Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-qdp55 Total loading time: 0.696 Render date: 2021-11-29T05:35:18.150Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Chapter 11 - A View from the Brain

Published online by Cambridge University Press:  06 January 2018

Robert J. Sternberg
Affiliation:
Cornell University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbey, A. K., Colom, R., Paul, E. J., & Grafman, J. (2014). Architecture of fluid intelligence and working memory revealed by lesion mapping. Brain Struct Funct, 219(2), 485494.CrossRefGoogle ScholarPubMed
Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain, 135(Pt 4), 11541164. doi:10.1093/brain/aws021CrossRefGoogle ScholarPubMed
Basten, U., Hilger, K., & Fiebach, C. J. (2015). Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51(0), 1027. doi:http://dx.doi.org/10.1016/j.intell.2015.04.009CrossRefGoogle Scholar
Benyamin, B., Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M. J., ... Visscher, P. M. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol Psychiatry, 19(2), 253258. doi:10.1038/mp.2012.184CrossRefGoogle ScholarPubMed
Bouchard, T. J. (1999). IQ and human intelligence. Science, 284(5416), 922923.Google Scholar
Bouchard, T. J. (2009). Genetic influence on human intelligence (Spearman’s g): How much? Annals of Human Biology, 36(5), 527544.CrossRefGoogle Scholar
Bouchard, T. J., McGue, M., Hur, Y. M., & Horn, J. M. (1998). A genetic and environmental analysis of the California psychological inventory using adult twins reared apart and together. European Journal of Personality, 12(5), 307320.3.0.CO;2-K>CrossRefGoogle Scholar
Cahill, L., Haier, R. J., Fallon, J., Alkire, M. T., Tang, C., Keator, D., ... McGaugh, J. L. (1996). Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc Natl Acad Sci U S A, 93(15), 80168021.CrossRefGoogle ScholarPubMed
Cahill, L., Haier, R. J., White, N. S., Fallon, J., Kilpatrick, L., Lawrence, C., ... Alkire, M. T. (2001). Sex-related difference in amygdala activity during emotionally influenced memory storage. Neurobiol Learn Mem, 75(1), 19.CrossRefGoogle ScholarPubMed
Chiang, M. C., Barysheva, M., McMahon, K. L., de Zubicaray, G. I., Johnson, K., Montgomery, G. W., ... Thompson, P. M. (2012). Gene network effects on brain microstructure and intellectual performance identified in 472 twins. J Neurosci, 32(25), 87328745. doi:10.1523/JNEUROSCI.5993-11.2012CrossRefGoogle ScholarPubMed
Chiang, M. C., Barysheva, M., Shattuck, D. W., Lee, A. D., Madsen, S. K., Avedissian, C., ... Thompson, P. M. (2009). Genetics of brain fiber architecture and intellectual performance. Journal of Neuroscience, 29(7), 22122224. doi:Doi 10.1523/Jneurosci.4184-08.2009CrossRefGoogle ScholarPubMed
Colom, R., Jung, R. E., & Haier, R. J. (2006a). Distributed brain sites for the g-factor of intelligence. Neuroimage, 31(3), 13591365.CrossRefGoogle ScholarPubMed
Colom, R., Jung, R. E., & Haier, R. J. (2006b). Finding the g-factor in brain structure using the method of correlated vectors. Intelligence, 34(6), 561570.CrossRefGoogle Scholar
Davies, G., Armstrong, N., Bis, J. C., Bressler, J., Chouraki, V., Giddaluru, S., ... Deary, I. J. (2015). Genetic contributions to variation in general cognitive function: A meta-analysis of genome-wide association studies in the CHARGE consortium (N=53949). Mol Psychiatry, 20(2), 183192. doi:10.1038/mp.2014.188CrossRefGoogle Scholar
Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11(3), 201211. doi:Doi 10.1038/Nrn2793CrossRefGoogle ScholarPubMed
Desrivieres, S., Lourdusamy, A., Tao, C., Toro, R., Jia, T., Loth, E., ... Consortium, I. (2015). Single nucleotide polymorphism in the neuroplastin locus associates with cortical thickness and intellectual ability in adolescents. Mol Psychiatry, 20(2), 263274. doi:10.1038/mp.2013.197CrossRefGoogle ScholarPubMed
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., ... Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nat Neurosci, 18(11), 16641671. doi:10.1038/nn.4135 www.nature.com/neuro/journal/v18/n11/abs/nn.4135.html-supplementary-informationCrossRefGoogle ScholarPubMed
Gardner, H. (1987). The theory of multiple intelligences. Annals of Dyslexia, 37, 1935.CrossRefGoogle ScholarPubMed
Glascher, J., Rudrauf, D., Colom, R., Paul, L. K., Tranel, D., Damasio, H., & Adolphs, R. (2010). Distributed neural system for general intelligence revealed by lesion mapping. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 47054709. doi:D10.1073/Pnas.0910397107CrossRefGoogle ScholarPubMed
Gottfredson, L. S. (1997). Why g matters: The complexity of everyday life. Intelligence, 24(1), 79132.CrossRefGoogle Scholar
Haier, R. J. (2009). Neuro-intelligence, neuro-metrics and the next phase of brain imaging studies. Intelligence, 37(2), 121123.CrossRefGoogle Scholar
Haier, R. J. (2014). Increased intelligence is a myth (so far). Front Syst Neurosci, 8, 34. doi:10.3389/fnsys.2014.00034CrossRefGoogle Scholar
Haier, R. J. (2017). The neuroscience of intelligence. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Haier, R. J., & Benbow, C. P. (1995). Sex differences and lateralization in temporal lobe glucose metabolism during mathematical reasoning. Developmental Neuropsychology, 11(4), 405414.CrossRefGoogle Scholar
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2004). Structural brain variation and general intelligence. Neuroimage, 23(1), 425433.CrossRefGoogle ScholarPubMed
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2005). The neuroanatomy of general intelligence: sex matters. Neuroimage, 25(1), 320327.CrossRefGoogle ScholarPubMed
Haier, R. J., Robinson, D. L., Braden, W., & Williams, D. (1983). Electrical potentials of the cerebral cortex and psychometric intelligence. Personality & Individual Differences, 4(6), 591599.CrossRefGoogle Scholar
Haier, R. J., Rosenthal, D., & Wender, P. H. (1978). MMPI assessment of psychopathology in the adopted-away offspring of schizophrenics. Arch Gen Psychiatry, 35(2), 171175.CrossRefGoogle ScholarPubMed
Haier, R. J., Siegel, B., Tang, C., Abel, L., & Buchsbaum, M. S. (1992). Intelligence and changes in regional cerebral glucose metabolic-rate following learning. Intelligence, 16(3–4), 415426.CrossRefGoogle Scholar
Haier, R. J., Siegel, B. V., Jr., MacLachlan, A., Soderling, E., Lottenberg, S., & Buchsbaum, M. S. (1992). Regional glucose metabolic changes after learning a complex visuospatial/motor task: A positron emission tomographic study. Brain Res, 570(1–2), 134143.CrossRefGoogle ScholarPubMed
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., ... Buchsbaum, M. S. (1988). Cortical glucose metabolic-rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199217.CrossRefGoogle Scholar
Haier, R. J., White, N. S., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31(5), 429441.CrossRefGoogle Scholar
Hunt, E. B. (2011). Human intelligence. Cambridge; New York: Cambridge University Press.Google Scholar
Jensen, A. R. (1969). How much can we boost IQ and scholastic achievement. Harvard Educational Review, 39(1), 1123.CrossRefGoogle Scholar
Jensen, A. R. (1998). The g factor: The science of mental ability. Westport, CT: Praeger.Google Scholar
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(02), 135154.CrossRefGoogle ScholarPubMed
Mansour, C. S., Haier, R. J., & Buchsbaum, M. S. (1996). Gender comparisons of cerebral glucose metabolic rate in healthy adults during a cognitive task. Personality & Individual Differences, 20(2), 183191.CrossRefGoogle Scholar
Naghavi, H. R., & Nyberg, L. (2005). Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Consciousness and Cognition, 14(2), 390425.CrossRefGoogle ScholarPubMed
Neubauer, A. C., & Fink, A. (2003). Fluid intelligence and neural efficiency: effects of task complexity and sex. Personality and Individual Differences, 35(4), 811827.CrossRefGoogle Scholar
Neubauer, A. C., & Fink, A. (2009a). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33(7), 10041023.CrossRefGoogle ScholarPubMed
Neubauer, A. C., & Fink, A. (2009b). Intelligence and neural efficiency: Measures of brain activation versus measures of functional connectivity in the brain. Intelligence, 37(2), 223229.CrossRefGoogle Scholar
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., ... Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533(7604), 539542. doi:10.1038/nature17671CrossRefGoogle ScholarPubMed
Penke, L., Maniega, S. M., Bastin, M. E., Hernandez, M. C. V., Murray, C., Royle, N. A., ... Deary, I. J. (2012). Brain white matter tract integrity as a neural foundation for general intelligence. Molecular Psychiatry, 17(10), 10261030. doi:Doi 10.1038/Mp.2012.66CrossRefGoogle ScholarPubMed
Plomin, R., & Deary, I. J. (2015). Genetics and intelligence differences: Five special findings. Mol Psychiatry, 20(1), 98108. doi:10.1038/mp.2014.105CrossRefGoogle ScholarPubMed
Plomin, R., Haworth, C. M. A., Meaburn, E. L., Price, T. S., Davis, O. S. P., & Control, W. T. C. (2013). Common DNA markers can account for more than half of the genetic influence on cognitive abilities. Psychological Science, 24(4), 562568.CrossRefGoogle ScholarPubMed
Posthuma, D., Baare, W. F. C., Pol, H. E. H., Kahn, R. S., Boomsma, D. I., & De Geus, E. J. C. (2003). Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed. Twin Research, 6(2), 131139.CrossRefGoogle ScholarPubMed
Posthuma, D., De Geus, E. J., Baare, W. F., Hulshoff Pol, H. E., Kahn, R. S., & Boomsma, D. I. (2002). The association between brain volume and intelligence is of genetic origin. Nat Neurosci, 5(2), 8384.CrossRefGoogle ScholarPubMed
Posthuma, D., De Geus, E., & Boomsma, D. (2003). Genetic contributions to anatomical, behavioral, and neurophysiological indices of cognition. In Plomin, R., DeFries, J., Craig, I. W., & McGuffin, P. (Eds.), Behavioral genetics in the postgenomic era (pp. 141161). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Rietveld, C. A., Esko, T., Davies, G., Pers, T. H., Turley, P., Benyamin, B., ... Koellinger, P. D. (2014). Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci U S A, 111(38), 1379013794. doi:10.1073/pnas.1404623111CrossRefGoogle ScholarPubMed
Robinson, D. L., Haier, R. J., Braden, W., & Krengel, M. (1984). Psychometric intelligence and visual evoked potentials: A replication. Personality & Individual Differences, 5(4), 487489.CrossRefGoogle Scholar
Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A., & Rossi, S. (2014). Efficiency of weak brain connections support general cognitive functioning. Hum Brain Mapp, 35(9), 45664582. doi:10.1002/hbm.22495CrossRefGoogle ScholarPubMed
Shehzad, Z., Kelly, C., Reiss, P. T., Cameron Craddock, R., Emerson, J. W., McMahon, K., ... Milham, M. P. (2014). A multivariate distance-based analytic framework for connectome-wide association studies. Neuroimage, 93 Pt 1, 7494. doi:10.1016/j.neuroimage.2014.02.024CrossRefGoogle Scholar
Song, M., Liu, Y., Zhou, Y., Wang, K., Yu, C., & Jiang, T. (2009). Default network and intelligence difference. Conf Proc IEEE Eng Med Biol Soc, 2009, 22122215. doi:10.1109/IEMBS.2009.5334874CrossRefGoogle ScholarPubMed
Spearman, C. (1904). General intelligence objectively determined and measured. American Journal of Psychology, 15, 201293.CrossRefGoogle Scholar
Sternberg, R. J. (1999). Successful intelligence: Finding a balance. Trends Cogn Sci, 3(11), 436442.CrossRefGoogle ScholarPubMed
Sternberg, R. J. (2000). Practical intelligence in everyday life. Cambridge; New York: Cambridge University Press.Google Scholar
Vakhtin, A. A., Ryman, S. G., Flores, R. A., & Jung, R. E. (2014). Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence. Neuroimage, 103, 349354. doi:10.1016/j.neuroimage.2014.09.055CrossRefGoogle ScholarPubMed
Van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Pol, H. E. H. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 76197624. doi:10.1523/Jneurosci.1443-09.2009CrossRefGoogle ScholarPubMed
2
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×