without gastro-oesophageal reflux according to the type of milk. Eur. J. Clin. Nutr. 1990;44:577–83.Google ScholarPubMed
Tolia, V., Lin, C. H., Kuhns, L. R.Gastric emptying using three different formulas in infants with gastroesophageal reflux. J. Pediatr. Gastroenterol. Nutr. 1992;15:297–301.CrossRefGoogle ScholarPubMed
Thorkelsson, T., Mimouni, F., Namgung, R.et al.Similar gastric emptying rates for casein- and whey-predominant formulas in preterm infants. Pediatr. Res. 1994;36:329–33.CrossRefGoogle ScholarPubMed
Lammi-Keefe, C. J., Jensen, R. G.Lipids in human milk: a review. 2: Composition and fat-soluble vitamins. J. Pediatr. Gastroenterol. Nutr. 1984;3:172–98.CrossRefGoogle ScholarPubMed
Nelson, S. E., Frantz, J. A., Ziegler, E. E.Absorption of fat and calcium by infants fed a milk-based formula containing palm olein. J. Am. Coll. Nutr. 1998;17:327–32.CrossRefGoogle ScholarPubMed
Lien, E. L., Boyle, F. G., Yuhas, R., Tomarelli, R. M., Quinlan, P.The effect of triglyceride positional distribution on fatty acid absorption in rats. J. Pediatr. Gastroenterol. Nutr. 1997;25:167–74.CrossRefGoogle ScholarPubMed
Filer, L. J. Jr., Mattson, F. H., Fomon, S. J.Triglyceride configuration and fat absorption by the human infant. J. Nutr. 1969;99:293–8.CrossRefGoogle ScholarPubMed
Carnielli, V. P., Luijendijk, I. H., Van, Goudoever J. B.et al.Structural position and amount of palmitic acid in infant formulas: effects on fat, fatty acid, and mineral balance. J. Pediatr. Gastroenterol. Nutr. 1996;23:553–60.CrossRefGoogle ScholarPubMed
Nelson, S. E., Rogers, R. R., Frantz, J. A., Ziegler, E. E.Palm olein in infant formula: absorption of fat and minerals by normal infants. Am. J. Clin. Nutr. 1996;64:291–6.CrossRefGoogle ScholarPubMed
Ostrom, K. M., Borschel, M. W., Westcott, J. E., Richardson, K. S., Krebs, N. F.Lower calcium absorption in infants fed casein hydrolysate- and soy protein-based infant formulas containing palm olein versus formulas without palm olein. J. Am. Coll. Nutr. 2002;21:564–9.CrossRefGoogle ScholarPubMed
Hansen, J. W., Huston, R., Ehreukranz, R., Bell, E. F.Impact of palm olein in infant feedings on fat and calcium absorption in growing premature infants. J. Am. Coll. Nutr. 1996;15:526.Google Scholar
Hansen, J. W., Diener, U.Challenges of matching human milk fatty acid patterns technically and functionally. Eur. J. Med. Res. 1997;2:74–8.Google ScholarPubMed
Koo, W. W., Hammami, M., Margeson, D. P., Montalto, M. B., Lasekan, J. B.Reduced bone mineralization in infants fed palm olein-containing formula: a randomized, double-blind, prospective trial. Pediatrics 2003;111:1017–23.CrossRefGoogle Scholar
Innis, S. M., Kuhnlein, H. V.Long-chain n-3 fatty acids in breast milk of Inuit women consuming traditional foods. Early Hum. Dev. 1988;18:185–9.CrossRefGoogle ScholarPubMed
Innis, S. M.Essential fatty acids in growth and development. Prog. Lipid Res. 1991;30:39–103.CrossRefGoogle ScholarPubMed
Demmelmair, H., Schenck, U., Behrendt, E., Sauerwald, T., Koletzko, B.Estimation of arachidonic acid synthesis in full term neonates using natural variation of 13C content. J. Pediatr. Gastroenterol. Nutr. 1995;21:31–6.CrossRefGoogle ScholarPubMed
Pawlosky, R. J., Sprecher, H. W., Salem, N. Jr.High sensitivity negative ion GC-MS method for detection of desaturated and chain-elongated products of deuterated linoleic and linolenic acids. J. Lipid Res. 1992;33:1711–17.Google ScholarPubMed
Sauerwald, T. U., Hachey, D. L., Jensen, C. L.et al.Effect of dietary alpha-linolenic acid intake on incorporation of docosahexaenoic and arachidonic acids into plasma phospholipids of term infants. Lipids 1996;31:S131–5.CrossRefGoogle ScholarPubMed
Salem, N. Jr., Wegher, B., Mena, P., Uauy, R.Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc. Natl. Acad. Sci USA. 1996;93:49–54.CrossRefGoogle ScholarPubMed
Farquharson, J., Cockburn, F., Patrick, W. A., Jamieson, E. C., Logan, R. W.Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet 1992;340:810–13.CrossRefGoogle ScholarPubMed
Jamieson, E. C., Abbasi, K. A., Cockburn, F.et al.Effect of diet on term infant cerebral cortex fatty acid composition. World Rev. Nutr. Diet. 1994;75:139–41.CrossRefGoogle ScholarPubMed
Makrides, M., Neumann, M. A., Byard, R. W., Simmer, K., Gibson, R. A.Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am. J. Clin. Nutr. 1994;60:189–94.CrossRefGoogle ScholarPubMed
Neuringer, M., Connor, W. E., Lin, D. S., Barstad, L., Luck, S.Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc. Natl. Acad. Sci. USA. 1986;83:4021–5.CrossRefGoogle ScholarPubMed
Presa, , Owens, S., Innis, S. M.Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and alpha-linolenic acid deficient diet in formula-fed piglets. J. Nutr. 1999;129:2088–93.Google Scholar
Neuringer, M., Connor, W. E., , Petten Van C., Barstad, L.Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest. 1984;73:272–76.CrossRefGoogle ScholarPubMed
Neuringer, M., Connor, W. E., Lin, D. S., Anderson, G. J. Effects of n-3 fatty acid deficiency on retinal physiology and visual function. In: Sinclair, A., Gibson, R., eds. Essential Fatty Acids and Eicosanoids. Invited Papers from the Third International Congress. Adelaide, Australia: American Oil Chemists' Society; 1992:161–4.Google Scholar
Birch, E. E., Hoffman, D. R., Uauy, R., Birch, D. G., Prestidge, C.Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr. Res. 1998;44:201–9.CrossRefGoogle ScholarPubMed
Birch, E. E., Hoffman, D. R., Castaneda, Y. S.et al.A randomized controlled trial of long-chain polyunsaturated fatty acid supplementation of formula in term infants after weaning at 6 wk of age. Am. J. Clin. Nutr. 2002;75:570–80.CrossRefGoogle ScholarPubMed
Birch, E. E., Garfield, S., Hoffman, D. R., Uauy, R., Birch, D. G.A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev. Med. Child Neurol. 2000;42:174–181.CrossRefGoogle ScholarPubMed
Auestad, N., Montalto, M. B., Hall, R. T.et al.Visual acuity, erythrocyte fatty acid composition, and growth in term infants fed formulas with long chain polyunsaturated fatty acids for one year. Ross Pediatric Lipid Study. Pediatr Res. 1997;41:1–10.CrossRefGoogle ScholarPubMed
Auestad, N., Halter, R., Hall, R. T.et al.Growth and development in term infants fed long-chain polyunsaturated fatty acids: a double-masked, randomized, parallel, prospective, multivariate study. Pediatrics 2001;108:372–81.CrossRefGoogle ScholarPubMed
Scott, D. T., Janowsky, J. S., Carroll, R. E.et al.Formula supplementation with long-chain polyunsaturated fatty acids: are there developmental benefits?Pediatrics. 1998;102:E59.CrossRefGoogle ScholarPubMed
Auestad, N., Scott, D. T., Janowsky, J. S.et al.Visual, cognitive, and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatric 2003;112:177–83.CrossRefGoogle ScholarPubMed
Carlson, S. E., Ford, A. J., Werkman, S. H., Peeples, J. M., Koo, W. W.Visual acuity and fatty acid status of term infants fed human milk and formulas with and without docosahexaenoate and arachidonate from egg yolk lecithin. Pediatr. Res. 1996;39:882–8.CrossRefGoogle ScholarPubMed
Makrides, M., Neumann, M., Simmer, K., Pater, J., Gibson, R.Are long-chain polyunsaturated fatty acids essential nutrients in infancy?Lancet 1995;345:1463–8.CrossRefGoogle ScholarPubMed
Agostoni, C., Trojan, S., Bellu, R.et al.Developmental quotient at 24 months and fatty acid composition of diet in early infancy: a follow up study. Arch. Dis. Child. 1997;76:421–4.CrossRefGoogle ScholarPubMed
Willatts, P., Forsyth, J. S., DiModugno, M. K., Varma, S., Colvin, M.Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet 1998;352:688–91.CrossRefGoogle ScholarPubMed
Makrides, M., Neumann, M. A., Simmer, K., Gibson, R. A.A critical appraisal of the role of dietary long-chain polyunsaturated fatty acids on neural indices of term infants: a randomized, controlled trial. Pediatrics 2000;105:32–8.Google ScholarPubMed
Lucas, A., Stafford, M., Morley, R.et al.Efficacy and safety of long-chain polyunsaturated fatty acid supplementation of infant-formula milk: a randomised trial. Lancet 1999;354:1948–54.CrossRefGoogle ScholarPubMed
Looker, A. C., Dallman, P. R., Carroll, M. D., Gunter, E. W., Johnson, C. L.Prevalence of iron deficiency in the United States. J. Am. Med. Assoc. 1997;277:973–6.CrossRefGoogle ScholarPubMed
Oski, F. A.Iron-fortified formulas and gastrointestinal symptoms in infants: a controlled study with the cooperation of the Syracuse Consortium for Pediatric Clinical Studies. Pediatrics 1980;66:168–170.Google Scholar
Griffin, M. P., Hansen, J. W.Can the elimination of lactose from formula improve feeding tolerance in premature infants?J Pediatr. 1999;135:587–92.CrossRefGoogle ScholarPubMed
Clandinin, M. T., Chappell, J. E., Leong, S.et al.Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum. Dev. 1980;4:121–9.CrossRefGoogle ScholarPubMed
Carlson, S. E. Long-chain polyunsaturated fatty acid supplementation of preterm infants. In Dobbing, J., ed. Developing Brain and Behavior: The Role of Lipids in Infant Formula. San Diego, CA: Academic Press; 1997:41–102.Google Scholar
Uauy, R. D., Birch, D. G., Birch, E. E., Tyson, J. E., Hoffman, D. R.Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatr. Res. 1990;28:485–92.CrossRefGoogle ScholarPubMed
Birch, E., Birch, D., Hoffman, D.et al.Breast-feeding and optimal visual development. J. Pediatr. Ophthalmol. Strabismus 1993;30:33–8.Google ScholarPubMed
Carlson, S. E., Werkman, S. H., Rhodes, P. G., Tolley, E. A.Visual-acuity development in healthy preterm infants: effect of marine-oil supplementation. Am. J. Clin. Nutr. 1993;58:35–42.CrossRefGoogle ScholarPubMed
Werkman, S. H., Carlson, S. E.A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until nine months. Lipids 1996;31:91–7.CrossRefGoogle ScholarPubMed
Carlson, S. E., Werkman, S. H.A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until two months. Lipids 1996;31:85–90.CrossRefGoogle ScholarPubMed
Carlson, S. E., Werkman, S. H., Tolley, E. A.Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia. Am. J. Clin. Nutr. 1996;63:687–97.CrossRefGoogle ScholarPubMed
Carlson, S. E., Cooke, R. J., Werkman, S. H., Tolley, E. A.First year growth of preterm infants fed standard compared to marine oil n-3 supplemented formula. Lipids 1992;27:901–7.CrossRefGoogle ScholarPubMed
Ryan, A. S., Montalto, M. B., Groh-Wargo, S.et al.Effect of DHA-containing formula on growth of preterm infants to 59 weeks postmenstrual age. Am. J. Human. Biol. 1999;11:457–67.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Carlson, S. E., Werkman, S. H., Peeples, J. M., Cooke, R. J., Tolley, E. A.Arachidonic acid status correlates with first year growth in preterm infants. Proc. Natl. Acad. Sci. USA. 1993;90:1073–7.CrossRefGoogle ScholarPubMed
Innis, S. M., Adamkin, D. H., Hall, R. T.et al.Docosahexaenoic acid and arachidonic acid enhance growth with no adverse effects in preterm infants fed formula. J. Pediatr. 2002;140:547–54.CrossRefGoogle ScholarPubMed
Lim, H., Antonson, D., Clandinin, M. T.et al.Formulas with docosahexaenoic acid (DHA) and arachidonic acid (ARA) for low-birth-weight infants (LBW) are safe. Ped Res. 2002;51:1854.Google Scholar
Clandinin, M. T., , Aerde Van J., Antonson, D.et al.Formulas with docosahexaenoic acid (DHA) and arachidonic acid (ARA) promote better growth and development scores in very-low-weight infants (VLBW). Ped. Res. 2002;51:1092.Google Scholar
Vanderhoof, J., Gross, S., Hegyi, T.et al.Evaluation of a long-chain polyunsaturated fatty acid supplemented formula on growth, tolerance, and plasma lipids in preterm infants up to 48 weeks postconceptional age. J. Pediatr. Gastroenterol. Nutr. 1999;29:318–26.CrossRefGoogle ScholarPubMed
Vanderhoof, J., Gross, S., Hegyi, T.A multicenter long-term safety and efficacy trial of preterm formula supplemented with long-chain polyunsaturated fatty acids. J. Pediatr. Gastroenterol. Nutr. 2000;31:121–7.CrossRefGoogle ScholarPubMed
O'Connor, D. L., Hall, R., Adamkin, D.et al.Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial. Pediatrics 2001;108:359–71.CrossRefGoogle ScholarPubMed
Fewtrell, M. S., Morley, R., Abbott, R. A.et al.Double-blind, randomized trial of long-chain polyunsaturated fatty acid supplementation in formula fed to preterm infants. Pediatrics 2002;110:73–82.CrossRefGoogle ScholarPubMed
Ziegler, E. E., Biga, R. L., Fomon, S. J. Nutritional requirements of the preterm infant. In: Suskind, R. M., ed. Textbook of Pediatric Nutrition. New York, NY: Raven Press; 1981:29–39.Google Scholar
Widdowson, E. M.Trace elements in foetal and early postnatal development. Proc. Nutr. Soc. 1974;33:275–84.CrossRefGoogle ScholarPubMed
Lemons, J. A., Bauer, C. R., Oh, W.et al.Very low birth weight outcomes of the National Institute of Child Health and Human Development Neonatal Research Network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 2001;107:E1.CrossRefGoogle ScholarPubMed
Merko, S., Shah, P. S., Wong, K. Y.et al.Nutrient intakes and growth of very preterm infants born <28 weeks gestation. Can. J. Diet. Pract. Res. 2002; 62(2):S105.Google Scholar
Lucas, A. Nutrition, growth and development of postdischarge preterm infants. Posthospital Nutrition in the Preterm Infant. Columbus, OH: Ross Products Division, Abbott Laboratories, 1996:81–9.Google Scholar
Hack, M., Merkatz, I. R., McGrath, S. K., Jones, P. K., Fanaroff, A. A.Catch-up growth in very-low-birth-weight infants. Clinical correlates. Am. J. Dis. Child. 1984;138:370–375.CrossRefGoogle ScholarPubMed
Lucas, A., Bishop, N. J., King, F. J., Cole, T. J.Randomised trial of nutrition for preterm infants after discharge. Arch Dis Child. 1992;67:324–27.CrossRefGoogle ScholarPubMed
Bishop, N. J., King, F. J., Lucas, A.Increased bone mineral content of preterm infants fed with a nutrient enriched formula after discharge from hospital. Arch. Dis. Child. 1993;68:573–8.CrossRefGoogle ScholarPubMed
Cooke, R. J., Griffin, I. J., McCormick, K.et al.Feeding preterm infants after hospital discharge: effect of dietary manipulation on nutrient intake and growth. Pediatr Res. 1998;43:355–60.CrossRefGoogle Scholar
Wheeler, R. E., Hall, R. T.Feeding of premature infant formula after hospital discharge of infants weighing less than 1800 grams at birth. J. Perinatol. 1996;16:111–16.Google ScholarPubMed
Brunton, J. A., Saigal, S., Atkinson, S. A.Growth and body composition in infants with bronchopulmonary dysplasia up to 3 months corrected age: a randomized trial of a high-energy nutrient-enriched formula fed after hospital discharge. J. Pediatr. 1998;133:340–5.CrossRefGoogle ScholarPubMed
Carver, J. D., Wu, P. Y., Hall, R. T.et al.Growth of preterm infants fed nutrient-enriched or term formula after hospital discharge. Pediatrics 2001;107:683–9.CrossRefGoogle ScholarPubMed
Morley, R., Fewtrell, M. S., Abbott, R. A.et al.Neurodevelopment in children born small for gestational age: a randomized trial of nutrient-enriched versus standard formula and comparison with a reference breastfed group. Pediatrics 2004;113:515–21.CrossRefGoogle ScholarPubMed
Heubi, J., Karasov, R., Reisinger, K.et al.Randomized multicenter trial documenting the efficacy and safety of a lactose-free and a lactose-containing formula for term infants. J. Am. Diet Assoc. 2000;100:212–17.CrossRefGoogle Scholar
Moya, M., Cortes, E., Ballester, M. I., Vento, M., Juste, M.Short-term polycose substitution for lactose reduces calcium absorption in healthy term babies. J. Pediatr. Gastroenterol. Nutr. 1992;14:57–61.CrossRefGoogle ScholarPubMed
Moya, M., Lifschitz, C., Ameen, V., Euler, A. R.A metabolic balance study in term infants fed lactose-containing or lactose-free formula. Acta Paediatr. 1999;88:1211–15.CrossRefGoogle ScholarPubMed
Ziegler, E. E., Fomon, S. J.Lactose enhances mineral absorption in infancy. J. Pediatr. Gastroenterol. Nutr. 1983;2:288–94.CrossRefGoogle ScholarPubMed
Kobayashi, A., Kawai, S., Obe, Y., Nagashima, Y.Effects of dietary lactose and lactase preparation on the intestinal absorption of calcium and magnesium in normal infants. Am. J. Clin. Nutr. 1975;28:681–3.CrossRefGoogle ScholarPubMed
Abrams, S. A., Griffin, I. J., Davila, P. M.Calcium and zinc absorption from lactose-containing and lactose-free infant formulas. Am. J. Clin. Nutr. 2002;76:442–6.CrossRefGoogle ScholarPubMed
Strom, B. L., Schinnar, R., Ziegler, E. E.et al.Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. J. Am. Med. Assoc. 2001;286:807–14.CrossRefGoogle ScholarPubMed
Klein, K. O.Isoflavones, soy-based infant formulas, and relevance to endocrine function. Nutr. Rev. 1998;56:193–204.CrossRefGoogle ScholarPubMed
Anthony, M. S., Clarkson, T. B., Hughes, C. L. Jr., Morgan, T. M., Burke, G. L.Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J. Nutr. 1996;126:43–50.CrossRefGoogle ScholarPubMed
Sheehan, D. M.The case for expanded phytoestrogen research. Proc. Soc. Exp. Biol. Med. 1995;208:3–5.CrossRefGoogle ScholarPubMed
Sharpe, R. M., Martin, B., Morris, K.et al.Infant feeding with soy formula milk: effects on the testis and on blood testosterone levels in marmoset monkeys during the period of neonatal testicular activity. Hum. Reprod. 2002;17:1692–703.CrossRefGoogle ScholarPubMed
Setchell, K. D., Zimmer-Nechemias, L., Cai, J., Heubi, J. E.Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet 1997;350:23–27.CrossRefGoogle ScholarPubMed
American Academy of Pediatrics. Committee on Nutrition. Soy protein-based formulas: recommendations for use in infant feeding. Pediatrics 1998;101:148–53.CrossRef
Allen, U. D., McLeod, K., Wang, E. E.Cow's milk versus soy-based formula in mild and moderate diarrhea: a randomized, controlled trial. Acta Paediatr. 1994;83:183–7.CrossRefGoogle ScholarPubMed
Santosham, M., Goepp, J., Burns, B.et al.Role of a soy-based lactose-free formula in the outpatient management of diarrhea. Pediatrics 1991;87:619–22.Google ScholarPubMed
Brown, K. H., Perez, F., Peerson, J. M.et al.Effect of dietary fiber (soy polysaccharide) on the severity, duration, and nutritional outcome of acute, watery diarrhea in children. Pediatrics 1993;92:241–7.Google ScholarPubMed
Burks, A. W., Vanderhoof, J. A., Mehra, S., Ostrom, K. M., Baggs, G.Randomized clinical trial of soy formula with and without added fiber in antibiotic-induced diarrhea. J. Pediatr. 2001;139:578–82.CrossRefGoogle ScholarPubMed
Bock, S. A., Atkins, F. M.Patterns of food hypersensitivity during sixteen years of double-blind, placebo-controlled food challenges. J. Pediatr. 1990;117:561–7.CrossRefGoogle ScholarPubMed
Ladodo, K. S., Borovick, T. E. The use of an isolated soy protein formula for nourishing infants with food allergies. In Steinke, F. H., Waggle, D. H., Volgarev, M. N., eds. New Protein Foods in Human Health: Nutrition, Prevention, and Therapy. Boca Raton, FL: CRC Press; 1992:85–9.Google Scholar
Burks, A. W., Casteel, H. B., Fiedorek, S. C., Williams, L. W., Pumphrey, C. L.Prospective oral food challenge study of two soybean protein isolates in patients with possible milk or soy protein enterocolitis. Pediatr. Allergy Immunol. 1994;5:40–5.CrossRefGoogle ScholarPubMed
Eastham, E. J. Soy protein allergy. In Hamburger, R. N., ed. Food Intolerance in Infancy: Allergology, Immunology, and Gastroenterology. Carnation Nutrition Education Series. New York, NY: Raven Press;1989:223–36.Google Scholar
Whitington, P. F., Gibson, R.Soy protein intolerance: four patients with concomitant cow's milk intolerance. Pediatrics 1977;59:730–2.Google ScholarPubMed
American Academy of Pediatrics Committee on Nutrition. Hypoallergenic infant formulas. Pediatrics 2000;106(2):346–9.CrossRef
Ram, F. S., Ducharme, F. M., Scarlett, J.Cow's milk protein avoidance and development of childhood wheeze in children with a family history of atopy. The Cochrane Database of Systematic Reviews. 2003.Google Scholar
Marini, A., Agosti, M., Motta, G., Mosca, F.Effects of a dietary and environmental prevention programme on the incidence of allergic symptoms in high atopic risk infants: three years' follow-up. Acta Paediatr. Suppl. 1996;414:1–21.CrossRefGoogle Scholar
Baumgartner, M., Brown, C. M., Secretin, M. C., Hof, Van't M., Haschke, F.Controlled trials investigating the use of one partially hydrolyzed whey formula for dietary prevention of atopic manifestations until 60 months of age: an overview using meta-analytical techniques. Nutr. Res. 1998;18:1425–42.CrossRefGoogle Scholar
Chandra, R. K.Five-year follow-up of high-risk infants with family history of allergy who were exclusively breast-fed or fed partial whey hydrolysate, soy, and conventional cow's milk formulas. J. Pediatr. Gastroenterol. Nutr. 1997;24:380–8.CrossRefGoogle ScholarPubMed
Berg, A., Koletzko, S., Grubl, A.et al.The effect of hydrolyzed cow's milk formula for allergy prevention in the first year of life: the German Infant Nutritional Intervention Study, a randomized double-blind trial. J. Allergy Clin. Immunol. 2003;111:533–40.CrossRefGoogle Scholar
Schrezenmeir, J., Jagla, A.Milk and diabetes. J. Am. Coll. Nutr. 2000;19:176S–90S.CrossRefGoogle ScholarPubMed
Akerblom, H. K., Vaarala, O., Hyoty, H., Ilonen, J., Knip, M.Environmental factors in the etiology of type 1 diabetes. Am. J. Med. Genet. 2002;115:18–29.CrossRefGoogle ScholarPubMed
ESPGN Committee on Nutrition. Guidelines on infant nutrition. Recommendations for the composition of follow-up formulas and beikost. Acta Paediatr. Scand. 1981;70:S287.
ESPGN Committee on Nutrition. Comment on the composition of cow's milk based follow-up formulas. Acta Paediatr. Scand. 1990;79:250–4.CrossRef
Codex Alimentarius, 1994; 4:42–51, Codex Standard for Follow-Up Formula, Codex Stan 156, 1987 (amended 1989).
Official Journal of the European Communities, 49:12–16 Feb 28, 1996, Commission Directive 96/EC of Feb 16, 1996, amending Directive 91/321/EEC on infant formula and follow-up formula.
Lonnerdal, B., Chen, C. L.Effects of formula protein level and ratio on infant growth, plasma amino acids and serum trace elements. II. Follow-up formula. Acta Paediatr. Scand. 1990;79:266–73.CrossRefGoogle ScholarPubMed
Roy, C.Do we need follow-on formulas? A Canadian symposium on optimal nutrition in the second six months of life. Can. J. Paediatr. 1993;1:61–3.Google Scholar
NIH Consensus Development Panel on Optimal calcium intake. J. Am. Med. Assoc. 1994;272(24):1942–8.CrossRef
Ernst, J. A., Brady, M. S., Rickard, K. A.Food and nutrient intake of 6- to 12-month-old infants fed formula or cow milk: a summary of four national surveys. J. Pediatr. 1990;117:S86–100.CrossRefGoogle ScholarPubMed
Fomon, S. J., Sanders, K. D., Ziegler, E. E.Formulas for older infants. J. Pediatr. 1990;116:690–6.CrossRefGoogle ScholarPubMed
Hanning, R.Vitamins and minerals. A Canadian symposium on optimal nutrition in the second six months of life. Can. J. Paediatr. 1993;1:22–30.Google Scholar
American Academy of Pediatrics, Committee on Nutrition. Calcium requirements of infants, children and adolescents. Pediatrics 1999;104(5):1152–6.CrossRef
Klish, W. J., Potts, E., Ferry, G. D., Nichols, B. L.Modular formula: an approach to management of infants with specific or complex food intolerances. J. Pediatr. 1976;88:948–52.CrossRefGoogle ScholarPubMed
Davis, A., Baker, S.The use of modular nutrients in pediatrics. J. Pareuter. Enterol. Nutr. 1996;20:228–36.CrossRefGoogle Scholar
American Academy of Pediatrics, Committee on Nutrition. Commentary on breast feeding and infant formulas, including proposed standards. Pediatrics 1976;57:278–85.
Mehta, N. R., Hamosh, M., Bitman, J., Wood, D. L.Adherence of medium-chain fatty acids to feeding tubes of premature infants fed formula fortified with medium-chain triglyceride. J. Pediatr. Gastroenterol. Nutr. 1991;13:267–9.CrossRefGoogle ScholarPubMed
Mehta, N. R., Hamosh, M., Bitman, J., Wood, D. L.Adherence of medium-chain fatty acids to feeding tubes during gavage feeding of human milk fortified with medium-chain triglycerides. J. Pediatr. 1988;112:474–6.CrossRefGoogle ScholarPubMed
Stocks, R. J., Davies, D. P., Allen, F., Sewell, D.Loss of breast milk nutrients during tube feeding. Arch. Dis. Child. 1985;60:164–6.CrossRefGoogle ScholarPubMed
Smith, J. L., Heymsfield, S. B.Enteral nutrition support: formula preparation for modular ingredients. J. Parenter. Enteral. Nutr. 1983;7:280–8.CrossRefGoogle ScholarPubMed
Kalnins, D., Saab, J. Better baby food. Your Essential Guide to Nutrition, Feeding & Cooking for All Babies & Toddlers. Toronto, Ontario: Robert Rose; 2001.Google Scholar
http://www.hc-sc.gc.ca/food-aliment/mh-dm/mhe-dme/e_enterobacter_sakazakii.html
http://vm.cfsan.fda.gov/~dms/inf-ltr3.html
Food and Drug Directorate: Food and Drug Regulations. Division 25, Canada Gazette; 1990:124:73E–H.
Khoshoo, V., Reifen, R.Use of energy-dense formula for treating infants with non-organic failure to thrive. Eur. J. Clin. Nutr. 2002;56:921–4.CrossRefGoogle ScholarPubMed
Kashyap, S., Ohira-Kist, K., Abildskov, K.et al.Effects of quality of energy intake on growth and metabolic response of enterally fed low-birth-weight infants. Pediatr. Res. 2001;50:390–7.CrossRefGoogle ScholarPubMed
Goudoever, J. B., Sulkers, E. J., Lafeber, H. N., Sauer, P. J.Short-term growth and substrate use in very-low-birth-weight infants fed formulas with different energy contents. Am. J. Clin. Nutr. 2000;71:816–21.CrossRefGoogle ScholarPubMed
Siegel, M., Lebenthal, E., Krantz, B.Effect of caloric density on gastric emptying in premature infants. J. Pediatr. 1984;104:118–22.CrossRefGoogle ScholarPubMed
Minami, H., McCallum, R. W.Dietary caloric density and osmolality influence gastroesophageal reflux in infants. Gastroenterology 1984;97:601–4.Google Scholar
Carroll, A. E., Garrison, M. M., Christakis, D. A.A systematic review of nonpharmacological and nonsurgical therapies for gastroesophageal reflux in infants. Arch. Pediatr. Adolesc. Med. 2002;156:109–13.CrossRefGoogle ScholarPubMed
Sutphen, J. L., Dillard, V. L.Dietary caloric density and osmolality influence gastroesophageal reflux in infants. Gastroenterology 1989;97:601–4.CrossRefGoogle ScholarPubMed
Salvia, G., , Vizia B., Manguso, F.et al.Effect of intragastric volume and osmolality on mechanisms of gastroesophageal reflux in children with gastroesophageal reflux disease. Am. J. Gastroenterol. 2001;96:1725–32.CrossRefGoogle ScholarPubMed
Anderson, K., Kennedy, B.A model for the prediction of osmolalities of modular formulas. J. Parenter. Enteral Nutr. 1986;10:646–9.CrossRefGoogle ScholarPubMed
Brylinsky, C. M., Bastian, C. H.A step-wise approach to calculating modular feedings. J. Am. Diet. Assoc. 1989;89:1489–91.Google ScholarPubMed
Groh-Wargo, S., Thompson, M., Cox, Hovasi J.Nutritional Care for High-Risk Newborns. Revised 3rd edn. Chicago, IL: Precept Press; 2000.Google Scholar
US Department of Agriculture (USDA), National Agricultural Library, The Food and Nutrition Information Centre website. Available at: www.nal.usda.gov/fnic/. Accessed 13, February, 2003.
The Canadian Nutrient File, Health Canada. Available at: http://www.hc-sc.gc.ca/food-aliment/ns-sc/nr-rn/surveillance/cnf-fcen/e_index.html. Accessed 21, February, 2003.
Atkinson, S. A., Radde, I. C., Chance, G. W., Bryan, M. H., Anderson, G. H.Macro-mineral content of milk obtained during early lactation from mothers of premature infants. Early Hum. Dev. 1980;4:5–14.CrossRefGoogle ScholarPubMed
Canfield, L. M., Hopkinson, J. M., Lima, A. F., Silva, B., Garza, C.Vitamin K in colostrum and mature human milk over the lactation period – a cross-sectional study. Am. J. Clin. Nutr. 1991;53:730–5.CrossRefGoogle ScholarPubMed
American Society of Nutritional Sciences, Life Science Research Office. Assessment of Nutrient Requirements for Infant Formula. Bethesda, MD; 1998.
Mendelson, R. A., Anderson, G. H., Bryan, M. H.Zinc, copper and iron content of milk from mothers of preterm and full-term infants. Early Hum. Dev. 1982;6:145–51.CrossRefGoogle ScholarPubMed
Bolisetty, S., Gupta, J. M., Graham, G. G., Salonikas, C., Naidoo, D.Vitamin K in preterm breastmilk with maternal supplementation. Acta Paediatr. 1998;87:960–2.CrossRefGoogle ScholarPubMed
Lemons, J. A., Moye, L., Hall, D., Simmons, M.Differences in the composition of preterm and term human milk during early lactation. Pediatr. Res. 1982;16:113–17.CrossRefGoogle ScholarPubMed
Chappell, J. E., Francis, T., Clandinin, M. T.Vitamin A and E content of human milk at early stages of lactation. Early Hum. Dev. 1985;11:157–67.CrossRefGoogle Scholar
Lammi-Keefe, C. J. Vitamins D and E in human milk. In Jenson, R. G., ed. Handbook of Milk Composition. New York, NY: Academic Press; 1995:706–17.Google Scholar
Udipi, S. A., Kirksey, A., West, K., Giacoia, G.Vitamin B6, vitamin C and folacin levels in milk from mothers of term and preterm infants during the neonatal period. Am. J. Clin. Nutr. 1985;42:522–30.CrossRefGoogle ScholarPubMed
5
Cited by