Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-xbgml Total loading time: 0.904 Render date: 2022-08-15T08:07:52.910Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

14 - The mineralogy of Gusev crater and Meridiani Planum derived from the Miniature Thermal Emission Spectrometers on the Spirit and Opportunity rovers

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices

Published online by Cambridge University Press:  10 December 2009

S. W. Ruff
Affiliation:
Mars Space Flight Facility Arizona State University, Moeur Building, Room 131 Tempe, AZ 85287-6305, USA
P. R. Christensen
Affiliation:
Planetary Exploration Laboratory Arizona State University, Moeur Building 110D Tempe, AZ 85287, USA
T. D. Glotch
Affiliation:
Department of Geosciences, SUNY at Stony Brook Stony Brook, NY 11794, USA
D. L. Blaney
Affiliation:
JPL MS 183-501 4800 Oak Grove Drive Pasadena, CA 91109, USA
J. E. Moersch
Affiliation:
Department of Earth & Planetary Science University of Tennessee, 1412 Circle Drive, Room 306 Knoxville, TN 37996, USA
M. B. Wyatt
Affiliation:
Brown University, Department of Geological Science, 324 Brook Street Providence, RI 02912-1846, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Two Miniature Thermal Emission Spectrometers (Mini-TES) operated successfully onboard the two Mars Exploration Rovers (MER) on the Martian surface, one at Gusev crater and the other at Meridiani Planum. Designed to provide remotely sensed information on the bulk mineralogy of surface materials, the Mini-TES instruments served to guide the rovers to targets of interest and extrapolate the observations made by the rovers' mechanical-arm-mounted instruments. The Mini-TES on the Spirit rover in Gusev crater observed a flat plain covered by rocks with an olivine-rich ((Mg,Fe)2SiO4) mineralogy and a soil-like unit mantled by airfall dust occurring between the rocks. The dust is a spectral match to dust observed at Meridiani Planum and across the globe. The soil is basaltic in composition, dominated by plagioclase (NaAlSi3O8–CaAl2Si2O8), pyroxene (Ca(Mg,Fe)Si2O6–(Mg,Fe)SiO3), and olivine that probably was produced in part from the breakdown of local rocks. Approximately 2.5 km from the Spirit lander, the Columbia Hills contain a remarkably diverse set of rocks distinct from the plains. Basaltic glass appears to dominate the mineralogy of various outcropping rocks while plagioclase dominates the float rocks that cover most of the north side of Husband Hill, the tallest of the Columbia Hills. Numerous exotic (out of place) rocks dot the hillside that likely were emplaced as impact ejecta in some cases and perhaps as volcanic intrusions in other cases. Onboard the Opportunity rover in Meridiani Planum, the Mini-TES observed a nearly rock-free plain covered in hematite (Fe2O3) spherules and basaltic sand.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 315 - 338
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aronson, J. R. and Emslie, A. G., Spectral reflectance and emittance of particulate materials. 2: Application and results, Appl. Opt. 12, 2573–84, 1973.CrossRefGoogle ScholarPubMed
Aronson, J. R. and Emslie, A. G., Composition of the martian dust as derived by infrared spectroscopy from Mariner 9, J. Geophys. Res. 80(35), 4925–31, 1975.CrossRefGoogle Scholar
Aronson, J. R., Emslie, A. G., and McLinden, H. G., Infrared spectra from fine particulate surfaces, Science 152, 345–6, 1966.CrossRefGoogle ScholarPubMed
Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al., Overview of the Spirit Mars Exploration Rover Mission to Gusev crater: landing site to Backstay Rock in the Columbia Hills, J. Geophys. Res. 111, E02S01, doi:10.1029/2005JE002499, 2006.CrossRefGoogle Scholar
Badenas, C., Comments on Kirchhoff's law in thermal-infrared remote sensing, Int. J. Remote Sens. 18, 229–34, 1997.CrossRefGoogle Scholar
Bandfield, J. L., Global mineral distributions on Mars, J. Geophys. Res. 107(E6), doi:10.1029/2001JE001510, 2002.CrossRefGoogle Scholar
Bandfield, J. L. and Smith, M. D., Multiple emission angle surface-atmosphere separations of Thermal Emission Spectrometer data, Icarus 161, 47–65, 2003.CrossRefGoogle Scholar
Bandfield, J. L., Christensen, P. R., and Smith, M. D., Spectral data set factor analysis and end-member recovery: application to analysis of Martian atmospheric particulates, J. Geophys. Res. 105(E4), 9573–87, 2000a.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R., A global view of Martian volcanic compositions from MGS-TES, Science 287, 1626–30, 2000b.CrossRefGoogle Scholar
Bandfield, J. L., Edgett, K. S., and Christensen, P. R., Spectroscopic study of the Moses Lake dune field, Washington: determination of compositional distributions and source lithologies, J. Geophys. Res. 107(E11), doi:10.1029/2000JE001469, 2002.CrossRefGoogle Scholar
Bandfield, J. L., Glotch, T. D., and Christensen, P. R., Spectroscopic identification of carbonate minerals in the martian dust, Science 301, 1084–6, 2003.CrossRefGoogle ScholarPubMed
Bell, J. F. III, Squyres, S. W., Herkenhoff, K. E., et al., Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation, J. Geophys. Res. 108(E12), doi:10.1029/2003JE002070, 2003.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Spirit Rover at Gusev crater, Science 305, 800–6, 2004a.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum, Science 306, 1703–9, 2004b.CrossRefGoogle Scholar
Bell, J. F. III, Joseph, J., Sohl-Dickstein, J. N., et al., In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments, J. Geophys. Res. 111, E02S03, doi:10.1029/2005JE002444, 2006.CrossRefGoogle Scholar
Bishop, J. L. and Pieters, C. M., Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials, J. Geophys. Res. 100, 5369–79, 1995.CrossRefGoogle Scholar
Bishop, J. L., Fröschl, H., and Mancinelli, R. L., Alteration processes in volcanic soils and identification of exobiologically important weathering products on Mars using remote sensing, J. Geophys. Res. 103, 31457–76, 1998.CrossRefGoogle ScholarPubMed
Bishop, J. L., Schiffman, P., Murad, E., et al., Characterization of alteration products in tephra from Haleakala, Maui: a visible-infrared spectroscopy, Mössbauer spectroscopy, XRD, EPMA, and TEM study, Clays Clay Miner., 55, 1–17, doi:10.1346/CCMN.2007.0550101, 2007.CrossRefGoogle Scholar
Brown, J. B., Jarosite-goethite stabilities at 25 ℃, 1 ATM, Mineral, Deposita 6, 245–52, 1971.CrossRefGoogle Scholar
Cabrol, N. A., Grin, E. A., Carr, M. H., et al., Exploring Gusev crater with Spirit: review of science objectives and testable hypotheses, J. Geophys. Res. 108(E12), doi:10.1029/2002JE002026, 2003.CrossRefGoogle Scholar
Calvin, W. M., King, T. V. V., and Clark, R. N., Hydrous carbonates on Mars? Evidence from Mariner 6/7 Infrared Spectrometer and ground-based telescopic spectra, J. Geophys. Res. 99, 14659–75, 1994.CrossRefGoogle Scholar
Catling, D. C., Wood, S. E., Leovy, C., et al., Light-toned layered deposits in Juventae Chasma, Mars, Icarus 181, 26–51, 2006.CrossRefGoogle Scholar
Christensen, P. R. and Harrison, S. T., Thermal infrared emission spectroscopy of natural surfaces: application to desert varnish coatings on rocks, J. Geophys. Res. 98(B11), 19819–34, 1993.CrossRefGoogle Scholar
Christensen, P. R. and Ruff, S. W., Formation of the hematite-bearing unit in Meridiani Planum: evidence for deposition in standing water, J. Geophys. Res. 109, E08003, doi:10.10292003JE002233, 2004.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Clark, R. N., et al., Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water, J. Geophys. Res. 105(E4), 9623–42, 2000a.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E., and Clark, R. N., Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data, J. Geophys. Res. 105(E4), 9609–21, 2000b.CrossRefGoogle Scholar
Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., and Malin, M. C., Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars, J. Geophys. Res. 106(E10), 23873–85, 2001.CrossRefGoogle Scholar
Christensen, P. R., Mehall, G. L., Silverman, S. H., et al., Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers, J. Geophys. Res. 108(E12), 8064, doi:10.1029/2003JE002117, 2003.CrossRefGoogle Scholar
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al., Initial results from the Mini-TES Experiment in Gusev crater from the Spirit Rover, Science 305, 837–42, 2004a.CrossRefGoogle Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity Rover, Science 306(5702), 1733–9, 2004b.CrossRefGoogle Scholar
Clark, B. C., Morris, R. V., MoLennan, S. M., et al., Chemistry and mineralogy of outcrops at Meridiani Planum, Earth Planet. Sci. Lett. 240, 73–94, 2005.CrossRefGoogle Scholar
Clark, B. C., Aravidson, R. E., Gellert, R., et al., Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars, J. Geophys. Res. 112, CiteID E06S01, doi:10.1029/2006JE002756, 2007.CrossRefGoogle Scholar
Coblentz, W. W., Investigations of Infra-red Spectra: Parts 1 and 2, Carnegie Institute of Washington, 330pp., 1905.
Edgett, K. S. and Christensen, P. R., The particle size of Martian aeolian dunes, J. Geophys. Res. 96, 22765–76, 1991.CrossRefGoogle Scholar
Farmer, V. C., The Infrared Spectra of Minerals, London: Mineralogical Society, 539 pp., 1974.CrossRefGoogle Scholar
Feely, K. C. and Christensen, P. R., Quantitative compositional analysis using thermal emission spectroscopy: application to igneous and metamorphic rocks, J. Geophys. Res. 104(E10), 24195–210, 1999.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Brueckner, J., et al., Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report, J. Geophys. Res. 111, E02S05, doi:10.1029/2005JE002555, 2006.CrossRefGoogle Scholar
Glotch, T. D. and Bandfield, J. L., Determination and interpretation of surface and atmospheric Mini-TES spectral end-members at the Meridiani Planum landing site, J. Geophys. Res. 111, E12S06, doi:10.1029/2005JE002671, 2006.CrossRefGoogle Scholar
Glotch, T. D., Morris, R. V., Christensen, P. R., and Sharp, T. G., Effect of precursor mineralogy on the thermal infrared emission spectra of hematite: Application to martian hematite mineralization, J. Geophys. Res. 109, E7003, doi:10.1029/2003JE002224, 2004.CrossRefGoogle Scholar
Glotch, T. D., Bandfield, J. L., Christensen, P. R., et al., Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation, J. Geophys. Res. 111, E12S03, doi:10.1029/2005JE002672, 2006a.CrossRefGoogle Scholar
Glotch, T. D., Christensen, P. R., and Sharp, R. P., Fresnel modeling of hematite crystal surfaces and application to Martian hematite mineralization, Icarus 181, 408–18, 2006b.CrossRefGoogle Scholar
Golombek, M. P., Grant, J. A., Parker, T. J., et al., Selection of the Mars Exploration Rover landing sites, J. Geophys. Res. 108(E12), 8072, doi:10.1029/2003JE002074, 2003.CrossRefGoogle Scholar
Graff, T. G., R. V. Morris, and P. R. Christensen, Effects of palagonitic dust coatings on thermal emission spectra of rocks and minerals: implications for mineralogical characterization of the Martian surface by MGS-TES, Lunar Planet. Sci. Conf. XXXII, Abstract #1899, 2001.
Grant, J. A., Wilson, S. A., Koestler, D. L., Ruff, S. W., and Golombek, M. P., The distribution of rocks on the Gusev plains and on Husband Hill, Geophys. Res. Lett. 33, L16202, doi:10.1029/2006GL026964, 2006.CrossRefGoogle Scholar
Greeley, R. and M. D. Kraft, Survivability of aggregate sands on Mars, Lunar Planet. Sci. XXXII, Abstract #1839 (CD-ROM), 2001.
Greeley, R., Arvidson, R. E., Barlett, P. W., et al., Gusev crater: wind-related features and processes observed by the Mars Exploration Rover Spirit, J. Geophys. Res. 111, E02S09, doi:10.1029/2005JE002491, 2006.CrossRefGoogle Scholar
Hamilton, V. E. and Christensen, P. R., Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy, J. Geophys. Res. 105, 9717–33, 2000.CrossRefGoogle Scholar
Hamilton, V. E. and Christensen, P. R., Evidence for extensive olivine-rich bedrock on Mars, Geology 33(6), 433–6, 2005.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., and McSween, H. Y. Jr., Determination of martian meteorite lithologies and mineralogies using vibrational spectroscopy, J. Geophys. Res. 102, 25593–603, 1997.CrossRefGoogle Scholar
Hamilton, V. E., Wyatt, M. B., McSween, H. Y. Jr., and Christensen, P. R., Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer, J. Geophys. Res. 106, 14733–46, 2001.CrossRefGoogle Scholar
Herbert, R. B., Precipitation of Fe oxyhydroxides and jarosite from acidic groundwater, GFF 117, 81–5, 1995.CrossRefGoogle Scholar
Herbert, R. B., Properties of goethite and jarosite precipitated from acidic groundwater, Dalarna, Sweden, Clays Clay Miner, 45, 261–73, 1997.CrossRefGoogle Scholar
Hoefen, T. M., Clark, R. N., Bandfield, J. L., et al., Discovery of olivine in the Nili Fossae region of Mars, Science 302, 627–30, 2003.CrossRefGoogle ScholarPubMed
Hook, S. J., Gabell, A. R., Green, A. A., and Kealy, P. S., A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies, Remote Sens. Environ. 42, 123–36, 1992.CrossRefGoogle Scholar
Horton, K. A., Johnson, J. R., and Lucey, P. G., Infrared measurements of pristine and disturbed soils: 2. Environmental effects and field data reduction, Remote Sens. Environ. 64(1), 47–52, 1998.CrossRefGoogle Scholar
Hunt, G. R. and Logan, L. M., Variation of single particle mid-infrared emission spectrum with particle size, Appl. Opt. 11, 142–7, 1972.CrossRefGoogle ScholarPubMed
Hunt, G. R. and Vincent, R. K., The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes, J. Geophys. Res. 73, 6039–46, 1968.CrossRefGoogle Scholar
Hynek, B. M., Arvidson, R. E., and Phillips, R. J., Geologic setting and origin of Terra Meridiani hematite deposit on Mars, J. Geophys. Res. 107(E10), 5088, doi:10.1029/2002JE001891, 2002.CrossRefGoogle Scholar
Johnson, J. R., Christensen, P. R., and Lucey, P. G., Dust coatings on basalts and implications for thermal infrared spectroscopy of Mars, J. Geophys. Res. 107(E6), 5035, doi:10.1029/2000JE001405, 2002a.CrossRefGoogle Scholar
Johnson, J. R., Horz, F., Lucey, P. G., and Christensen, P. R., Thermal infrared spectroscopy of experimentally shocked anorthosite and pyroxenite: implications for remote sensing of Mars, J. Geophys. Res. 107, doi:10.1029/2001JE001517, 2002b.CrossRefGoogle Scholar
Johnson, J. R., Grundy, W. M., Leniman, M. T., et al., Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit, J. Geophys. Res. 111, E02S14, doi:10.1029/2005JE002494, 2006.Google Scholar
Jolliff, B. L. and Athena Science Team, Composition of Meridiani hematite-rich spherules: a mass-balance mixing model approach, Lunar Planet. Sci. XXXVI, Abstract #2269 (CD-ROM), 2005.
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from the Opportunity's Mössbauer spectrometer, Science 306, 1740–5, 2004.CrossRefGoogle ScholarPubMed
Knauth, L. P., Burt, D. M., and Wohletz, K. H., Impact origin of sediments at the Opportunity landing site on Mars, Nature 438, 1123–1128, 2005.CrossRefGoogle ScholarPubMed
Lane, M. D., Midinfrared emission spectroscopy of sulfate and sulfate-bearing minerals, Am. Mineral. 92, 1–18, 2007.CrossRefGoogle Scholar
Lane, M. D. and Christensen, P. R., Thermal infrared emission spectroscopy of salt minerals predicted for Mars, Icarus 135, 528–36, 1998.CrossRefGoogle Scholar
Lane, M. D., Morris, R. V., Mertzman, S. A., and Christensen, P. R., Evidence for platy hematite grains in Sinus Meridiani, J. Geophys. Res. 107(E12), 5126, doi:10.1029/2001JE001832, 2002.CrossRefGoogle Scholar
Lane, M. D., Dyar, M. D., and Bishop, J. L., Spectroscopic evidence for hydrous iron sulfate in the Martian soil, Geophys. Res. Lett. 31, L19702, doi:10.1029/2004GL021231, 2004.CrossRefGoogle Scholar
Lyon, R. J. P. and Burns, E. A., Analysis of rocks by reflected infrared radiation, Econ. Geol. 58, 274–84, 1963.CrossRefGoogle Scholar
Lyon, R. J. P., Tuddenham, W. M., and Thompson, C. S., Quantitative mineralogy in 30 minutes, Econ. Geol. 54, 1047–55, 1959.CrossRefGoogle Scholar
Maki, J. N., Bell, J. F. III, Herkenhoff, K. E., et al., Mars Exploration Rover engineering cameras, J. Geophys. Res. 108(E12), 8071, doi:10.1029/2003JE002077, 2003.CrossRefGoogle Scholar
Malinowski, E. R., Factor Analysis in Chemistry, 2nd edn., New York: John Wiley, 1991.Google Scholar
McCollom, T. M. and Hynek, B. M., A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars, Nature 438, 1129–31, 2005.CrossRefGoogle ScholarPubMed
McLennan, S. M., Bell, J. F. III, Caluin, W. M., et al., Provenance and diagenesis of the evaporate-bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 95–121, 2005.CrossRefGoogle Scholar
McSween, H. Y. Jr., What have we learned about Mars from SNC meteorites, Meteoritics 29, 757–79, 1994.CrossRefGoogle Scholar
McSween, H. Y. Jr., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit Rover in Gusev crater, Science 305, 842–5, 2004.CrossRefGoogle ScholarPubMed
McSween, H. Y. Jr., Ruff, S. W., Morris, R. V., et al., Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars, J. Geophys. Res. 111, E09S91, doi:10.1029/2006JE002698, 2006.CrossRefGoogle Scholar
Michalski, J. R., M. D. Kraft, R. P. Sharp, and P. R. Christensen, Palagonite-like alteration products on the earth and Mars I: spectroscopy (0.4–25 microns) of weathered basalts and silicate alteration products, Lunar Planet. Sci. XXXVI, Abstract #1188 (CD-ROM), 2005a.
Michalski, J. R., Kraft, M. D., Sharp, R. P., Williams, L. B., and Christensen, P. R., Mineralogical constraints on the high-silica Martian surface component observed by TES, Icarus 174, 161–77, 2005b.CrossRefGoogle Scholar
Michalski, J. R., Kraft, M. D., Sharp, T. G., Williams, L. B., and Christensen, P. R., Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission Spectrometer data, J. Geophys. Res. 111, E03004, doi:10.1029/2005JE002438, 2006.CrossRefGoogle Scholar
Milam, K. A., Stockstill, K. R., Moersch, J. E., et al., THEMIS characterization of the MER Gusev crater landing site, J. Geophys. Res. 108(E12), 8078, doi:10.1029/2002JE002023, 2003.CrossRefGoogle Scholar
Ming, D. W., Mittlefehldt, D. W., Morris, R. V., et al., Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars, J. Geophys. Res. 111, E02S12, doi:10.1029/2005JE002560, 2006.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit Rover, Science 305, 833–6, 2004.CrossRefGoogle ScholarPubMed
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, E02S13, doi:10.1029/2005JE002584, 2006.CrossRefGoogle Scholar
Mustard, J. F., Poulet, F., Gendrin, A., et al., Olivine and pyroxene diversity in the crust of Mars, Science 307, 1594–7, 2005.CrossRefGoogle ScholarPubMed
Ramsey, M. S. and Christensen, P. R., Mineral abundance determination: quantitative deconvolution of thermal emission spectra, J. Geophys. Res. 103, 577–96, 1998.CrossRefGoogle Scholar
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, Science 306, 1746–9. 2004.CrossRefGoogle ScholarPubMed
Rodionov, D. S., Klingelhofer, G., Ming, D. W., et al., An iron-nickel meteorite on Meridiani Planum: observations by MER Opportunity's Mössbauer spectrometer, Geophys. Res. Abs. 7, 10242, 2005.Google Scholar
Rogers, A. D. and Christensen, P. R., Age relationship of basaltic and andesitic surface compositions on Mars: analysis of high-resolution TES observations of the northern hemisphere, J. Geophys. Res. 108(E4), 5030, doi:10.1029/2002JE001913, 2003.CrossRefGoogle Scholar
Rothman, L. S., Hawkins, R. L., Watson, R. B., and Gamache, R. R., Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands, J. Quant. Spec. Rad. Trans. 48(5/6), 537–66, 1992.CrossRefGoogle Scholar
Ruff, S. W., Spectral evidence for zeolite in the dust on Mars, Icarus 168, 131–43, 2004.CrossRefGoogle Scholar
Ruff, S. W. and Christensen, P. R., Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data, J. Geophys. Res. 107(E12), 5127, doi:10.1029/2001JE001580, 2002.CrossRefGoogle Scholar
Ruff, S. W., Christensen, P. R., Barbera, P. W., and Anderson, D. L., Quantitative thermal emission spectroscopy of minerals: a laboratory technique for measurement and calibration, J. Geophys. Res. 102, 14899–913, 1997.CrossRefGoogle Scholar
Ruff, S. W., Christensen, P. R., Blaney, D. L., et al., The rocks of Gusev crater as viewed by the Mini-TES instrument, J. Geophys. Res. 111, E12S18, doi:10.1029/2006JE002747, 2006.CrossRefGoogle Scholar
Salisbury, J. W. and D'Aria, D. M., Emissivity of terrestrial materials in the 8–14 μm atmospheric window, Remote Sens. Environ. 42, 83–106, 1992.CrossRefGoogle Scholar
Salisbury, J. W. and Eastes, J. W., The effect of particle size and porosity on spectral contrast in the mid-infrared, Icarus 64, 586–8, 1985.CrossRefGoogle Scholar
Salisbury, J. W. and Wald, A., The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals, Icarus 96, 121–8, 1992.CrossRefGoogle Scholar
Salisbury, J. W., Hapke, B., and Eastes, J. W., Usefulness of weak bands in midinfrared remote sensing of particulate planetary surfaces, J. Geophys. Res. 92, 702–10, 1987.CrossRefGoogle Scholar
Salisbury, J. W., Walter, L. S., Vergo, N., and D'Aria, D. M., Infrared (2.1–25 µm) Spectra of Minerals, Baltimore and London: The Johns Hopkins University Press, 267 pp., 1991.Google Scholar
Smith, M. D., Bandfield, J. L., and Christensen, P. R., Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra, J. Geophys. Res. 105(E4), 9589–607, 2000.CrossRefGoogle Scholar
Smith, M. D., Wolff, M. J., Lenimon, M. T., et al., First atmospheric science results from the Mars Exploration Rovers Mini-TES, Science 306(5702), 1750–3, 2004.CrossRefGoogle ScholarPubMed
Squyres, S. W. and Knoll, A. H., Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars, Earth Planet. Sci. Lett. 240, 1–10, 2005.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Baumgartmer, E. T., et al., Athena Mars rover science investigation, J. Geophys. Res. 108(E12), 8062, doi:10.1029/2003JE002121, 2003.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Spirit Rover's Athena science investigation at Gusev crater, Mars, Science 305(5685), 794–9, 2004a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Opportunity rover's Athena science investigation at Meridiani Planum, Mars, Science 306(5702), 1698–703, 2004b.CrossRefGoogle Scholar
Squyres, S. W., Aharonson, O., Arvidson, R. E., et al., Bedrock formation at Meridiani Planum, Nature 443, E1–E2, 2006a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Blaney, D. L., et al., The Rocks of the Columbia Hills, J. Geophys. Res. 111, E02S11, doi:10.1029/2005JE002562, 2006b.CrossRefGoogle Scholar
Stahl, R. S., Fanning, D. S., and James, B. R., Goethite and jarosite precipitation from ferrous sulfate solutions, Soil Sci. Soc. Am. J. 57, 280–2, 1993.CrossRefGoogle Scholar
Tosca, N. J., McLennan, S. M., Lindsley, D. H., and Schoonen, M. A. A., Acid-sulfate weathering of synthetic Martian basalt: the acid fog model revisited, J. Geophys. Res. 109, E05003, doi:10.1029/2003JE002218, 2004.CrossRefGoogle Scholar
Veverka, J., Gierasch, P., and Thomas, P., Wind streaks on Mars: meteorological control of occurrence and mode of formation, Icarus 45, 154–66, 1981.CrossRefGoogle Scholar
Vincent, R. K. and Hunt, G. R., Infrared reflectance from mat surfaces, Appl. Opt. 7, 53–9, 1968.CrossRefGoogle ScholarPubMed
Wald, A. E. and Salisbury, J. W., Thermal infrared directional emissivity of powdered quartz, J. Geophys. Res. 100, 24665–75, 1995.CrossRefGoogle Scholar
Wyatt, M. B. and McSween, H. Y. Jr., Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars, Nature 417, 263–6, 2002.CrossRefGoogle ScholarPubMed
Wyatt, M. B., Hamilton, V. E., McSween, H. Y. Jr., Christensen, P. R., and Taylor, L. A., Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 1. Determination of mineralogy, chemistry, and classification strategies, J. Geophys. Res. 106, 14711–32, 2001.CrossRefGoogle Scholar
Yen, A. S., Gellert, R., Schröder, C., et al., An integrated view of the chemistry and mineralogy of martian soils, Nature 436, 49–54, 2005.CrossRefGoogle ScholarPubMed
8
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×