Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-s82fj Total loading time: 1.257 Render date: 2022-09-27T12:39:39.960Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

21 - Martian surface properties from joint analysis of orbital, Earth-based, and surface observations

from Part IV - Physical Properties of Surface Materials

Published online by Cambridge University Press:  10 December 2009

M. P. Golombek
Affiliation:
JPL MS 183-501 4800 Oak Grove Drive Pasadena, CA 91109, USA
A. F. C. Haldemann
Affiliation:
JPL 4800 Oak Grove Drive Pasadena, CA 91109, USA
R. A. Simpson
Affiliation:
Stanford University, David Packard #332 350 Serra Mall Stanford, CA 94305-9515, USA
R. L. Fergason
Affiliation:
School of Earth & Space Exploration Arizona State University, PO Box 876305 Tempe, AZ 85287-6305, USA
N. E. Putzig
Affiliation:
Laboratory for Atmospheric & Space Physics, University of Colorado, Campus Box 392 Boulder, CO 80309, USA
R. E. Arvidson
Affiliation:
Earth & Planetary Science, Washington University, St Louis, MO 63130, USA
J. F. Bell III
Affiliation:
Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA
M. T. Mellon
Affiliation:
Laboratory for Atmospheric & Space Physics, University of Colorado – Boulder Boulder, CO 80309-0392, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Surface characteristics at the five sites where spacecraft have successfully landed on Mars can be related favorably to their signatures in remotely sensed data from orbit and from the Earth. Comparisons of the rock abundance, types and coverage of soils (and their physical properties), thermal inertia, albedo, and topographic slope all agree with orbital remote-sensing estimates and show that the materials at the landing sites can be used as “ground truth” for the materials that make up most of the equatorial and mid-latitude regions of Mars. The five landing sites sample two of the three dominant global thermal inertia and albedo units that cover ∼ 80% of the surface of Mars. The Viking Landers 1 and 2, Spirit, and Mars Pathfinder landing sites are representative of the moderate-to-high thermal inertia and intermediate-to-high albedo unit that is dominated by crusty, cloddy, and blocky soils (duricrust) with various abundances of rocks and bright dust. The Opportunity landing site is representative of the moderate-to-high thermal inertia and low-albedo surface unit that is relatively dust-free and composed of dark eolian sand and/or increased abundance of rocks. Interpretation of radar data confirms the presence of load bearing, relatively dense surfaces controlled by the soil type at the landing sites, regional rock populations from diffuse scattering similar to those observed directly at the sites, and root-mean-squared (RMS) slopes that compare favorably with 100 m scale topographic slopes extrapolated from altimetry profiles and meter scale slopes from high-resolution stereo images.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 468 - 498
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, F. S., Haldemann, A. F. C., Bridges, N. T., et al., Analysis of MOLA data for the Mars Exploration Rover landing sites, J. Geophys. Res. 108(E12), 8084, doi:10.1029/2003JE002125, 2003.Google Scholar
Arvidson, R., Guiness, E., and Lee, S., Differential aeolian redistribution rates on Mars, Nature 278, 533–5, 1979.CrossRefGoogle Scholar
Arvidson, R. E., Anderson, R. C., Bartlett, P., et al., Localization and physical properties experiments conducted by Spirit at Gusev crater, Science 305, 821–4, doi:10.1126/science.1099922, 2004a.CrossRefGoogle Scholar
Arvidson, R. E., Anderson, R. C., Bartlett, P., et al., Localization and physical properties experiments conducted by Opportunity at Meridiani Planum, Science 306, 1730–3, doi:10.1126/science.1104211, 2004b.CrossRefGoogle Scholar
Arvidson, R. E., S. W. Squyres, R. C. Anderson, et al., Overview of the Spirit Mars Exploration Rover mission to Gusev crater: landing site to Backstay rock in the Columbia Hills, J. Geophys. Res. 111, E02S01, doi:10.1029/2005JE002499, 2006.CrossRefGoogle Scholar
Baker, V. R., M. H. Carr, V. C. Gulick, C. R. Williams, and M. S. Marley, Channels and valley networks. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., Matthews, M. S.), Tucson: University of Arizona Press, pp. 493–522, 1992.Google Scholar
Baron, J. E., Simpson, R. A., Tyler, G. L., Moore, H. J., and Harmon, J. K., Estimation of Mars radar backscatter from measured surface rock populations, J. Geophys. Res. 103, 22695–712, 1998.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Spirit rover at Gusev crater, Science 305(5685), 800–6, doi:10.1126/science.1100175, 2004a.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum, Science 306 (5702), 1703–9, 2004b.CrossRefGoogle Scholar
Beyer, R. A., McEwen, A. S., and Kirk, R. L., Meter-scale slopes of candidate MER landing sites from point photoclinometry, J. Geophys. Res. 108(E12), 8085, doi:10.1029/2003JE002120, 2003.CrossRefGoogle Scholar
Binder, A. B., Arvidson, R. E., Guinness, E. A., et al., The geology of the Viking Lander 1 site, J. Geophys. Res. 82, 4439–51, 1977.CrossRefGoogle Scholar
Bridges, N. T., Greeley, R., Haldemann, A. F. C., et al., Ventifacts at the Pathfinder landing site, J. Geophys. Res. 104(E4), 8595–615, 1999.CrossRefGoogle Scholar
Brown, W. K. and Wohletz, K. H., Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions, J. Appl. Phys. 78, 2758–63, 1995.CrossRefGoogle Scholar
Butler, B. J., The 3.5-cm radar investigation of Mars and Mercury: planetological implications, Ph.D. thesis, California Institute of Technology. Pasadena, CA, 28, 1994.
Calvin, W. M., Jakosky, B. M., and Christensen, P. R., A model of diffuse radar scattering from Martian surface rocks, Icarus 76, 513–24, 1988.CrossRefGoogle Scholar
Campbell, B. A., Ghent, R. R., and Shepard, M.Limits on inference of Mars small-scale topography from MOLA data, Geophys. Res. Lett. 30, CiteID 1116, doi:10.1029/2002GL016550, 2003.CrossRefGoogle Scholar
Christensen, P. R., Martian dust mantling and surface composition: interpretation of thermophysical properties, J. Geophys. Res. 87(B12), 9985–98, 1982.CrossRefGoogle Scholar
Christensen, P. R., The spatial distribution of rocks on Mars, Icarus 68, 217–38, 1986.CrossRefGoogle Scholar
Christensen, P. R. and H. J. Moore, The martian surface layer. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 686–727, 1992.Google Scholar
Christensen, P. R. and Ruff, S. W., Formation of the hematite-bearing unit in Meridiani Planum: evidence for deposition in standing water. J. Geophys. Res. 109, E08003, doi:10.1029/2003JE002233, 2004.CrossRefGoogle Scholar
Christensen, P. R., Anderson, D. L., Chase, S. C., et al., Thermal Emission Spectrometer experiment: Mars Observer mission, J. Geophys. Res. 97(E5), 7719–34, 1992.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res. 106, 23823–71, 2001.CrossRefGoogle Scholar
Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al., The Thermal Emission Imaging System (THEMIS) for the Mars 2001, Space Sci. Rev. 110, 85–130, 2004a.CrossRefGoogle Scholar
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al., Initial results from the Mini-TES experiment in Gusev crater from the Spirit Rover, Science 305 (5685), 837–42, 2004b.CrossRefGoogle Scholar
Craddock, R. A., Crumpler, L. S., Aubele, J. C., and Zimbelman, J. R., Geology of the Chryse Planitia and the Viking 1 landing site: implications for the Mars Pathfinder mission, J. Geophys. Res. 102(E2), 4161–83, 1997.CrossRefGoogle Scholar
Crumpler, L. S., Squyres, S. W., Arvidson, R. E., et al., Mars Exploration Rover geologic traverse by the Spirit rover in the plains of Gusev crater, Mars, Geology 33, 809–12, doi:10.1130/G21673.1, 2005.CrossRefGoogle Scholar
Downs, G. S., Goldstein, R. M., Green, R. R., Morris, G. A., and Reichly, P. E., Martian topography and surface properties as seen by radar: the 1971 opposition, Icarus 18, 8–21, 1973.CrossRefGoogle Scholar
Downs, G. S., Reichley, P. E., and Green, R. R., Radar measurements of Martian topography and surface properties: the 1971 and 1973 oppositions, Icarus 26, 273–312, 1975.CrossRefGoogle Scholar
Evans, J. V. and Hagfors, T., Radar Astronomy, New York: McGraw-Hill, 620pp., 1968.Google Scholar
Fergason, R. L., Christensen, P. R., Bell, J. F. III, et al., Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES derived thermal inertia, J. Geophys. Res. 111(E2), E02S21, doi:10.1029/2005JE002583, 2006a.CrossRefGoogle Scholar
Fergason, R. L., Christensen, P. R., and Kieffer, H. H., High resolution thermal inertia derived from the Thermal Emission Imaging System: thermal model and applications, J. Geophys. Res. 111, E12004, doi:10.1029/2006JE002735, 2006b.CrossRefGoogle Scholar
Franceschetti, G., Iodice, A., Migliaccio, M., and Riccio, D., Scattering from natural rough surfaces modeled by fractional Brownian motion two-dimensional processes, IEEE Trans. Antennas and Propagation 47, 1405–15, 1999.CrossRefGoogle Scholar
Garvin, J. B., Mouginis-Mark, P. J., and Head, J. W., Characterization of rock populations on planetary surfaces: techniques and a preliminary analysis of Mars and Venus, Moon and Planets 24, 355–87, 1981.CrossRefGoogle Scholar
Gilvarry, J. J., Fracture of brittle solids: I. Distribution function for fragment size in single fracture (theoretical), J. Appl. Phys. 32, 391–9, 1961.CrossRefGoogle Scholar
Gilvarry, J. J. and Bergstrom, B. H., Fracture of brittle solids: II. Distribution function for fragment size in single fracture (experimental), J. Appl. Phys. 32, 400–10, 1961.CrossRefGoogle Scholar
Golombek, M. P., The Mars Pathfinder mission, J. Geophys. Res. 102, 3953–65, 1997.CrossRefGoogle Scholar
Golombek, M. and Rapp, D., Size-frequency distributions of rocks on Mars and Earth analog sites: implications for future landed missions, J. Geophys. Res. 102, 4117–29, 1997.CrossRefGoogle Scholar
Golombek, M. P., Cook, R. A., Moore, H. J., and Parker, T. J., Selection of the Mars Pathfinder landing site, J. Geophys. Res. 102, 3967–88, 1997.CrossRefGoogle Scholar
Golombek, M. P.and the Mars Pathfinder science team, Overview of the Mars Pathfinder mission: launch through landing, surface operations, data sets, and science results, J. Geophys. Res. 104, 8523–53, 1999a.CrossRefGoogle Scholar
Golombek, M. P., Moore, H. J., Haldemann, A. F. C., Parker, T. J., and Schofield, J. T., Assessment of Mars Pathfinder landing site predictions, J. Geophys. Res. 104, 8585–94, 1999b.CrossRefGoogle Scholar
Golombek, M. P., Grant, J. A., Parker, T. J., et al., Selection of the Mars Exploration Rover landing sites, J. Geophys. Res., 108(E12), 8072, doi:10.1029/2003JE002074, 48pp., 2003a.CrossRefGoogle Scholar
Golombek, M. P., Haldemann, A. F. C., Forsberg-Taylor, N. K., et al., Rock size-frequency distributions on Mars and implications for MER landing safety and operations, J. Geophys. Res. 108(E12), 8086, doi:10.1029/2002JE002035, 2003b.CrossRefGoogle Scholar
Golombek, M. P., Arvidson, R. E., Bell, J. F. III, et al., Assessment of Mars Exploration Rover landing site predictions, Nature 436, doi:10.1038/nature03600, 2005.CrossRefGoogle ScholarPubMed
Golombek, M. P., Crumpler, L. S., Grant, J. A., et al., Geology of the Gusev cratered plains from the Spirit rover transverse, J. Geophys. Res. 111, E02S07, doi:10.1029/2005JE002503, 2006a.CrossRefGoogle Scholar
Golombek, M. P., Crumpler, L. S., Grant, J. A., et al., Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars: J. Geophys. Res. 111, E12S10, doi:10.1029/2006JE002754, 2006b.CrossRefGoogle Scholar
Grant, J. A., Arvidson, R., Bell, J. F. III, et al., Surficial deposits at Gusev crater along Spirit rover traverses, Science 305, 807–10, 2004.CrossRefGoogle ScholarPubMed
Grant, J. A., Arvidson, R., Crumpler, L. S., et al., Crater gradation in Gusev crater and Meridiani Planum, Mars, J. Geophys. Res. 111, E02S08, doi:10.1029/2005JE002465, 2006a.CrossRefGoogle Scholar
Grant, J. A., Wilson, S. A., Ruff, S. W., Golombek, M. P., and Koester, D. L., The distribution of rocks on the Gusev plains and on Husband Hill, Geophys. Res. Lett. 33, L16202, doi:10.1029/2006GL026964, 2006b.CrossRefGoogle Scholar
Greeley, R. and Guest, J. E., Geologic map of the eastern equatorial region of Mars, USGS Misc. Inv. Map, I-1802B, 1987.Google Scholar
Greeley, R., Kraft, M., Sullivan, R., et al., Aeolian features and processes at the Mars Pathfinder landing site, J. Geophys. Res. 104, 8573–84, 1999.CrossRefGoogle Scholar
Greeley, R., Squyres, S. W., Arvidson, R. E., et al., Wind-related processes detected by the Spirit rover at Gusev crater, Mars, Science 305(5685), 810–13, doi:10.1126/science.1100108, 2004.CrossRefGoogle ScholarPubMed
Greeley, R., Arvidson, R. E., Bartlett, P. W., et al., Gusev crater: wind-related features and processes observed by the Mars Exploration Rover Spirit, J. Geophys. Res. 111, E02S09, doi:10.1029/2005JE002491, 2006.CrossRefGoogle Scholar
Hagfors, T., Backscattering from an undulating surface with applications to radar returns from the Moon, J. Geophys. Res. 69, 3779–84, 1964.CrossRefGoogle Scholar
Haldemann, A. F. C. and Butler, B. J., Evaluating the Phoenix region B landing site rock coverage from available radar data, 4th Int. Conf. Mars Polar Sci. Explor., Houston: Lunar and Planetary Institute, Abstract #8057 (CD-ROM), 2006.Google Scholar
Haldemann, A. F. C., Mitchell, D. L., Jurgens, R. F., Slade, M. A., and Muhleman, D. O., Mars Pathfinder landing site assessment with Goldstone delay-Doppler and CW radar experiments, J. Geophys. Res. 102, 4097–106, 1997.CrossRefGoogle Scholar
Harmon, J. K., A radar study of the Chryse region, Mars, J. Geophys. Res. 102, 4081–96, 1997.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Textures of the soils and rocks at Gusev crater from Spirit's Microscopic Imager, Science 305(5685), 824–6, 2004a.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Evidence from Opportunity's Microscopic Imager for water on Meridiani Planum, Science 306(5702), 1727–30, 2004b.CrossRefGoogle Scholar
Jakosky, B. M. and Christensen, P. R., Global duricrust on Mars: analysis of remote-sensing data, J. Geophys. Res. 91, 3547–59, 1986.CrossRefGoogle Scholar
Jakosky, B. M. and Mellon, M. T., High-resolution thermal inertia mapping of Mars: sites of exobiological interest, J. Geophys. Res. 106, 23887–907, 2001.CrossRefGoogle Scholar
Jakosky, B. M., Hynek, B. M., Pelkey, S. M., et al., Thermophysical properties of the MER and Beagle II landing site regions on Mars, J. Geophys. Res. 111, E08008, doi:10.1029/2004JE002320, 2006.CrossRefGoogle Scholar
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., et al., Thermal and albedo mapping of Mars during the Viking Primary Mission, J. Geophys. Res. 82, 4249–91, 1977.CrossRefGoogle Scholar
Kirk, R., Howington-Kraus, E., Redding, B., et al., High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow angle images, J. Geophys. Res. 108(E12), 8088, doi:10.1029/2003JE002131, 2003.CrossRefGoogle Scholar
Larsen, K. W., Terrestrial quadstatic interferometric radar observations of Mars, Ph.D. thesis, Washington University, St. Louis, 2003.
Larsen, K. W., Haldemann, A. F., Jurgens, R. F., Arvidson, R. E., and Slade, M. A., Radar observations of Mars, 2001 opposition, Lunar Planet. Sci. XXXIII, Houston: Lunar and Planetary Institute, Abstract #1800 (CD-ROM), 2002.Google Scholar
Lemmon, M. T., Wolff, M. J., Smith, M. D., et al., Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity, Science 306, 1753–6, 2004.CrossRefGoogle ScholarPubMed
Malin, M. C. and Edgett, K. S., Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission, J. Geophys. Res. 106, 23429–570, 2001.CrossRefGoogle Scholar
Masursky, H. and Crabill, N. L., The Viking landing sites: selection and certification, Science 193, 809–12, 1976a.CrossRefGoogle Scholar
Masursky, H. and Crabill, N. L., Search for the Viking 2 landing site, Science 194, 62–8, 1976b.CrossRefGoogle Scholar
Masursky, H. and Crabill, N. L., Viking site selection and certification, NASA SP-429, 34pp., 1981.Google Scholar
McSween, H. Y. Jr., Murchie, S. L., Crisp, J., et al., Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site, J. Geophys. Res. 104, 8679–715, 1999.CrossRefGoogle Scholar
McSween, H. Y., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit rover in Gusev crater, Science 305, 842–5, 2004.CrossRefGoogle ScholarPubMed
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. 111, E02S10, doi:10.1029/2005JE002477, 2006.CrossRefGoogle Scholar
Mellon, M. T., Jakosky, B. M., Kieffer, H. H., and Christensen, P. R., High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer, Icarus 148, 437–55, 2000.CrossRefGoogle Scholar
Moersch, J. E., Crumpler, L., Arvidson, R., et al., Comparison of orbital infrared observations and surface measurements by the Mars Exploration Rover Spirit at Gusev crater, Lunar Planet. Sci. Conf. XXXVI, Houston: Lunar and Planetary Institute, Abstract #2020 (CD-ROM), 2005.Google Scholar
Moore, H. J. and Jakosky, B. M., Viking landing sites, remote-sensing observations, and physical properties of martian surface materials, Icarus 81, 164–84, 1989.CrossRefGoogle Scholar
Moore, H. J. and Keller, J. M., Surface-material maps of Viking landing sites on Mars. Reports of Planetary Geology and Geophysics Program – 1989, NASA Tech. Memo., 4210, 533–5 (Abstract), 1990.Google Scholar
Moore, H. J. and Keller, J. M., Surface-material maps of Viking landing sites on Mars. Reports of Planetary Geology and Geophysics Program – 1990, NASA Tech. Memo., 4300, 160–2 (Abstract), 1991.Google Scholar
Moore, H. J. and Thompson, T. W., A radar-echo model for Mars, Proc. Lunar Planet. Sci. Conf. XXI, 457–72, 1991.Google Scholar
Moore, H. J., Hutton, R. E., Clow, G. D., and Spitzer, C. R., Physical properties of the surface materials of the Viking landing sites on Mars, USGS Prof. Paper, 1389, 222pp., 2 plates. 1987.Google Scholar
Moore, H. J., Bickler, D., Crisp, J., et al., Soil-like deposits observed by Sojourner, the Pathfinder rover, J. Geophys. Res. 104, 8729–46, 1999.CrossRefGoogle Scholar
Mutch, T. A., Arvidson, R. E., Binder, A. B., Guinness, E. A., and Morris, E. C., The geology of the Viking Lander 2 site, J. Geophys. Res. 82, 4452–67, 1977.CrossRefGoogle Scholar
Neumann, G. A., Abshire, J. B., Aharonson, O., et al., Mars Orbiter Laser Altimeter pulse width measurements and footprint scale roughness, Geophys. Res. Lett. 30, 1561–5, 2003.CrossRefGoogle Scholar
Nowicki, S. A. and Christensen, P. R., Rock abundance on Mars from the Thermal Emission Spectrometer, J. Geophys. Res. 112, EO5007, doi:10.1029/2006JE002798, 2007.CrossRefGoogle Scholar
Palluconi, F. D. and Kieffer, H. H., Thermal inertia mapping from 60°S to 60°N, Icarus 45, 415–26, 1981.CrossRefGoogle Scholar
Pelkey, S. M., Jakosky, B. M., and Mellon, M. T., Thermal inertia of crater-related wind streaks on Mars, J. Geophys. Res. 106, 23909–20, 2001.CrossRefGoogle Scholar
Pleskot, L. K. and Miner, E. D., Time variability of Martian bolometric albedo, Icarus 45, 179–201, 1981.CrossRefGoogle Scholar
Pollack, J. B., Colburn, D. S., Flasar, F. M., Properties and effects of dust particles suspended in the martian atmosphere, J. Geophys. Res. 84(B6), 2929–45, 1979.CrossRefGoogle Scholar
Presley, M. A. and Christensen, P. R., Thermal conductivity measurements of particulate materials. 2. Results, J. Geophys. Res. 102, 6551–66, 1997.CrossRefGoogle Scholar
Putzig, N. E. and Mellon, M. T., Apparent thermal inertia and the surface heterogeneity of Mars, Icarus 191, 68–94, 2007.CrossRefGoogle Scholar
Putzig, N. E., Mellon, M. T., Arvidson, R. E., and Kretke, K. A., Global thermal inertia and surface properties of Mars from the MGS mapping mission, Icarus 173, 325–41, 2005.CrossRefGoogle Scholar
Rosin, P. and Rammler, E., The laws governing the fineness of powdered coal, J. Inst. Fuel 7, 29–36, 1933.Google Scholar
Ruff, S. W. and Christensen, P. R., Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data, J. Geophys. Res. 107 (E12), 5127, doi:10.1029/2001JE001580, 2002.CrossRefGoogle Scholar
Scott, D. H. and Tanaka, K. L., Geologic map of the western equatorial region of Mars, USGS Map, I–1802–A, 1986.Google Scholar
Simpson, R. A. and Tyler, G. L., Radar measurements of heterogeneous small-scale surface texture on Mars Chryse, J. Geophys. Res. 85, 6610–14, 1980.CrossRefGoogle Scholar
Simpson, R. A., Tyler, G. L., and Campbell, D. B., Arecibo radar observations of Mars surface characteristics in the Northern Hemisphere, Icarus 36, 153–73, 1978.CrossRefGoogle Scholar
Simpson, R. A., J. K. Harmon, S. H. Zisk, T. W. Thompson, and D. O. Muhleman, Radar determination of Mars surface properties. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 652–85, 1992.Google Scholar
Simpson, R. A., Tyler, G. L., Pätzold, M., and Häusler, B., Mars Express bistatic radar observations in Northern Mars plains with possible application to PHOENIX landing site characterization. Lunar Planet. Sci. XXXVII, Houston: Lunar and Planetary Institute, Abstract #1862, 2006.
Smith, D. E. and Zuber, M. T., The relationship between MOLA northern hemisphere topography and the 6.1-Mbar atmospheric pressure surface of Mars, Geophys. Res. Lett. 25, 4397–400, 1998.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. J., Frey, H. V., et al., Mars Orbiter Laser Altimeter (MOLA): experiment summary after the first year of global mapping of Mars, J. Geophys. Res. 106, 23689–722, 2001.CrossRefGoogle Scholar
Soderblom, L., Anderson, R. C., Arvidson, R. E., et al., Soils of Eagle crater and Meridiani Planum at the Opportunity Rover landing site, Science 306(5702), 1723–6, 2004.CrossRefGoogle ScholarPubMed
Soffen, G. A., The Viking project, J. Geophys. Res. 82, 3959–70, 1977.CrossRefGoogle Scholar
Soffen, G. A. and Young, A. T., The Viking missions to Mars, Icarus 16, 1–16, 1972.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Baumgartner, E. T., et al., Athena Mars rover science investigation, J. Geophys. Res. 108 (E12), 8062, doi:10.1029/2003JE002121, 2003.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Spirit Rover's Athena science investigation at Gusev crater, Mars, Science 305(5685), 794–9, doi:10.1126/science.1100194, 2004a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars, Science 306(5702), 1698–703, doi:10.1126/science.1106171, 2004b.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al., In-Situ evidence for an ancient aqueous environment on Mars, Science 306, 1709–14, 2004c.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Blaney, D. L., et al., Rocks of the Columbia Hills, J. Geophys. Res. 111, E02S11, doi:10.1029/2005JE002562, 2006.CrossRefGoogle Scholar
Sullivan, R., Bandfield, D., Bell, J. F. III, et al., Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site, Nature 436, 58–61, doi:10.1038/nature03641, July 7, 2005.CrossRefGoogle ScholarPubMed
Sultan-Salem, A. K. and Tyler, G. L., Generalized fractal-based laws for scattering from planetary surfaces: a unifying scale-explicit paradigm, J. Geophys. Res. 111(E06), doi:10.1029/2005JE002540, 2006.CrossRefGoogle Scholar
Tanaka, K. L., Skinner, J. A. Jr., Hare, T. M., Joyal, T., and Wenker, A., Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data, J. Geophys. Res. 108(E4), 8043, doi:10.1029/2002JE001908, 2003.CrossRefGoogle Scholar
Tanaka, K. L., Skinner, J. A. Jr., and Hare, T. M., Geologic map of the northern plains of Mars, USGS Sci. Inv. Map, SIM 2888, 2005.Google Scholar
Tang, C. H., Boak, T. I. S. III, and Grossi, M. D., Bistatic radar measurements of electrical properties of the Martian surface, J. Geophys. Res. 82, 4305–15, 1977.CrossRefGoogle Scholar
Tomasko, M. G., Doose, L. R., Lemmon, M., Smith, P. H., and Wegryn, E., Properties of dust in the Martian atmosphere from the Imager for Mars Pathfinder, J. Geophys. Res. 104, 8987–9007, 1999.CrossRefGoogle Scholar
Toon, O. B., Pollack, J. B., and Sagan, C., Physical properties of the particles comprising the Martian dust storm of 1971–1972, Icarus 3, 633–96, 1977.Google Scholar
Tyler, G. L., Campbell, D. B., Downs, G. S., Green, R. R., and Moore, H. J., Radar characteristics of Viking 1 landing sites, Science 193, 812–815, 1976.CrossRefGoogle ScholarPubMed
Wang, A., Haskins, L. A., Squyres, S. W., et al., Sulfate deposition in the subsurface regolith of Gusev crater, Mars, J. Geophys. Res. 111, E02S17, doi:10.1029/2005JE002513, 2006.Google Scholar
Ward, J. G., Arvidson, R. E., and Golombek, M., The size-frequency and areal distribution of rock clasts at the Spirit landing site, Gusev crater, Mars, Geophys. Res. Lett. 32, L11203, doi:10.1029/2005GL022705, 2005.CrossRefGoogle Scholar
Wohletz, K. H., Sheridan, M. F., and Brown, W. K., Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash, J. Geophys. Res. 94, 15703–21, 1989.CrossRefGoogle Scholar
Yen, A. S., Gellert, R., Schröder, C., et al., An integrated view of the chemistry and mineralogy of Martian soils, Nature 436, 49–54, doi:10.1038/nature03637, 2005.CrossRefGoogle ScholarPubMed
Zeitler, W. and Oberst, J., The Mars Pathfinder landing site and the Viking control point network, J. Geophys. Res. 104, 8935–41, 1999.CrossRefGoogle Scholar
28
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×