Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54jdg Total loading time: 1.203 Render date: 2022-08-18T07:30:29.177Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

9 - Global mineralogy mapped from the Mars Global Surveyor Thermal Emission Spectrometer

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices

Published online by Cambridge University Press:  10 December 2009

P. R. Christensen
Affiliation:
Planetary Exploration Laboratory Arizona State University Moeur Building 110D Tempe, AZ 85287, USA
J. L. Bandfield
Affiliation:
Arizona State University, MC 6305 Mars Space Flight Facility Tempe, AZ, USA
A. D. Rogers
Affiliation:
Department of Geosciences, SUNY at Stony Brook Stony Brook, NY 11794, USA
Glotch R. T. D.
Affiliation:
Department of Geosciences, SUNY at Stony Brook Stony Brook, NY 11794, USA
V. E. Hamilton
Affiliation:
Hawaii Institute of Geophysics & Planetology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA
S. W. Ruff
Affiliation:
Mars Space Flight Facility Arizona State University Moeur Building, Room 131 Tempe, AZ 85287-6305, USA
M. B. Wyatt
Affiliation:
Brown University, Department of Geological Science, 324 Brook Street Providence, RI 02912-1846, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The Thermal Emission Spectrometer (TES) on Mars Global Surveyor (MGS) mapped the surface, atmosphere, and polar caps of Mars from 1997 through 2006. TES provided the first global mineral maps of Mars, and showed that the surface is dominated by primary volcanic minerals (plagioclase feldspar, pyroxene, and olivine) along with high-silica, poorly crystalline materials. Differences in the abundances of these minerals were initially grouped into two broad compositional categories that correspond to basalt and basaltic andesite. Additional analysis has identified four surface compositional groups that are spatially coherent, revealing variations in the composition of the primary crust-forming magmas through time. In general, plagioclase, high-Ca clinopyroxene, and high-silica phases are the dominant mineral groups for most regions, with lesser amounts of orthopyroxene, olivine, and pigeonite. One of the fundamental results from the TES investigation was the identification of several large deposits of crystalline hematite, including those in Meridiani Planum, that were interpreted to indicate the presence of liquid water for extended periods of time. This interpretation led to the selection of Meridiani as the target for the Opportunity rover, the first time that a planetary landing site was selected on the basis of mineralogic information. Aqueous weathering may have formed some of the high-silica phases seen in TES spectra at high latitudes, and the Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) spectrometer has detected phyllosilicates and sulfates, typically formed by aqueous weathering and deposition, in several locations.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 193 - 220
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. B., Lunar and martian surfaces: petrologic significance of absorption bands in the near-infrared, Science 159, 1453–5, 1968.CrossRefGoogle ScholarPubMed
Adams, J. B., Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system, J. Geophys. Res. 79, 4829–36, 1974.CrossRefGoogle Scholar
Adams, J. B., Smith, M. O., and Johnson, P. E., Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site, J. Geophys. Res. 91, 8098–112, 1986.CrossRefGoogle Scholar
Albee, A. L., Arvidson, R. E., Palluconi, F., and Thorpe, T., Overview of the Mars Global Surveyor Mission, J. Geophys. Res. 106, 23291–316, 2001.CrossRefGoogle Scholar
Arvidson, R. E., Seelos, F. P. IV, Deal, K. S., et al., Mantled and exhumed terrains in Terra Meridiani, Mars, J. Geophys. Res. 108(E12), 8073, doi:8010.1029/2002JE001982, 2003.CrossRefGoogle Scholar
Bandfield, J. L., Global mineral distributions on Mars, J. Geophys. Res. 107, doi:10.1029/2001JE001510, 2002.CrossRefGoogle Scholar
Bandfield, J. L. and Smith, M. D., Multiple emission angle surface-atmosphere separations of Thermal Emission Spectrometer data, Icarus 161, 47–65, 2003.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R., A global view of Martian volcanic compositions, Science 287, 1626–30, 2000a.CrossRefGoogle Scholar
Bandfield, J. L., Smith, M. D., and Christensen, P. R., Spectral dataset factor analysis and endmember recovery: application to analysis of martian atmospheric particulates, J. Geophys. Res. 105, 9573–88, 2000b.CrossRefGoogle Scholar
Bandfield, J. L., Glotch, T. D., and Christensen, P. R., Spectroscopic identification of carbonates in the Martian dust, Science 301, 1084–87, 2003.CrossRefGoogle ScholarPubMed
Bandfield, J. L., Hamilton, V. E., Christensen, P. R., and McSween, H. Y. Jr., Identification of quartzofeldspathic materials on Mars, J. Geophys. Res. 109, doi:10.1029/2004JE002290, 2004.CrossRefGoogle Scholar
Barker, F., Trondhjemite: definition, environment, and hypothesis of origin. In Trondhjemites, Dacites, and Related Rocks (ed. Barker, F.), New York: Elsevier, pp. 1–12, 1979.Google Scholar
Beck, P., Gillet, P., Goresy, A. E., and Mostefaoui, S., Timescales of shock processes in chondritic and Martian meteorites, Nature 435, 1071–4, 2005.CrossRefGoogle ScholarPubMed
Bell III, J. F., Iron, sulfate, carbonate, and hydrated minerals on Mars. In Mineral Spectroscopy: A Tribute of Roger G. Burns (ed. Dyar, M. D.et al.), The Geochemical Society, Special Publication No. 5, pp. 359–80, 1996.Google Scholar
Bell III, J. F. and R. V. Morris, Identification of hematite on Mars from HST, Lunar Planet. Sci. XXX, Abstract #1751, 1999.
Bell, J. F. III, Pollack, J. B., Geballe, T. R., Cruikshank, D. P., and Freedman, R., Spectroscopy of Mars from 2.04 to 2.44 µm during the 1993 opposition: absolute calibration and atmospheric vs. mineralogic origin of narrow absorption features, Icarus 111, 106–23, 1994.CrossRefGoogle Scholar
Bell, J. F. III, McSween, H. Y. Jr., Murchie, S. L., et al., Mineralogic and compositional properties of Martian soil and dust: results from Mars Pathfinder, J. Geophys. Res. 105, 1721–55, 2000.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum, Science 306, 1703–9, 2004.CrossRefGoogle ScholarPubMed
Bibring, J.-P., Langevin, Y., Poulet, F., et al., Perennial water ice identified in the south polar cap of Mars, Nature 428, 627–30, 2004.CrossRefGoogle ScholarPubMed
Bibring, J.-P., Langevin, Y., Gendrin, A., et al., Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science 307, 1576–81, doi:1510.1126/science.1108806, 2005.CrossRefGoogle ScholarPubMed
Bibring, J.-P., Langevin, Y., Mustard, J. F., et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science 312, 400–4, doi:410.1126/science.1122659, 2006.CrossRefGoogle ScholarPubMed
Blaney, D. L. and McCord, T. B., Indications of sulfate minerals in the martian soil from Earth-based spectroscopy, J. Geophys. Res. 100, 14433–41, 1995.CrossRefGoogle Scholar
Blaney, D., D. Glenar, and G. Bjoraker, High spectral resolution spectroscopy of Mars from 2 to 4 µm: surface mineralogy and the atmosphere, 6th Int. Conf. Mars, Pasadena, California, Abstract #3237 (CD-ROM), July 20–25, 2003.
Booth, M. C. and Kieffer, H. H., Carbonate formation in Marslike environments, J. Geophys. Res. 83, 1809–15, 1978.CrossRefGoogle Scholar
Borg, L. E., Nyquist, L. E., Weissman, H., Shih, C.-Y., and Reese, Y., The age of Dar al Gani 476 and the differentiation history of the martian meteorites inferred from their radiogenic isotopic systematics, Geochim. Cosmochim. Acta 67, 3519–36, 2003.CrossRefGoogle Scholar
Boynton, W. V., Feldman, W. C., Squyres, W., et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits, Science 297, 81–5, 2002.CrossRefGoogle ScholarPubMed
Brain, D. A. and Jakosky, B. M., Atmospheric loss since the onset of the Martian geologic record: combined role of impact erosion and sputtering, J. Geophys. Res. 103, 22689–94, 1998.CrossRefGoogle Scholar
Byrne, S. and Ingersoll, A. P., A sublimation model for martian south polar ice features, Science 299, 1051–3, 2003.CrossRefGoogle ScholarPubMed
Calvin, W. M., King, T. V. V., and Clark, R. N., Hydrous carbonates on Mars? Evidence from Mariner 6/7 Infrared Spectrometer and ground-based telescopic spectra, J. Geophys. Res. 99, 14659–75, 1994.CrossRefGoogle Scholar
Carr, M. H., Water on Mars, New York: Oxford University Press, 1996.Google Scholar
Carr, M. H., Mars Global Surveyor observations of fretted terrain, J. Geophys. Res. 106, 23571–95, 2001.CrossRefGoogle Scholar
Catling, D. C. and Moore, J. M., The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars, Icarus 165, 277–300, 2003.CrossRefGoogle Scholar
Chan, M. A., Beitler, B., Parry, W. T., Ormo, J., and Komatsu, G., A possible terrestrial analogue for hematite concretions on Mars, Nature 429, 731–4, 2004.CrossRefGoogle Scholar
Christensen, P. R., Martian dust mantling and surface composition: interpretation of thermophysical properties, J. Geophys. Res. 87, 9985–98, 1982.CrossRefGoogle Scholar
Christensen, P. R., Regional dust deposits on mars: physical properties, age, and history, J. Geophys. Res. 91, 3533–45, 1985.CrossRefGoogle Scholar
Christensen, P. R., Variations in martian surface composition and cloud occurrence determined from thermal infrared spectroscopy: analysis of Viking and Mariner 9 data, J. Geophys. Res. 103, 1733–46, 1998.CrossRefGoogle Scholar
Christensen, P. R., Formation of recent martian gullies through melting of extensive water-rich snow deposits, Nature 422, 45–8, doi:10.1038/nature01436, 2003.CrossRefGoogle ScholarPubMed
Christensen, P. R. and Harrison, S. T., Thermal infrared emission spectroscopy of natural surfaces: application to desert varnish coatings on rocks, J. Geophys. Res. 98, 19819–34, 1993.CrossRefGoogle Scholar
Christensen, P. R. and Ruff, S. W., The formation of the hematite-bearing unit in Meridiani Planum: evidence for deposition in standing water, J. Geophys. Res. 109, E08003, doi:08010.01029/02003JE002233, 2004.CrossRefGoogle Scholar
Christensen, P. R., Anderson, D. L., Chase, S. C., et al., Thermal Emission Spectrometer experiment: the Mars Observer mission, J. Geophys. Res. 97, 7719–34, 1992.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., A thermal emission spectral library of rock forming minerals, J. Geophys. Res. 105, 9735–8, 2000a.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E., and Clark, R. N., Identification of a basaltic component on the martian surface from Thermal Emission Spectrometer data, J. Geophys. Res. 105, 9609–22, 2000b.CrossRefGoogle Scholar
Christensen, P. R., Clark, R. N., Kieffer, H. H., et al., Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water, J. Geophys. Res. 105, 9623–42, 2000c.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., The Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res. 106, 23823–71, 2001a.CrossRefGoogle Scholar
Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., and Malin, M. C., Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars, J. Geophys. Res. 106, 23873–85, 2001b.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Bell, J. F. III, et al., Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results, Science 300, 2056–61, 2003.CrossRefGoogle ScholarPubMed
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al., Initial results from the Miniature Thermal Emission Spectrometer experiment at the Spirit landing site at Gusev crater, Science 305, 837–42, 2004a.CrossRefGoogle Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover, Science 306, 1733–9, 2004b.CrossRefGoogle Scholar
Christensen, P. R., McSween, H. Y. Jr., Bandfield, J. L., et al., Evidence for igneous diversity and magmatic evolution on Mars from infrared spectral observations, Nature 436, doi:10.1038/nature03639, 2005.Google Scholar
Clark, B. C. and Baird, A. K., Is the martian lithosphere sulphur rich?, J. Geophys. Res. 84, 8395–403, 1979.CrossRefGoogle Scholar
Clark, B. C., Morris, R. V., McLennan, S. M., et al., Chemistry and mineralogy of outcrops at Meridiani Planum, Earth Planet. Sci. Lett. 240, 73–94, 2005.CrossRefGoogle Scholar
Clark, D. B., Granitoid Rocks, New York: Chapman & Hall, 283 pp., 1992.Google Scholar
Conel, J. E., Infrared emissivities of silicates: experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums, J. Geophys. Res. 74, 1614–34, 1969.CrossRefGoogle Scholar
Conrath, B., Curran, R., Hanel, R., et al., Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9, J. Geophys. Res. 78, 4267–78, 1973.CrossRefGoogle Scholar
Costard, F., Forget, F., Mangold, N., and Peulvast, J. P., Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity, Science 295, 110–13, 2002.CrossRefGoogle ScholarPubMed
Craddock, R. A. and Maxwell, T. A., Geomorphic evolution of the Martian highlands through ancient fluvial processes, J. Geophys. Res. 98, 3453–68, 1993.CrossRefGoogle Scholar
Edgett, K. S., The sedimentary rocks of Sinus Meridiani: five key observations from data acquired by the Mars Global Surveyor and Mars Odyssey orbiters, Mars, Mars 1, 5–58, doi:10.1555/mars.2005.0002, 2005.CrossRefGoogle Scholar
Edgett, K. S. and Christensen, P. R., The particle size of Martian aeolian dunes, J. Geophys. Res. 96, 22765–76, 1991.CrossRefGoogle Scholar
Edgett, K. S. and Parker, T. J., Water on early Mars: possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani, Geophys. Res. Lett. 24, 2897–900, 1997.CrossRefGoogle Scholar
Erard, S. and Calvin, W., New composite spectra of Mars, 0.4–5.7 µm, Icarus 130, 449–60, 1997.CrossRefGoogle Scholar
Erard, S., Bibring, J.-P., and Langevin, Y., Determination of spectral units in the Syrtis Major-Isidis Planitia region from Phobos/ISM observations, Lunar Planet. Sci. XX, 327, 1990.Google Scholar
Fairen, A. G., Fernandez-Remolar, D., Dohm, J. M., Baker, V. R., and Amils, R., Inhibition of carbonate synthesis in acidic oceans on early Mars, Nature 431, 423–6, 2004.CrossRefGoogle ScholarPubMed
Fanale, F. P. and Jakosky, B. M., Regolith-atmosphere exchange of water and carbon dioxide on Mars: effects on atmospheric history and climate change, Planet. Space Sci. 30, 819–31, 1982.CrossRefGoogle Scholar
Fanale, F. P., S. E. Postawko, J. B. Pollack, M. H. Carr, and R. O. Pepin, Epochal climate change and volatile history. In Mars (ed. Kieffer, H. H.et al.), Tucson, AZ: University of Arizona Press, 1992.Google Scholar
Farmer, V. C., The Infrared Spectra of Minerals, London: Mineralogical Society, 539pp., 1974.CrossRefGoogle Scholar
Feely, K. C. and Christensen, P. R., Quantitative compositional analysis using thermal emission spectroscopy: application to igneous and metamorphic rocks, J. Geophys. Res. 104, 24195–210, 1999.CrossRefGoogle Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al., Global distribution of neutrons from Mars: results from Mars Odyssey, Science 297, 75–8, 2002.CrossRefGoogle ScholarPubMed
Forget, F., Haberle, R. M., Montmessin, F., Levrard, B., and Head, J. W., Formation of glaciers on Mars by atmospheric precipitation at high obliquity, Science 311, 368–71, 2006.CrossRefGoogle ScholarPubMed
Forsberg-Taylor, N. K., Howard, A. D., and Craddock, R. A., Crater degradation in the Martian highlands: morphometric analysis of the Sinus Sabaeus region and the simulation modeling suggest fluvial processes, J. Geophys. Res. 109, E05002, doi:05010.01029/02004JE002242, 2004.CrossRefGoogle Scholar
Gaffey, S. J., L. A. McFadden, D. Nash, and C. M. Pieters, Ultraviolet, visible, and near-infrared reflectance spectroscopy: laboratory spectra of geologic materials. In Remote Geochemical Analysis: Elemental and Mineralogical Composition (ed. Pieters, C. M. and Englert, P. A. J.), Cambridge: Cambridge University Press, pp. 43–78, 1993.Google Scholar
Gaidos, E. J., Cryovolcanism and the recent flow of liquid water on Mars, Icarus 153, 218–23, 2001.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemistry of rocks and soils at Gusev crater from the Alpha Particle X-ray Spectrometer, Science 305, 829–32, 2004.CrossRefGoogle ScholarPubMed
Gellert, R., Rieder, R., Brückner, J., et al., Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report, J. Geophys. Res. 111, doi:10.1029/2005JE002555, 2006.CrossRefGoogle Scholar
Gendrin, A., Mangold, N., Bibring, J.-P., et al., Sulfates in martian layered terrains: the OMEGA/Mars Express view, Science 307, 1587–90, 2005.CrossRefGoogle ScholarPubMed
Gibson, E. K., Wentworth, S. J., and McKay, D. S., Chemical weathering and diagenesis of a cold desert soil from Wright Valley, Antarctica: an analog of martian weathering processes, J. Geophys. Res. 88, A912–28, 1983.CrossRefGoogle Scholar
Gilmore, M. S. and Phillips, E. L., The role of aquicludes in the formation of martian gullies, Geology 30, 1107–10, 2002.2.0.CO;2>CrossRefGoogle Scholar
Glotch, T. D. and Christensen, P. R., Geologic and mineralogic mapping of Aram Chaos: evidence for a water-rich history, J. Geophys. Res. 110, E09006, doi:09010.01029/02004JE02389, 2005.CrossRefGoogle Scholar
Glotch, T. D. and Rogers, A. D., Evidence for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars, J. Geophys. Res. 112, E06001, doi:10.1029/2006JE002863, 2007.CrossRefGoogle Scholar
Glotch, T. D., Morris, R. V., Christensen, P. R., and Sharp, T. G., Effect of precursor mineralogy on the thermal infrared emission spectra of hematite: application to martian hematite mineralization, J. Geophys. Res. 109, E07003, doi:07010.01029/02003JE002224, 2004.CrossRefGoogle Scholar
Glotch, T. D., Bandfield, J. L., Christensen, P. R., et al., The mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation, J. Geophys. Res. 111, doi:10.1029/2005JE002672, 2006.CrossRefGoogle Scholar
Goetz, W., Bertelsen, P., Binau, C. S., et al., Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust, Nature 436, 62–5, 2005.CrossRefGoogle ScholarPubMed
Golombek, M. P., Grant, J. A., Crumpler, L. S., et al., Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars, J. Geophys. Res. 111, doi:10.1029/JE002754, 2006.CrossRefGoogle Scholar
Gooding, J. L., Chemical weathering on Mars, Icarus 33, 483–513, 1978.CrossRefGoogle Scholar
Grant, J. A., Valley formation in Margaritifer Sinus, Mars, by precipitation-recharged ground-water sapping, Geology 28, 223–6, 2000.2.0.CO;2>CrossRefGoogle Scholar
Grotzinger, J., Bell, J. F. III, Calvin, W., et al., Stratigraphy, sedimentology and depositional environment of the Burns Formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 11–72, 2005.CrossRefGoogle Scholar
Gulick, V. C. and Baker, V. R., Fluvial valleys and martian palaeoclimates, Nature 341, 514–16, 1989.CrossRefGoogle Scholar
Gulick, V. C. and Baker, V. R., Origin and evolution of valleys on Martian volcanoes, J. Geophys. Res. 95, 14325–44, 1990.CrossRefGoogle Scholar
Haberle, R. M., McKay, C. P., Schaeffer, J., et al., On the possibility of liquid water on present-day Mars, J. Geophys. Res. 106, 23317–26, 2001.CrossRefGoogle Scholar
Hamilton, V. E. and Christensen, P. R., Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy, J. Geophys. Res. 105, 9717–34, 2000.CrossRefGoogle Scholar
Hamilton, V. E. and Christensen, P. R., Evidence for extensive olivine-rich bedrock in Nili Fossae, Mars, Geology 33, 433–6, 2005.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., and McSween, H. Y. Jr., Determination of martian meteorite lithologies and mineralogies using vibrational spectroscopy, J. Geophys. Res. 102, 25593–603, 1997.CrossRefGoogle Scholar
Hamilton, V. E., Wyatt, M. B., McSween, H. Y. Jr., and Christensen, P. R., Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: II. Application to martian surface spectra from MGS TES, J. Geophys. Res. 106, 14733–47, 2001.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., and McSween, H. Y. Jr., Determining the compositions of martian meteorites using thermal infrared emission spectroscopy: a precursor to martian surface spectroscopy, Metorit. Planet. Sci. 38, 2003a.Google Scholar
Hamilton, V. E., Christensen, P. R., McSween, H. Y. Jr., and Bandfield, J. L., Searching for the source regions of martian meteorites using MGS TES: integrating martian meteorites into the global distribution of igneous materials on Mars, Meteorit. Planet. Sci. 38, 871–85, 2003b.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., and McSween, H. Y. Jr., Global constraints on the source regions of martian meteorites from MGS TES data, Meteorit. Planet. Sci. 37, 59, 2003c.Google Scholar
Hamilton, V. E., McSween, J. H. Y., and Hapke, B., Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols, J. Geophys. Res. 110, doi:10.1029/2005JE002501, 2005.CrossRefGoogle Scholar
Hanel, R. A., Conrath, B. J., Hovis, W. A., et al., Infrared spectroscopy experiment on the Mariner 9 mission: preliminary results, Science 175, 305–8, 1972.CrossRefGoogle ScholarPubMed
Hartmann, W. K., Comparison of icelandic and martian hillside gullies, Proc. Lunar Planet. Sci. XXXIII, Abstract #1904, 2002.
Haskin, L. A., Wang, A., Jolliff, B. L., et al., Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater, Nature 436, 66–9, doi:10.1038/nature03640, 2005.CrossRefGoogle ScholarPubMed
Head, J. N., Melosh, H. J., and Ivanov, B. A., Martian meteorite launch: high-speed ejecta from small craters, Science 298, 1752–6, 2002.CrossRefGoogle ScholarPubMed
Head, J. W. III, Hiesinger, H., Ivanov, M. A., and Kreslavsky, M. A., Possible ancient oceans on Mars: evidence from Mars Orbiter Laser altimeter data, Science 286, 2134–7, 1999.CrossRefGoogle ScholarPubMed
Head, J. W., Neukum, G., Jaumann, R., et al., Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars, Nature 434, 346–51, 2005.CrossRefGoogle ScholarPubMed
Hecht, M. H., Metastability of liquid water on mars, Icarus 156, 373–86, 2002.CrossRefGoogle Scholar
Heldmann, J. L. and Mellon, M. T., Observations of martian gullies and constraints on potential formation mechanisms, Icarus 168, 285–304, 2004.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Evidence from Opportunity's Microscopic Imager for water on Meridiani Planum, Science 306, 1727–30, 2004.CrossRefGoogle ScholarPubMed
Hoefen, T., Clark, R. N., Bandfield, J. L., et al., Discovery of olivine in the Nili Fossae region of Mars, Science 302, 627–30, 2003.CrossRefGoogle ScholarPubMed
Houck, J. R., Pollack, J. B., Sagan, C., Schaack, D., and Decker, J. J. A., High altitude infrared spectroscopic evidence for bound water on Mars, Icarus 18, 470–80, 1973.CrossRefGoogle Scholar
Howard, A. D., Moore, J. M., and Irwin, I. R. P., An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits, J. Geophys. Res. 110, E12S14, doi:10.1029/2005JE002459, 2005.CrossRefGoogle Scholar
Hunt, G. R. and Salisbury, J. W., Mid-infrared spectral behavior of metamorphic rocks, Environ. Res. Paper 543 -AFCRL-TR-76–0003, 67, 1976.Google Scholar
Hunt, G. R., Salisbury, J. W., and Lenhoff, C. J., Visible and near-infrared spectra of minerals and rocks: III. Oxides and hydroxides, Mod. Geol. 2, 195–205, 1971.Google Scholar
Hurowitz, J. A., McLennan, S. M., Tosca, N. J., et al., In situ and experimental evidence for acidic weathering of rocks and soils on Mars, J. Geophys. Res. 111, doi:10.1029/2005JE002515, 2006.CrossRefGoogle Scholar
Hynek, B. M., Implications for hydrologic processes on Mars from extensive bedrock outcrops throughout Terra Meridiani, Nature 431, 156–9, 2005.CrossRefGoogle Scholar
Hynek, B. M. and Phillips, R. J., New data reveal mature, integrated drainage systems on Mars indicative of past precipitation, Geology 31, 757–60, 2003.CrossRefGoogle Scholar
Hynek, B. M., Arvidson, R. E., and Phillips, R. J., Geologic setting and origin of Terra Meridiani hematite deposit on Mars, J. Geophys. Res. 107, 5088, doi:5010.1029/2002E001891, 2002.CrossRefGoogle Scholar
Jakosky, B. M. and Carr, M. A., Possible precipitation of ice at low latitudes of Mars during periods of high obliquity, Nature 315, 559–61, 1985.CrossRefGoogle Scholar
Jakosky, B. M., Henderson, B. G., and Mellon, M. T., Chaotic obliquity and the nature of the Martian climate, J. Geophys. Res. 100, 1579–84, 1995.CrossRefGoogle Scholar
Johnson, P. E., Smith, M. O., Taylor-George, S., and Adams, J. B., A semiempirical analysis of the reflectance spectra of binary mineral mixtures, J. Geophys. Res. 88, 3557–61, 1983.CrossRefGoogle Scholar
Kahn, R., The evolution of CO2 on Mars, Icarus 62, 175–90, 1985.CrossRefGoogle Scholar
Kargel, J. S., Baker, V. R., Begét, J. E., et al., Evidence of continental glaciation in the martian northern plains, J. Geophys. Res. 100, 5351–68, 1995.CrossRefGoogle Scholar
Kass, D. M. and Yung, Y. L., Loss of atmosphere from Mars due to solar wind-induced sputtering, Science 268, 697–9, 1995.CrossRefGoogle ScholarPubMed
Kieffer, H. H., Chase, J. S. C., Martin, T. Z., Miner, E. D., and Palluconi, F. D., Martian north pole summer temperatures: dirty water ice, Science 194, 1341–4, 1976.CrossRefGoogle ScholarPubMed
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., et al., Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res. 82, 4249–92, 1977.CrossRefGoogle Scholar
Kirkland, L. E., Herr, K. C., and Adams, P. M., Infrared stealthy surfaces: why TES and THEMIS may miss some substantial mineral deposits on Mars and implications for remote sensing of planetary surfaces, J. Geophys. Res. 198, 5137, doi:5110.1029/2003JE002105, 2003.Google Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from the Mössbauer spectrometer on the Opportunity rover, Science 306, 1740–5, 2004.CrossRefGoogle Scholar
Knauth, L. P., Burt, D. M., and Wohletz, K. H., Impact origin of sediments at the Opportunity landing site on Mars, Nature 438, 1123–8, 2005.CrossRefGoogle ScholarPubMed
Knudson, A. T. and P. R. Christensen, Hematite in Valles Marineris: context, composition, distribution, morphology, physical properties, and comparison to other Mars hematite deposits, AGU Fall Meeting, Abstract #P21A-0215, 2004.
Koeppen, W. C. and Hamilton, V. E., Discrimination of glass and phyllosilicate minerals in thermal infrared data, J. Geophys. Res. 110, doi:10.1029/2005JE002474, 2005.CrossRefGoogle Scholar
Kraft, M. D., Michalski, J. R., and Sharp, T. G., Effects of pure silica coatings on thermal emission spectra of basaltic rocks: considerations for Martian surface mineralogy, Geophys. Res. Lett. 30, 2288, doi:2210.1029/2003GL018848, 2003.CrossRefGoogle Scholar
Lane, M. D., Infrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite, J. Geophys. Res. 104, 14099–108, 1999.CrossRefGoogle Scholar
Lane, M. D. and Christensen, P. R., Thermal infrared emission spectroscopy of anhydrous carbonates, J. Geophys. Res. 102, 25581–92, 1997.CrossRefGoogle Scholar
Lane, M. D. and Christensen, P. R., Thermal infrared emission spectroscopy of salt minerals predicted for Mars, Icarus 135, 528–36, 1998.CrossRefGoogle Scholar
Lane, M. D., Morris, R. V., Mertzman, S. A., and Christensen, P. R., Evidence for platy hematite grains in Sinus Meridiani, Mars, J. Geophys. Res. 107, 5126, doi:5110.1029/2001JE001832, 2002.CrossRefGoogle Scholar
Lane, M. D., Dyar, M. D., and Bishop, J. L., Spectroscopic evidence for hydrous iron sulfate in the Martian soil, Geophys. Res. Lett. 31, doi:10.1029/2004GL021231, 2004.CrossRefGoogle Scholar
Laskar, J. A., Correia, C. A., Gastineau, M., et al., Long term evolution and chaotic diffusion of the insolation quantities of Mars, Icarus 170, 343–64, 2004.CrossRefGoogle Scholar
Lazerev, A. N., Vibrational Spectra and Structure of Silicates, New York: Consultants Bureau, 302pp., 1972.Google Scholar
Lee, P., C. S. Cockell, M. M. Marinova, C. P. McKay, and J. W. Rice, Snow and ice melt flow features in Devon Island, Nunavut, Arctic Canada as possible analogs for recent slope flow features on Mars, Lunar Planet. Sci. Abstract 1809 (CD-ROM), 2001.
Lucchitta, B. K., Ice sculpture in the Martian outflow channels, J. Geophys. Res. 87, 9951–73, 1982.CrossRefGoogle Scholar
Lyon, R. J. P., Evaluation of Infrared Spectroscopy for Compositional Analysis of Lunar and Planetary Soils, Stanford Research Institute, 1962.Google Scholar
Malin, M. C. and Edgett, K. S., Evidence for recent ground water seepage and surface runoff on Mars, Science 288, 2330–5, 2000.CrossRefGoogle ScholarPubMed
Malin, M. C. and Edgett, K. S., Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission, J. Geophys. Res. 106, 23429–570, 2001.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S., Evidence for persistent flow and aqueous sedimentation on early Mars, Science 302, 1931–4, 2003.CrossRefGoogle ScholarPubMed
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Dobrea, E. Z. Noe, Present-day impact cratering rate and contemporary gully activity on Mars, Science 314, 1573–7, 2006.CrossRefGoogle ScholarPubMed
Mangold, N., Quantin, C., Ansan, V., Delacourt, C., and Allemand, P., Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area, Science 305, 78–81, 2004.CrossRefGoogle ScholarPubMed
McCauley, J. F., Geologic map of the coprates quandrangle of Mars, scale 1:5,000,000, USGS Misc. Inv. Ser. Map, I-897, 1978.
McCollom, T. M. and Hynek, B. M., A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars, Nature 438, 1129–31, doi:1110.1038/nature04390, 2005.CrossRefGoogle ScholarPubMed
McCord, T. B., Elias, J. H., and Westphal, J. A., Mars: the spectral albedo (0.3–2.5?) of small bright and dark regions, Icarus 14, 245–51, 1971.CrossRefGoogle Scholar
McCord, T. B., Clark, R., and Huguenin, R. L., Mars: near-infrared reflectance and spectra of surface regions and compositional implications, J. Geophys. Res. 87, 3021–32, 1978.CrossRefGoogle Scholar
McEwen, A. S., Preblich, B. S., Turtle, E. P., et al., The rayed crater Zunil and interpretations of small impact craters on Mars, Icarus 176, 351–81, 2005.CrossRefGoogle Scholar
McKay, C. P. and Nedell, S. S., Are there carbonate deposits in the Valles Marineris, Mars?, Icarus 73, 142–8, 1988.CrossRefGoogle ScholarPubMed
McLennan, S. M., Bell, J. F. III, Calvin, W. M., et al., Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 95–121, 2005.CrossRefGoogle Scholar
McSween, H. Y. Jr., SNC meteorites: clues to martian petrologic evolution, Rev. Geophys. 23, 391–416, 1985.CrossRefGoogle Scholar
McSween, H. Y. Jr., What have we learned about Mars from SNC meteorites, Meteoritics 29, 757–79, 1994.CrossRefGoogle Scholar
McSween Jr., H. Y., Mars. In Treatise on Geochemistry Vol. 1 (ed. Davis, A. M.et al.), Oxford, UK: Elsevier, pp. 601–21, 2003.Google Scholar
McSween, H. Y. Jr., Murchie, S. L., Crisp, J. A., et al., Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site, J. Geophys. Res. 104, 8679–716, 1999.CrossRefGoogle Scholar
McSween, H. Y. Jr., Grove, T. L., and Wyatt, W. B., Constraints on the composition and petrogenesis of the martian crust, J. Geophys. Res. 108(E12), 5135, doi:5110.1029/2003JE002175, 2003.CrossRefGoogle Scholar
McSween, H. Y. Jr., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit rover in Gusev crater, Science 305, 842–5, 2004.CrossRefGoogle ScholarPubMed
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. 111, E02S10, doi:1029/2005JE002477, 2006.CrossRefGoogle Scholar
Mellon, M. T. and Phillips, R. J., Recent gullies on Mars and the source of liquid water, J. Geophys. Res. 106, 23165–80, 2001.CrossRefGoogle Scholar
Melosh, H. J. and Vickery, A. M., Impact erosion of the primordial atmosphere of Mars, Nature 338, 487–9, 1989.CrossRefGoogle ScholarPubMed
Michalski, J. R., Kraft, M. D., Sharp, T. G., Williams, L. B., and Christensen, P. R., Mineralogical constraints on the high-silica Martian surface component observed by TES, Icarus 174, 161–77, 2005.CrossRefGoogle Scholar
Milam, K. A., McSween, H. Y. Jr., Hamilton, V. E., Moersch, J. M., and Christensen, P. R., Accuracy of plagioclase compositions from laboratory and Mars spacecraft thermal emission spectra, J. Geophys. Res. 109, E04001, doi:04010.01029/02003JE002097, 2004.CrossRefGoogle Scholar
Milliken, R. E., Viscous flow features on the surface of Mars: observations from high-resolution MOC images, J. Geophys. Res. 108, doi:10.1029/2002JE002005, 2003.CrossRefGoogle Scholar
Ming, D. W., Mittlefehldt, D. W., Morris, R. V., et al., Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars, J. Geophys. Res. 111, doi:10.1029/2005JE002560, 2006.CrossRefGoogle Scholar
Minitti, M. E., Mustard, J. F., and Rutherford, M. J., Effects of glass content and oxidation on the spectra of SNC-like basalts: applications to Mars remote sensing, J. Geophys. Res. 107, doi:10.1029/2001JE001518, 2002.CrossRefGoogle Scholar
Mitrofanov, I., Anfimov, D., Kozyrev, A., et al., Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey, Science 297, 78–81, 2002.CrossRefGoogle ScholarPubMed
Moersch, J. E. and Christensen, P. R., Thermal emission from particulate surfaces: a comparison of scattering models with measured spectra, J. Geophys. Res. 100, 7465–77, 1995.CrossRefGoogle Scholar
Moersch, J. E., Hayward, T., Nicholson, P., et al., Identification of a 10 µm silicate absorption feature in the Acidalia region of Mars, Icarus 126, 183–96, 1997.CrossRefGoogle Scholar
Moore, J. M. and Howard, A. D., Large alluvial fans on Mars, J. Geophys. Res. 110, E04005, doi:01029/02004JE002352, 2005.CrossRefGoogle Scholar
Moore, J. M., Howard, A. D., Dietrich, W. E., and Schenk, P. M., Martian layered fluvial deposits: implications for Noachian climate scenarios, Geophys. Res. Lett. 30, 2292, doi:2210.1029/2003GL019002, 2003.CrossRefGoogle Scholar
Moroz, V. I., The infrared spectrum of Mars (1.1–4.1 µm), Soviet Astron. 8, 273–81, 1964.Google Scholar
Morris, R. V., Golden, D. C., and Bell, J. F. III, Low-temperature reflectivity spectra of red hematite and the color of Mars, J. Geophys. Res. 102, 9125–33, 1997.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, et al., Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples, J. Geophys. Res. 105, 1757–817, 2000.CrossRefGoogle Scholar
Morris, R. V., T. G. Graff, S. A. Mertzman, M. D. Lane, and P. R. Christensen, Palagonitic (not andesitic) Mars: evidence from thermal emission and VNIR spectra of palagonitic alteration rinds on basaltic rock, 6th Int. Conf. Mars, Pasadena, California, Abstract #3211 (CD-ROM), July 20–25, 2003.
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit Rover, Science 305, 833–6, 2004.CrossRefGoogle ScholarPubMed
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, doi:10.1029/2005JE002584, 2006.CrossRefGoogle Scholar
Musselwhite, D. S., Swindle, T. D., and Lunine, J. I., Liquid CO2 breakout and the formation of recent small channels on Mars, Geophys. Res. Lett. 28, 1283–5, 2001.CrossRefGoogle Scholar
Mustard, J. F., Relationships of soil, grass, and bedrock over the Kaweah Serpentine Melange through spectral mixture analysis of AVIRIS data, Remote Sens. Environ. 44, 293–308, 1993.CrossRefGoogle Scholar
Mustard, J. F. and Hays, J. E., Effects of hyperfine particles on reflectance spectra from 0.3 to 25 µm, Icarus, 125, 145–63, 1997.CrossRefGoogle Scholar
Mustard, J. F. and Sunshine, J. M., Seeing through the dust: Martian crustal heterogeneity and links to the SNC meteorites, Science 267, 1623–6, 1995.CrossRefGoogle ScholarPubMed
Mustard, J. F., Bibring, J.-P., Erard, S., et al., Interpretation of spectral units of Isidis-Syrtis Major from ISM-Phobos 2 observations, Lunar Planet. Sci.XXI, 835–6, 1990.Google Scholar
Mustard, J. F., Erard, S., Bibring, J.-P., et al., The surface of Syrtis Major: composition of the volcanic substrate and mixing with altered dust and soil, J. Geophys. Res. 98, 3387–400, 1993.CrossRefGoogle Scholar
Mustard, J. F., Murchie, S., Erard, S., and Sunshine, J. M., In situ compositions of Martian volcanics: implications for the mantle, J. Geophys. Res. 102, 25605–15, 1997.CrossRefGoogle Scholar
Mustard, J. F., Cooper, C. D., and Rifkin, M. K., Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice, Nature 412, 411–14, 2001.CrossRefGoogle ScholarPubMed
Mustard, J. F., Poulet, F., Gendrin, A., et al., Olivine and pyroxene diversity in the crust of Mars, Science 307, 1594–7, 2005.CrossRefGoogle ScholarPubMed
Nedell, S. S., Squyres, S. W., and Anderson, D. W., Origin and evolution of the layered deposits in the Valles Marineris, Mars, Icarus 70, 409–41, 1987.CrossRefGoogle Scholar
Noe Dobrea, E. Z., Bell, I. J. F., Wolff, M. J., and Gordon, K. D., H2O- and OH-bearing minerals in the martian regolith: analysis of 1997 observations from HST/NICMOS, Icarus 166, 1–20, 2003.CrossRefGoogle Scholar
Noe Dobrea, E. Z., F. Poulet, and M. C. Malin, Omega analysis of light-toned outcrops in the chaotic terrain of the eastern Valles Marineris region, Lunar Planet. Sci. XXXVII, Abstract #2608, 2006.
Nyquist, L. E., Bogard, D. D., Shih, C.-Y., et al., Ages and geologic histories of martian meteorites, Chronol. Evol. Mars 96, 105–64, 2001.CrossRefGoogle Scholar
Palluconi, F. D. and Kieffer, H. H., Thermal inertia mapping of Mars from 60°S to 60°N, Icarus 45, 415–26, 1981.CrossRefGoogle Scholar
Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. C., and Schneeberger, D. M., Coastal geomorphology of the martian northern plains, J. Geophys. Res. 98, 11061–78, 1993.CrossRefGoogle Scholar
Pollack, J. B. and Toon, O. B., Quasi-periodic climate changes on Mars: a review, Icarus 50, 259–87, 1982.CrossRefGoogle Scholar
Pollack, J. B., Roush, T., Witteborn, F., et al., Thermal emission spectra of Mars (5.4–10.5 µm): evidence for sulfates, carbonates, and hydrates, J. Geophys. Res. 95, 14595–627, 1990.CrossRefGoogle Scholar
Poulet, F., Bibring, J.-P., Mustard, J. F., et al., Phyllosilicates on Mars and implications for early martian climate, Nature 438, 623–7, doi:610.1038/nature04274, 2005.CrossRefGoogle ScholarPubMed
Ramsey, M. S. and Christensen, P. R., Mineral abundance determination: quantitative deconvolution of thermal emission spectra, J. Geophys. Res. 103, 577–96, 1998.CrossRefGoogle Scholar
Reider, R., Economou, T., Wanke, H., et al., The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode, Science 278, 1771–4, 1997.Google Scholar
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, Science 306, 1746–9, 2005.CrossRefGoogle Scholar
Rogers, A. D. and Christensen, P. R., Surface mineralogy of martian low-albedo regions from MGS TES data: implications for crustal evolution and surface alteration, J. Geophys. Res. 112, E01003, doi:01010.01029/02006JE002727, 2007.CrossRefGoogle Scholar
Rogers, A. D., Christensen, P. R., and Bandfield, J. L., Compositional heterogeneity of the ancient martian crust: analysis of Ares Vallis bedrock the THEMIS and TES data, J. Geophys. Res. 110, doi:10.1029/2005JE002399, 2005.CrossRefGoogle Scholar
Rogers, A. D., Bandfield, J. L., and Christensen, P. R., Global spectral classification of martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data, J. Geophys. Res. 112, E02004, doi:02010.01029/02006JE002726, 2007.CrossRefGoogle Scholar
Ruff, S. W., Spectral evidence for zeolite in the dust on Mars, Icarus 168, 131–43, 2004.CrossRefGoogle Scholar
Ruff, S. W. and Christensen, P. R., Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data, J. Geophys. Res. 107, doi:10.1029/2001JE001580, 2002.CrossRefGoogle Scholar
Ruff, S. W. and Christensen, P. R., Basaltic andesite, altered basalt, and a TES-based search for smectite clay minerals on Mars, Geophys. Res. Lett. 34, CiteID L10204, doi:10.1029/2007GL029602, 2007.CrossRefGoogle Scholar
Ruff, S. W., Christensen, P. R., Barbera, P. W., and Anderson, D. L., Quantitative thermal emission spectroscopy of minerals: a technique for measurement and calibration, J. Geophys. Res. 102, 14899–913, 1997.CrossRefGoogle Scholar
Ruff, S. W., Christensen, P. R., Clark, R. N., et al., Mars' “White Rock” feature lacks evidence of an aqueous origin: results from Mars global Surveyor, J. Geophys. Res. 106, 23921–7, 2001.CrossRefGoogle Scholar
Ruff, S. W., Christensen, P. R., Blaney, D. L., et al., The rocks of Gusev crater as viewed by the Mini-TES instrument, J. Geophys. Res. 111, doi:10.1029/2006JE002747, 2006.CrossRefGoogle Scholar
Salisbury, J. W., Mid-infrared spectroscopy: laboratory data, Chapter 4. In Remote Geochemical Analysis: Elemental and Mineralogical Composition (ed. Pieters, C. and Englert, P.), Cambridge: Cambridge University Press, 1993.Google Scholar
Salisbury, J. W. and Eastes, J. W., The effect of particle size and porosity on spectral contrast in the mid-infrared, Icarus 64, 586–8, 1985.CrossRefGoogle Scholar
Salisbury, J. W. and Wald, A., The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals, Icarus 96, 121–8, 1992.CrossRefGoogle Scholar
Salisbury, J. W. and Walter, L. S., Thermal infrared (2.5–13.5 µm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces, J. Geophys. Res. 94, 9192–202, 1989.CrossRefGoogle Scholar
Salisbury, J. W., D'Aria, D. M., and Jarosewich, E., Mid-infrared (2.5–13.5 µm) reflectance spectra of powdered stony meteorites, Icarus 92, 280–97, 1991.CrossRefGoogle Scholar
Salisbury, J. W., Walter, L. S., Vergo, N., and D'Aria, D. M., Infrared (2.1–25 µm) Spectra of Minerals, Baltimore and London: The Johns Hopkins University Press, 267pp., 1992.Google Scholar
Segura, T. L., Toon, O. B., Colaprete, A., and Zahnle, K., Environmental effects of large impacts on Mars, Science 298, 1977–80, 2002.CrossRefGoogle ScholarPubMed
Shean, D. E., Head, J. W., and Marchant, D. R., Origin and evolution of a cold-based tropical mountain glacier on Mars: the Pavonis Mons fan-shaped deposit, J. Geophys. Res. 110, E05001, doi:05010.01029/02004JE002360, 2005.CrossRefGoogle Scholar
Singer, R. B. and Roush, T. L., Analysis of martian crustal petrology, Bull. Am. Astron. Soc. 17, 737, 1985.Google Scholar
Singer, R. B., McCord, T. B., Clark, R. N., Adams, J. B., and Huguenin, R. L., Mars surface composition from reflectance spectroscopy: a summary, J. Geophys. Res. 84, 8415–26, 1979.CrossRefGoogle Scholar
Singer, R. B., Owensby, P. D., and Clark, R. N., Observed upper limits for clay minerals on Mars, Lunar Planet. Sci.XVI, 787–8, 1985.Google Scholar
Sinton, W. M., On the composition of martian surface materials, Icarus 6, 222–8, 1971.CrossRefGoogle Scholar
Smith, M. D., Bandfield, J. L., and Christensen, P. R., Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra: models and atmospheric properties, J. Geophys. Res. 105, 9589–608, 2000.CrossRefGoogle Scholar
Soderblom, L. A., The composition and mineralogy of the martian surface from spectroscopic observations: 0.3 µm to 50 µm. In Mars (ed. Kieffer, H. H.et al.), Tucson: University of Arizona Press, pp. 557–93, 1992.Google Scholar
Squyres, S. W. and Knoll, A. H., Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars, Earth Planet. Sci. Lett. 240, 1–10, 2005.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Bell, J. F., et al., In-situ evidence for an ancient aqueous environment on Mars, Science 306, 1709–14, 2004.CrossRefGoogle Scholar
Squyres, S. W., Aharonson, O., Arvidson, R. E., et al., Bedrock formation at Meridiani Planum, Nature 443, doi:10.1038/nature05212, 2006a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Blaney, D. L., et al., Rocks of the Columbia Hills, J. Geophys. Res. 111, E02S11, doi:10.1029/2005JE002562, 2006b.CrossRefGoogle Scholar
Stockstill, K. R., Moersch, J. E., Ruff, S. W., Baldridge, A., and Farmer, J., TES hyperspectral analyses of proposed paleolake basins on Mars: no evidence for in-place carbonates, J. Geophys. Res. 111, E10, doi:10.1029/2005JE002353, 2005.Google Scholar
Tanaka, K. L., Geology and insolation-driven climatic history of Amazonian north polar materials on Mars, Nature 437, doi:10.1038/nature04065, 2005.CrossRefGoogle ScholarPubMed
Thomas, P. C., Malin, M. C., and Edgett, K. S., North-south geological differences between the residual polar caps on Mars, Nature 404, 161–4, 2000.CrossRefGoogle ScholarPubMed
Titus, T. N., Kieffer, H. H., and Christensen, P. R., Exposed water ice discovered near the south pole of Mars, Science 299, 1048–51, 2003.CrossRefGoogle ScholarPubMed
Tornabene, L. L., Moersch, J. E., McSween, H. Y., et al., Identification of large (2–10 km) rayed craters on Mars in THEMIS thermal infrared images: implications for possible Martian meteorite source regions, J. Geophys. Res. 111, doi:10.1029/2005JE002600, 2006.CrossRefGoogle Scholar
Tosca, N. J., J. A. Hurowitz, L. Meltzer, S. M. McLennan, and M. A. A. Schoonen, Olivine weathering on Mars: getting back to basics, Lunar Planet. Sci. XXXV, Abstract #1043, 2004.
Treiman, A. H., Geologic settings of martian gullies: implications for their origins, J. Geophys. Res. 108, doi:10.1029/2002JE001900, 2003.CrossRefGoogle Scholar
Treiman, A. H., Gleason, J. D., and Bogard, D. D., The SNC meteorites are from Mars, Planet. Space Sci. 48, 1212–30, 2000.CrossRefGoogle Scholar
Walter, L. S. and Salisbury, J. W., Spectral characterization of igneous rocks in the 8–12 µm region, J. Geophys. Res. 94, 9203–13, 1989.CrossRefGoogle Scholar
Ward, W. R., Climatic variations on Mars: I. Astronomical theory of insolation, J. Geophys. Res. 79, 3375–86, 1974.CrossRefGoogle Scholar
Wieczorek, M. A. and Zuber, M. T., Thickness of the Martian crust: improved constraints from geoid-to-topography ratios, J. Geophys. Res. 109, doi:10.1029/2003JE002153, 2004.CrossRefGoogle Scholar
Wilson, E. B. Jr., Decius, J. C., and Cross, P. C., Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, New York, NY: McGraw-Hill, 1955.Google Scholar
Wyatt, M. B. and McSween, H. Y. Jr., Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars, Nature 417, 263–6, 2002.CrossRefGoogle ScholarPubMed
Wyatt, M. B., Hamilton, V. E., McSween, H. Y. Jr., Christensen, P. R., and Taylor, L. A., Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: I. Determination of mineralogy, chemistry, and classification strategies, J. Geophys. Res. 106, 14711–32, 2001.CrossRefGoogle Scholar
Wyatt, M. B., McSween, H. Y. Jr., Tanaka, K. L., and Head, J. W. III, Global geologic context for rock types and surface alteration on Mars, Geology 32, 645–8, doi:610.1130/G20527.20521, 2004.CrossRefGoogle Scholar
Yen, A. S., Gellert, R., Schröder, C., et al., An integrated view of the chemistry and mineralogy of martian soils, Nature 436, 49–54, doi:10.1038/nature3637, 2005.CrossRefGoogle ScholarPubMed
Zuber, M. T., The crust and mantle of Mars, Nature 412, 220–7, 2001.CrossRefGoogle ScholarPubMed
1
Cited by