Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T13:02:21.811Z Has data issue: false hasContentIssue false

25

Published online by Cambridge University Press:  05 June 2013

Get access

Summary

THESE distinctions between pure and applied mathematics are important in themselves, but they have very little bearing on our discussion of the ‘usefulness’ of mathematics. I spoke in § 21 of the ‘real’ mathematics of Fermat and other great mathematicians, the mathematics which has permanent aesthetic value, as for example the best Greek mathematics has, the mathematics which is eternal because the best of it may, like the best literature, continue to cause intense emotional satisfaction to thousands of people after thousands of years. These men were all primarily pure mathematicians (though the distinction was naturally a good deal less sharp in their days than it is now); but I was not thinking only of pure mathematics. I count Maxwell and Einstein, Eddington and Dirac, among ‘real’ mathematicians. The great modern achievements of applied mathematics have been in relativity and quantum mechanics, and these subjects are, at present at any rate, almost as ‘useless’ as the theory of numbers. It is the dull and elementary parts of applied mathematics, as it is the dull and elementary parts of pure mathematics, that work for good or ill. Time may change all this. No one foresaw the applications of matrices and groups and other purely mathematical theories to modern physics, and it may be that some of the ‘highbrow’ applied mathematics will become ‘useful’ in as unexpected a way; but the evidence so far points to the conclusion that, in one subject as in the other, it is what is commonplace and dull that counts for practical life.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • 25
  • G. H. Hardy
  • Foreword by C. P. Snow
  • Book: A Mathematician's Apology
  • Online publication: 05 June 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139644112.027
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • 25
  • G. H. Hardy
  • Foreword by C. P. Snow
  • Book: A Mathematician's Apology
  • Online publication: 05 June 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139644112.027
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • 25
  • G. H. Hardy
  • Foreword by C. P. Snow
  • Book: A Mathematician's Apology
  • Online publication: 05 June 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139644112.027
Available formats
×