Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-gsnzm Total loading time: 6.903 Render date: 2022-10-01T12:10:14.307Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Tricyclic Antidepressants

from Part II - Medication Reference Tables

Published online by Cambridge University Press:  19 October 2021

Michael Cummings
Affiliation:
University of California, Los Angeles
Stephen Stahl
Affiliation:
University of California, San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Trinkley, K. E., Nahata, M. C. (2014). Medication management of irritable bowel syndrome. Digestion, 89, 253267.CrossRefGoogle ScholarPubMed
Moore, R. A., Derry, S., Aldington, D., et al. (2015). Amitriptyline for neuropathic pain in adults. Cochrane Database Syst Rev, 2015, CD008242.Google Scholar
Scheiner, D. A., Perucchini, D., Fink, D., et al. (2015). Interstitial cystitis/bladder pain syndrome (IC/BPS). Praxis (Bern 1994), 104, 909918.CrossRefGoogle Scholar
Gillman, P. K. (2007). Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol, 151, 737748.CrossRefGoogle ScholarPubMed
Rheker, J., Rief, W., Doering, B. K., et al. (2018). Assessment of adverse events in clinical drug trials: identifying amitriptyline’s placebo- and baseline-controlled side effects. Exp Clin Psychopharmacol, 26, 320326.CrossRefGoogle ScholarPubMed
Perry, P. J., Zeilmann, C., Arndt, S. (1994). Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. J Clin Psychopharmacol, 14, 230240.CrossRefGoogle ScholarPubMed
Brueckle, M. S., Thomas, E. T., Seide, S. E., et al. (2020). Adverse drug reactions associated with amitriptyline – protocol for a systematic multiple-indication review and meta-analysis. Syst Rev, 9, 59.CrossRefGoogle ScholarPubMed
Guy, S., Silke, B. (1990). The electrocardiogram as a tool for therapeutic monitoring: a critical analysis. J Clin Psychiatry, 51 Suppl. B, 3739.Google ScholarPubMed
Hicks, J. K., Sangkuhl, K., Swen, J. J., et al. (2017). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102, 3744.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Cooper, T. B., Suckow, R. F., et al. (1985). Tricyclic antidepressant and metabolite levels in chronic renal failure. Clin Pharmacol Ther, 37, 301307.CrossRefGoogle ScholarPubMed
Gupta, S. K., Shah, J. C., Hwang, S. S. (1999). Pharmacokinetic and pharmacodynamic characterization of OROS and immediate-release amitriptyline. Br J Clin Pharmacol, 48, 7178.CrossRefGoogle ScholarPubMed
Hayasaka, Y., Purgato, M., Magni, L. R., et al. (2015). Dose equivalents of antidepressants: evidence-based recommendations from randomized controlled trials. J Affect Disord, 180, 179184.CrossRefGoogle ScholarPubMed
Constantino, J. L., Fonseca, V. A. (2019). Pharmacokinetics of antidepressants in patients undergoing hemodialysis: a narrative literature review. Braz J Psychiatry, 41, 441446.CrossRefGoogle ScholarPubMed
Cheng, Q., Huang, J., Xu, L., et al. (2020). Analysis of time-course, dose-effect, and influencing factors of antidepressants in the treatment of acute adult patients with major depression. Int J Neuropsychopharmacol, 23, 7687.CrossRefGoogle ScholarPubMed
Olesen, O. V., Linnet, K. (1997). Metabolism of the tricyclic antidepressant amitriptyline by cDNA-expressed human cytochrome P450 enzymes. Pharmacology, 55, 235243.CrossRefGoogle ScholarPubMed
Rasmussen, B. B., Nielsen, T. L., Brøsen, K. (1998). Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro. Eur J Clin Pharmacol, 54, 735740. doi: 710.1007/s002280050544CrossRefGoogle ScholarPubMed
Venkatakrishnan, K., Greenblatt, D. J., von Moltke, L. L., et al. (1998). Five distinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP 2C19 and 3A4. J Clin Pharmacol, 38, 112121.CrossRefGoogle ScholarPubMed
Patroneva, A., Connolly, S. M., Fatato, P., et al. (2008). An assessment of drug-drug interactions: the effect of desvenlafaxine and duloxetine on the pharmacokinetics of the CYP2D6 probe desipramine in healthy subjects. Drug Metab Dispos, 36, 24842491.CrossRefGoogle ScholarPubMed
Undurraga, J., Baldessarini, R. J. (2017). Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: systematic review and meta-analysis. J Psychopharmacol, 31, 11841189.CrossRefGoogle ScholarPubMed

References

Kelly, M. W., Myers, C. W. (1990). Clomipramine: a tricyclic antidepressant effective in obsessive compulsive disorder. Ann Pharmacother, 24, 739744.Google ScholarPubMed
Gex-Fabry, M., Balant-Gorgia, A. E., Balant, L. P. (1999). Clomipramine concentration as a predictor of delayed response: a naturalistic study. Eur J Clin Pharmacol, 54, 895902.CrossRefGoogle ScholarPubMed
Charlier, C., Pinto, E., Ansseau, M., et al. (2000). Relationship between clinical effects, serum drug concentration, and concurrent drug interactions in depressed patients treated with citalopram, fluoxetine, clomipramine, paroxetine or venlafaxine. Hum Psychopharmacol, 15, 453459.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Herrera, D., Mayet, L., Galindo, M. C., et al. (2000). Pharmacokinetics of a sustained-release dosage form of clomipramine. J Clin Pharmacol, 40, 14881493.Google ScholarPubMed
Hicks, J. K., Sangkuhl, K., Swen, J. J., et al. (2017). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102, 3744.CrossRefGoogle ScholarPubMed
Evans, L. E., Bett, J. H., Cox, J. R., et al. (1980). The bioavailability of oral and parenteral chlorimipramine (Anafranil). Prog Neuropsychopharmacol, 4, 293302.CrossRefGoogle Scholar
Balant-Gorgia, A. E., Gex-Fabry, M., Balant, L. P. (1991). Clinical pharmacokinetics of clomipramine. Clin Pharmacokinet, 20, 447462.CrossRefGoogle ScholarPubMed
Vandel, S., Bertschy, G., Baumann, P., et al. (1995). Fluvoxamine and fluoxetine: interaction studies with amitriptyline, clomipramine and neuroleptics in phenotyped patients. Pharmacol Res, 31, 347353.CrossRefGoogle ScholarPubMed
Rasmussen, B. B., Nielsen, T. L., Brøsen, K. (1998). Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro. Eur J Clin Pharmacol, 54, 735740. doi: 710.1007/s002280050544CrossRefGoogle ScholarPubMed
Pigott, T. A., Seay, S. M. (1999). A review of the efficacy of selective serotonin reuptake inhibitors in obsessive-compulsive disorder. J Clin Psychiatry, 60, 101106. doi: 110.4088/jcp.v4060n0206CrossRefGoogle ScholarPubMed
Albert, U., Aguglia, E., Maina, G., et al. (2002). Venlafaxine versus clomipramine in the treatment of obsessive-compulsive disorder: a preliminary single-blind, 12-week, controlled study. J Clin Psychiatry, 63, 10041009. doi: 1010.4088/jcp.v1063n1108CrossRefGoogle ScholarPubMed
Undurraga, J., Baldessarini, R. J. (2017). Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: systematic review and meta-analysis. J Psychopharmacol, 31, 11841189.CrossRefGoogle ScholarPubMed

References

Perry, P. J., Zeilmann, C., Arndt, S. (1994). Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. J Clin Psychopharmacol, 14, 230240.CrossRefGoogle ScholarPubMed
Hearn, L., Moore, R. A., Derry, S., et al. (2014). Desipramine for neuropathic pain in adults. Cochrane Database Syst Rev, 2014, CD011003.Google Scholar
Gillman, P. K. (2007). Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol, 151, 737748.CrossRefGoogle ScholarPubMed
Hicks, J. K., Sangkuhl, K., Swen, J. J., et al. (2017). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102, 3744.CrossRefGoogle ScholarPubMed
Nagy, A., Johansson, R. (1975). Plasma levels of imipramine and desipramine in man after different routes of administration. Naunyn Schmiedebergs Arch Pharmacol, 290, 145160.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Cooper, T. B., Suckow, R. F., et al. (1985). Tricyclic antidepressant and metabolite levels in chronic renal failure. Clin Pharmacol Ther, 37, 301307.CrossRefGoogle ScholarPubMed
Sallee, F. R., Pollock, B. G. (1990). Clinical pharmacokinetics of imipramine and desipramine. Clin Pharmacokinet, 18, 346364.CrossRefGoogle ScholarPubMed
von Ammon Cavanaugh, S. (1990). Drug-drug interactions of fluoxetine with tricyclics. Psychosomatics, 31, 273276.CrossRefGoogle ScholarPubMed
Spina, E., Avenoso, A., Campo, G. M., et al. (1995). The effect of carbamazepine on the 2-hydroxylation of desipramine. Psychopharmacology (Berl), 117, 413416.CrossRefGoogle ScholarPubMed
Spina, E., Avenoso, A., Campo, G. M., et al. (1996). Phenobarbital induces the 2-hydroxylation of desipramine. Ther Drug Monit, 18, 6064.CrossRefGoogle ScholarPubMed
Undurraga, J., Baldessarini, R. J. (2017). Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: systematic review and meta-analysis. J Psychopharmacol, 31, 11841189.CrossRefGoogle ScholarPubMed

References

Leucht, S., Steimer, W., Kreuz, S., et al. (2001). Doxepin plasma concentrations: is there really a therapeutic range? J Clin Psychopharmacol, 21, 432439.CrossRefGoogle ScholarPubMed
Wang, W. A., Qian, J. M., Pan, G. Z. (2003). Treatment of refractory irritable bowel syndrome with subclinical dosage of antidepressants. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 25, 7478.Google ScholarPubMed
de la Torre, Rodriguez, Dreher, B., Malevany, J., I., et al. (2001). Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients. Ther Drug Monit, 23, 435440.CrossRefGoogle Scholar
Müller, M. J., Dragicevic, A., Fric, M., et al. (2003). Therapeutic drug monitoring of tricyclic antidepressants: how does it work under clinical conditions? Pharmacopsychiatry, 36, 98104.Google ScholarPubMed
Hicks, J. K., Sangkuhl, K., Swen, J. J., et al. (2017). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102, 3744.CrossRefGoogle ScholarPubMed
Ziegler, V. E., Biggs, J. T., Wylie, L. T., et al. (1978). Doxepin kinetics. Clin Pharmacol Ther, 23, 573579.CrossRefGoogle ScholarPubMed
Faulkner, R. D., Senekjian, H. O., Lee, C. S. (1984). Hemodialysis of doxepin and desmethyldoxepin in uremic patients. Artif Organs, 8, 151155.CrossRefGoogle ScholarPubMed
Yan, J. H., Hubbard, J. W., McKay, G., et al. (2002). Absolute bioavailability and stereoselective pharmacokinetics of doxepin. Xenobiotica, 32, 615623.CrossRefGoogle ScholarPubMed
Leinonen, E., Lillsunde, P., Laukkanen, V., et al. (1991). Effects of carbamazepine on serum antidepressant concentrations in psychiatric patients. J Clin Psychopharmacol, 11, 313318.CrossRefGoogle ScholarPubMed
Undurraga, J., Baldessarini, R. J. (2017). Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: systematic review and meta-analysis. J Psychopharmacol, 31, 11841189.CrossRefGoogle ScholarPubMed

References

Deupree, J. D., Montgomery, M. D., Bylund, D. B. (2007). Pharmacological properties of the active metabolites of the antidepressants desipramine and citalopram. Eur J Pharmacol, 576, 5560.CrossRefGoogle ScholarPubMed
Lopez-Munoz, F., Alamo, C. (2009). Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des, 15, 15631586.CrossRefGoogle ScholarPubMed
Perry, P. J., Zeilmann, C., Arndt, S. (1994). Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. J Clin Psychopharmacol, 14, 230240.CrossRefGoogle ScholarPubMed
Rief, W., Nestoriuc, Y., von Lilienfeld-Toal, A., et al. (2009). Differences in adverse effect reporting in placebo groups in SSRI and tricyclic antidepressant trials: a systematic review and meta-analysis. Drug Saf, 32, 10411056.CrossRefGoogle ScholarPubMed
Rodriguez de la Torre, B., Dreher, J., Malevany, I., et al. (2001). Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients. Ther Drug Monit, 23, 435440.CrossRefGoogle ScholarPubMed
Hicks, J. K., Sangkuhl, K., Swen, J. J., et al. (2017). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102, 3744.CrossRefGoogle ScholarPubMed
Nagy, A., Johansson, R. (1975). Plasma levels of imipramine and desipramine in man after different routes of administration. Naunyn Schmiedebergs Arch Pharmacol, 290, 145160.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Cooper, T. B., Suckow, R. F., et al. (1985). Tricyclic antidepressant and metabolite levels in chronic renal failure. Clin Pharmacol Ther, 37, 301307.CrossRefGoogle ScholarPubMed
Sallee, F. R., Pollock, B. G. (1990). Clinical pharmacokinetics of imipramine and desipramine. Clin Pharmacokinet, 18, 346364.CrossRefGoogle ScholarPubMed
Rasmussen, B. B., Nielsen, T. L., Brøsen, K. (1998). Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro. Eur J Clin Pharmacol, 54, 735740. doi: 710.1007/s002280050544CrossRefGoogle ScholarPubMed
Undurraga, J., Baldessarini, R. J. (2017). Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: systematic review and meta-analysis. J Psychopharmacol, 31, 11841189.CrossRefGoogle ScholarPubMed
Bighelli, I., Castellazzi, M., Cipriani, A., et al. (2018). Antidepressants versus placebo for panic disorder in adults. Cochrane Database Syst Rev, 4, CD010676.Google ScholarPubMed

References

Perry, P. J., Zeilmann, C., Arndt, S. (1994). Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. J Clin Psychopharmacol, 14, 230240.CrossRefGoogle ScholarPubMed
Derry, S., Wiffen, P. J., Aldington, D., et al. (2015). Nortriptyline for neuropathic pain in adults. Cochrane Database Syst Rev, 1, CD011209.Google ScholarPubMed
Gillman, P. K. (2007). Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol, 151, 737748.CrossRefGoogle ScholarPubMed
Macaluso, M., Preskorn, S. H. (2011). CYP 2D6 PM status and antidepressant response to nortriptyline and venlafaxine: is it more than just drug metabolism? J Clin Psychopharmacol, 31, 143145.CrossRefGoogle ScholarPubMed
Hicks, J. K., Sangkuhl, K., Swen, J. J., et al. (2017). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102, 3744.CrossRefGoogle ScholarPubMed
Alexanderson, B. (1972). Pharmacokinetics of nortriptyline in man after single and multiple oral doses: the predictability of steady-state plasma concentrations from single-dose plasma-level data. Eur J Clin Pharmacol, 4, 8291.CrossRefGoogle ScholarPubMed
Dawling, S., Lynn, K., Rosser, R., et al. (1981). The pharmacokinetics of nortriptyline in patients with chronic renal failure. Br J Clin Pharmacol, 12, 3945.CrossRefGoogle Scholar
Tasset, J. J., Singh, S., Pesce, A. J. (1985). Evaluation of amitriptyline pharmacokinetics during peritoneal dialysis. Ther Drug Monit, 7, 255257.CrossRefGoogle ScholarPubMed
Yue, Q. Y., Zhong, Z. H., Tybring, G., et al. (1998). Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther, 64, 384390.CrossRefGoogle ScholarPubMed
Kvist, E. E., Al-Shurbaji, A., Dahl, M. L., et al. (2001). Quantitative pharmacogenetics of nortriptyline: a novel approach. Clin Pharmacokinet, 40, 869877.CrossRefGoogle ScholarPubMed
von Ammon Cavanaugh, S. (1990). Drug-drug interactions of fluoxetine with tricyclics. Psychosomatics, 31, 273276.CrossRefGoogle ScholarPubMed
Undurraga, J., Baldessarini, R. J. (2017). Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: systematic review and meta-analysis. J Psychopharmacol, 31, 11841189.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×