Skip to main content Accessibility help
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T17:54:21.433Z Has data issue: false hasContentIssue false

8 - The macrophysiology of insect cold-hardiness


Published online by Cambridge University Press:  04 May 2010

David L. Denlinger
Ohio State University
Richard E. Lee, Jr
Miami University
Get access


Introduction: macrophysiology

During the early part of the twentieth century, comparative physiological studies were as much at home in ecological journals as they were in those devoted to physiology. Indeed, Shelford (1913) considered ecology to be a “branch of general physiology which deals with the organism as a whole…and which also considers the organism with particular reference to its usual environment”. For reasons that have been discussed elsewhere (e.g. Huey, 1991; Spicer and Gaston, 1999; Chown et al., 2004) ecology and physiology subsequently parted ways with both increasing their focus on smaller-scale questions. Although large-scale ecological and biogeographic work continued, interest in physiological mechanisms waned (see e.g. Myers and Giller, 1988; Lomolino and Heaney, 2004). In much the same way, large-scale comparative physiological ecology dwindled in significance, making studies such as those by Scholander et al. (1953) and Brattstrom (1968) milestones along an increasingly deserted road. Clearly, investigations of animal responses to the environment continued (the work of Bartholomew stands out especially (Dawson, 2005) (see also reviews in Prosser, 1986; Angilletta et al., 2002; Hoffmann et al., 2003), and the development of methods to correct for phylogenetic non-independence prompted a resurgence of interest in understanding the evolution of physiological traits and their variation among species and higher taxa (Feder et al., 2000). However, by the late 1980s, the subject of organismal physiological diversity was in several ways thought to be a dead end.

Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society, Series B 267, 739–745.CrossRefGoogle ScholarPubMed
Andrewartha, H. G. and Birch, L. C. (1954). The Distribution and Abundance of Animals. Chicago: University of Chicago Press.Google Scholar
Angilletta, M. J., Bennett, A. F., Guderley, H., Navas, C. A., Seebacher, F. and Wilson, R. S. (2006). Coadaptation: a unifying principle in evolutionary thermal biology. Physiological and Biochemical Zoology 79, 282–294.CrossRefGoogle ScholarPubMed
Angilletta, M. J., Niewiarowski, P. H. and Navas, C. A. (2002). The evolution of thermal physiology in ectotherms. Journal of Thermal Biology 27, 249–268.CrossRefGoogle Scholar
,Anonymous. (2007). Biodiversity-Climate Interactions: Adaptation, Mitigation and Human Livelihoods. Summary of an International Meeting held at the Royal Society 12–13 June 2007. UNEP/CBD/SBSTTA/12/INF/19, Paris.Google Scholar
Ayrinhac, A., Debat, V., Gibert, P., Kister, A. G., Legout, H., Moreteau, B., Vergilino, R. and David, J. R. (2004). Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Functional Ecology 18, 700–706.CrossRefGoogle Scholar
Bahrndorff, S., Holmstrup, M., Petersen, H. and Loeschcke, V. (2006). Geographic variation for climatic stress resistance traits in the springtail Orchesella cincta. Journal of Insect Physiology 52, 951–959.CrossRefGoogle ScholarPubMed
Bale, J. S. (1987). Insect cold hardiness: freezing and supercooling – an ecophysiological perspective. Journal of Insect Physiology 33, 899–908.CrossRefGoogle Scholar
Bale, J. S. (1993). Classes of insect cold hardiness. Functional Ecology 7, 751–753.Google Scholar
Bale, J. S. (1996). Insect cold hardiness: A matter of life and death. European Journal of Entomology 93, 369–382Google Scholar
Bale, J. S. (2002). Insects and low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society of London B 357, 849–861.CrossRefGoogle ScholarPubMed
Bale, J. S., Worland, M. R. and Block, W. (2001). Effects of summer frost exposures on the cold tolerance strategy of a sub-Antarctic beetle. Journal of Insect Physiology 47, 1161–1167.CrossRefGoogle ScholarPubMed
Baust, J. G. and Nishino, M. (1991). Freezing tolerance in the goldenrod gall fly (Eurosta solidaginis). In Insects at Low Temperatures, ed. Lee, R. E and Denlinger, D. L., New York: Chapman and Hall, pp. 260–275.CrossRefGoogle Scholar
Baust, J. G. and Rojas, R. R. (1985). Insect cold hardiness: facts and fancy. Journal of Insect Physiology 31, 755–759.CrossRefGoogle Scholar
Bonan, G. B. (2002). Ecological Climatology. Concepts and Applications. Cambridge: Cambridge University Press.Google Scholar
Botkin, D. B., Saxe, H., Araújo, M. B., Betts, R., Bradshaw, R. H. W., Cedhagen, T., Chesson, P., Dawson, T. P., Etterson, J. R., Faith, D. P., Ferrier, S., Guisan, A., Hansen, A. S., Hilbert, D. W., Loehle, C., Margules, C., New, M., Sobel, M. J. and Stockwell, D. R. B. (2007). Forecasting the effects of global warming on biodiversity. BioScience 57, 227–236.CrossRefGoogle Scholar
Brattstrom, B. H. (1968). Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comparative Biochemistry and Physiology 24, 93–111.CrossRefGoogle ScholarPubMed
Brown, C. L., Bale, J. S. and Walters, K. F. A. (2004). Freezing induces a loss of freeze tolerance in an overwintering insect. Proceedings of the Royal Society, Series B 271, 1507–1511.CrossRefGoogle Scholar
Bubliy, O. A. and Loeschcke, V. (2005). Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. Journal of Evolutionary Biology 18, 789–803.CrossRefGoogle Scholar
Calosi, P., Bilton, D. J.Spicer, J. I. and Atfield, A. (2008). Thermal tolerance and geographical range size in the Agrabus brunneus group of European diving beetles (Coleoptera: Dytiscidae). Journal of Biogeography 35, 295–305.Google Scholar
Cannon, R. J. C. and Block, W. (1988). Cold tolerance of microarthropods. Biological Reviews 63, 23–77.CrossRefGoogle Scholar
Chatfield, C. (2004). The Analysis of Time Series. An Introduction. 6th edn. Boca Raton: Chapman and Hall/CRC.Google Scholar
Chown, S. L. (2001). Physiological variation in insects: hierarchical levels and implications. Journal of Insect Physiology 47, 649–660.CrossRefGoogle ScholarPubMed
Chown, S. L., Addo-Bediako, A. and Gaston, K. J. (2002). Physiological variation in insects: large-scale patterns and their implications. Comparative Biochemistry and Physiology B 131, 587–602.CrossRefGoogle ScholarPubMed
Chown, S. L., Addo-Bediako, A. and Gaston, K. J. (2003). Physiological diversity: listening to the large-scale signal. Functional Ecology 17, 568–572.CrossRefGoogle Scholar
Chown, S. L. and Gaston, K. J. (1999). Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biological Reviews 74, 87–120.CrossRefGoogle Scholar
Chown, S. L. and Gaston, K. J. (2008) Macrophysiology for a changing world. Proceedings of the Royal Society, Series B 275, 1469–1478.CrossRefGoogle ScholarPubMed
Chown, S. L., Gaston, K. J. and Robinson, D. (2004). Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Functional Ecology 18, 159–167.CrossRefGoogle Scholar
Chown, S. L., Jumbam, K. R., Sørensen, J. G. and Terblanche, J. S. (2009). Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Functional Ecology 23, 133–140.CrossRefGoogle Scholar
Chown, S. L. and Nicolson, S. W. (2004). Insect Physiological Ecology. Mechanisms and Patterns. Oxford: Oxford University Press.CrossRefGoogle Scholar
Chown, S. L., Slabber, S., McGeoch, M. A., Janion, C. and Leinaas, H. P. (2007). Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proceedings of the Royal Society, Series B 274, 2661–2667.CrossRefGoogle ScholarPubMed
Chown, S. L., Sørensen, J. G. and Sinclair, B. J. (2008). Physiological variation and phenotypic plasticity – A response to ‘Plasticity in arthropod cryotypes’ by Hawes and Bale. Journal of Experimental Biology 211, 3353–3357.CrossRefGoogle ScholarPubMed
Chown, S. L. and Terblanche, J. S. (2007). Physiological diversity in insects: ecological and evolutionary contexts. Advances in Insect Physiology 33, 50–152.CrossRefGoogle Scholar
Convey, P., Block, W. and Peat, H. J. (2003). Soil arthropods as indicators of water stress in Antarctic terrestrial habitats? Global Change Biology 9, 1718–1730.CrossRefGoogle Scholar
Crozier, L. (2004). Warmer winters drive butterfly range expansion by increasing survivorship. Ecology 85, 231–241.CrossRefGoogle Scholar
Davis, M. B. and Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679.CrossRefGoogle ScholarPubMed
Dawson, W. R. (2005). George A. Bartholomew's contributions to integrative and comparative biology. Integrative and Comparative Biology 45, 219–230.CrossRefGoogle Scholar
Deere, J. A. and Chown, S. L. (2006). Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. American Naturalist 168, 630–644.CrossRefGoogle ScholarPubMed
Deere, J. A., Sinclair, B. J., Marshall, D. J. and Chown, S. L. (2006). Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island. Journal of Insect Physiology 52, 693–700.CrossRefGoogle ScholarPubMed
Denlinger, D. L. (2002). Regulation of diapause. Annual Review of Entomology 47, 93–122.CrossRefGoogle ScholarPubMed
Denny, M. and Gaines, S. (2000). Chance in Biology. Using Probability to Explore Nature. Princeton: Princeton University Press.Google Scholar
Deutsch, C. A., Tewskbury, J. A., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C. and Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, USA 105, 6668–6672.CrossRefGoogle ScholarPubMed
Dillon, M. E., Cahn, L. R. Y. and Huey, R. B. (2007). Life history consequences of temperature transients in Drosophila melanogaster. Journal of Experimental Biology 210, 2897–2904.CrossRefGoogle ScholarPubMed
Duman, J. G., Wu, D. W., Xu, L., Tursman, D. and Olsen, T. M. (1991). Adaptations of insects to subzero temperatures. Quarterly Review of Biology 66, 387–410.CrossRefGoogle Scholar
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R. and Mearns, L. O. (2000). Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074.CrossRefGoogle ScholarPubMed
Feder, M. E. (1987). The analysis of physiological diversity: the prospects for pattern documentation and general questions in ecological physiology. In New Directions in Ecological Physiology, ed. Feder, M. E, Bennett, A. F., Burggren, W. W. and Huey, R. B., Cambridge: Cambridge University Press, pp. 38–75.Google Scholar
Feder, M. E., Bennett, A. F. and Huey, R. B. (2000). Evolutionary physiology. Annual Review of Ecology and Systematics 31, 315–341.CrossRefGoogle Scholar
Ferguson, S. H. and Messier, F. (1996). Ecological implications of a latitudinal gradient in inter-annual climatic varibility: a test using fractal and chaos theories. Ecography 19, 382–392.CrossRefGoogle Scholar
Fields, P. G. and McNeil, J. N. (1986). Possible dual cold-hardiness strategies in Cisseps fulvicollis (Lepidoptera: Arctiidae). Canadian Entomologist 118, 1309–1311.CrossRefGoogle Scholar
Gaines, S. D. and Denny, M. W. (1993). The largest, smallest, highest, lowest, longest and shortest: extremes in ecology. Ecology 74, 1677–1692.CrossRefGoogle Scholar
Gaston, K. J. (2003). The Structure and Dynamics of Geographic Ranges. Oxford: Oxford University Press.Google Scholar
Gaston, K. J., Blackburn, T. M. and Spicer, J. I. (1998). Rapoport's rule: time for an epitaph?Trends in Ecology and Evolution 13, 70–74.CrossRefGoogle ScholarPubMed
Gaston, K. J. and Chown, S. L. (1999). Elevation and climatic tolerance: a test using dung beetles. Oikos 86, 584–590.CrossRefGoogle Scholar
Gehrken, U., Strømme, A., Lundheim, R. and Zachariassen, K. E. (1991). Inoculative freezing in overwintering tenebrionid beetle, Bolitophagus reticulatus Panz. Journal of Insect Physiology 37, 683–687.CrossRefGoogle Scholar
Ghalambor, C. K., McKay, J. K., Carroll, S. P. and Reznick, D. N. (2007). Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 21, 394–407.CrossRefGoogle Scholar
Gilbert, N. (1980). Comparative dynamics of a single-host aphid. I. The evidence. Journal of Animal Ecology 49, 351–369.CrossRefGoogle Scholar
Gilchrist, G. W. (1995). Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. American Naturalist 146, 252–270.CrossRefGoogle Scholar
Grimaldi, D. and Engel, M. S. (2005). Evolution of the Insects. Cambridge: Cambridge University Press.Google Scholar
Gutschick, V. P. and BassiriRad, H. (2003). Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytologist 160, 21–42.CrossRefGoogle Scholar
Halley, J. M. (1996). Ecology, evolution and 1/f-noise. Trends in Ecology and Evolution 11, 33–37.CrossRefGoogle Scholar
Hawes, T. C. and Bale, J. S. (2007). Plasticity in arthropod cryotypes. Journal of Experimental Biology 210, 2585–2592.CrossRefGoogle ScholarPubMed
Hawes, T. C., Bale, J. S., Worland, M. R. and Convey, P. (2007a). Moulting reduces freeze susceptibility in the Antarctic mite Alaskozetes antarcticus (Michael). Physiological Entomology 32, 301–304.CrossRefGoogle Scholar
Hawes, T. C., Bale, J. S., Worland, M. R. and Convey, P. (2007b). Plasticity and superplasticity in the acclimation potential of the Antarctic mite Halozetes belgicae (Michael). Journal of Experimental Biology 210, 593–601.CrossRefGoogle Scholar
Hawes, T. C., Couldridge, C. E., Bale, J. S., Worland, M. R. and Convey, P. (2006). Habitat temperature and the temporal scaling of cold hardening in the high Arctic collembolan, Hypogastrura tullbergi (Schäffer). Ecological Entomology 31, 450–459.CrossRefGoogle Scholar
Hayward, S. A. L., Rinehart, J. P. and Denlinger, D. L. (2004). Desiccation and rehydration elicit distinct heat shock protein transcript responses in flesh fly pupae. Journal of Experimental Biology 207, 963–971.CrossRefGoogle ScholarPubMed
Helmuth, B., Kingsolver, J. G. and Carrington, E. (2005). Biophysics, physiological ecology, and climate change: does mechanism matter?Annual Review of Physiology 67, 177–201.CrossRefGoogle ScholarPubMed
Hochachka, P. W. and Somero, G. N. (2002). Biochemical Adaptation. New York: Oxford University Press.Google Scholar
Hodkinson, I. D. (2003). Metabolic cold adaptation in arthropods: a smaller-scale perspective. Functional Ecology 17, 562–567.CrossRefGoogle Scholar
Hoffmann, A. A., Anderson, A. and Hallas, R. (2002). Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecology Letters 5, 614–618.CrossRefGoogle Scholar
Hoffmann, A. A., Hallas, R., Anderson, A. R. and Telonis-Scott, M. (2005). Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. Journal of Evolutionary Biology 18, 804–810.CrossRefGoogle ScholarPubMed
Hoffmann, A. A., Sørensen, J. G. and Loeschcke, V. (2003). Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology 28, 175–216.CrossRefGoogle Scholar
Holmstrup, M., Bayley, M. and Ramløv, H. (2002b). Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable Arctic invertebrates. Proceedings of the National Academy of Sciences, USA 99, 5716–5720.CrossRefGoogle ScholarPubMed
Holmstrup, M., Hedlund, K. and Boriss, H. (2002a). Drought acclimation and lipid composition in Folsomia candida: implications for cold shock, heat shock and acute desiccation stress. Journal of Insect Physiology 48, 961–970.CrossRefGoogle ScholarPubMed
Holt, R. D., Lawton, J. H., Gaston, K. J. and Blackburn, T. M. (1997). On the relationship between range size and local abundance: back to the basics. Oikos 78, 183–190.CrossRefGoogle Scholar
Huey, R. B. (1991). Physiological consequences of habitat selection. American Naturalist Supplement 137, 91–115.CrossRefGoogle Scholar
Huey, R. B., Hertz, P. E. and Sinervo, B. (2003). Behavioral drive versus behavioral inertia in evolution: a null model approach. American Naturalist 161, 357–366.CrossRefGoogle ScholarPubMed
Inchausti, P. and Halley, J. (2003). On the relation between temporal variability and persistence time in animal populations. Journal of Animal Ecology 72, 899–908.CrossRefGoogle Scholar
,IPCC (1990). Climate Change: The IPCC Scientific Assessment. Cambridge: Cambridge University Press.Google Scholar
Irwin, J. T. and Lee, R. E. (2003). Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos 100, 71–78.CrossRefGoogle Scholar
Joss, F. and Spahni, R. (2008). Rates of change in natural and anthropogenic radiative forcing over the past 20 000 years. Proceedings of the National Academy of Sciences, USA 105, 1425–1430.CrossRefGoogle Scholar
Kearney, M. (2006). Habitat, environment and niche: what are we modelling?Oikos 115, 186–191.CrossRefGoogle Scholar
Kelty, J. D. and Lee, R. E. (1999). Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster. Journal of Insect Physiology 45, 719–726.CrossRefGoogle ScholarPubMed
Kelty, J. D. and Lee, R. E. (2001). Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles. Journal of Experimental Biology 204, 1659–1666.Google ScholarPubMed
Kingsolver, J. G. and Huey, R. B. (1998). Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. American Zoologist 38, 545–560.CrossRefGoogle Scholar
Klok, C. J. and Chown, S. L. (1997). Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni Viette (Lepidoptera: Tineidae). Journal of Insect Physiology 43, 685–694.CrossRefGoogle Scholar
Klok, C. J. and Chown, S. L. (1998). Interactions between desiccation resistance, host-plant contact and the thermal biology of a leaf-dwelling sub-antarctic caterpillar, Embryonopsis halticella (Lepidoptera: Yponomeutidae). Journal of Insect Physiology 44, 615–628.CrossRefGoogle Scholar
Klok, C. J. and Chown, S. L. (2003). Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation. Biological Journal of the Linnean Society 78, 401–414.CrossRefGoogle Scholar
Klok, C. J., Sinclair, B. J. and Chown, S. L. (2004). Upper thermal tolerance and oxygen limitation in terrestrial arthropods. Journal of Experimental Biology 207, 2361–2370.CrossRefGoogle ScholarPubMed
Koštál, V. and Šimcek, P. (1996). Biochemistry and physiology of aestivo-hibernation in the adult apple blossom weevil, Anthonomus pomorum (Coleoptera: Curculionidae). Journal of Insect Physiology 42, 727–733.CrossRefGoogle Scholar
Koštál, V., Vambera, J. and Bastl, J. (2004). On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. Journal of Experimental Biology 207, 1509–1521.CrossRefGoogle ScholarPubMed
Kristensen, T. N., Hoffmann, A. A., Overgaard, J., Sorensen, J. G., Hallas, R. and Loeschcke, V. (2008). Costs and benefits of cold acclimation in field-released Drosophila. Proceedings of the National Academy of Sciences, USA 105, 216–221.Google ScholarPubMed
Lee, R. E., Chen, C.-P. and Denlinger, D. L. (1987). A rapid cold-hardening process in insects. Science 238, 1415–1417.CrossRefGoogle ScholarPubMed
Lee, R. E., Elnitsky, M. A., Rinehart, J. P., Hayward, S. A. L., Sandro, L. H. and Denlinger, D. L. (2006). Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. Journal of Experimental Biology 209, 399–406.CrossRefGoogle ScholarPubMed
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M. and Gonzalez, A. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7, 601–613.CrossRefGoogle Scholar
Levins, R. (1968). Evolution in Changing Environments. Some Theoretical Explorations. Princeton: Princeton University Press.Google Scholar
Loeschcke, V. and Sǿrensen, J. G. (2005). Acclimation, heat shock and hardening – a response from evolutionary biology. Journal of Thermal Biology 30, 255–257.CrossRefGoogle Scholar
Lomolino, M. V. and Heaney, L. R. (2004). Frontiers of Biogeography. New Directions in the Geography of Nature. Sunderland: Sinauer Associates.Google Scholar
Lynch, M. and Gabriel, W. (1987). Environmental tolerance. American Naturalist 129, 283–303.CrossRefGoogle Scholar
Lundheim, R. and Zachariassen, K. E. (1993). Water balance of over-wintering beetles in relation to strategies for cold tolerance. Journal of Comparative Physiology B 163, 1–4.CrossRefGoogle Scholar
Makarieva, A. M., Gorshkov, V. G., Li, B.-L. and Chown, S. L. (2006). Size- and temperature-independence of minimum life-supporting metabolic rates. Functional Ecology 20, 83–96.CrossRefGoogle Scholar
Marais, E. and Chown, S. L. (2008). Beneficial acclimation and the Bogert effect. Ecology Letters 11, 1027–1036.CrossRefGoogle ScholarPubMed
Marais, E., Terblanche, J. S. and Chown, S. L. (2009) Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). Journal of Insect Physiology 55, 336–343.CrossRefGoogle Scholar
McArdle, B. H. and Gaston, K. J. (1995). The temporal variability of densities: back to basics. Oikos 74, 165–171.CrossRefGoogle Scholar
Michaud, M. R. and Denlinger, D. L. (2005). Molecular modalities of insect cold survival: current understanding and future trends. In Animals and Environments, ed. Morris, S. and Vosloo, A.. Amsterdam: Elsevier International Congress Series 1275, pp. 32–46.Google Scholar
Miller, L. K. (1978). Freezing tolerance in relation to cooling rate in an adult insect. Cryobiology 15, 345–349.CrossRefGoogle Scholar
Moon, I., Fujikawa, S. and Shimada, K. (1996). Cryopreservation of Chymomyza larvae (Diptera: Drosophilidae) at –196 °C with extracellular freezing. Cryo-Letters 17, 105–110.Google Scholar
Myers, A. A. and Giller, P. S. (1988). Analytical Biogeography. An Integrated Approach to the Study of Animal and Plant Distributions. London: Chapman and Hall.Google Scholar
Nedvěd, O. (1998). Modelling the relationship between cold injury and accumulated degree days in terrestrial arthropods. CryoLetters 19, 267–274.Google Scholar
Osovitz, C. J. and Hofmann, G. (2007). Marine macrophysiology: studying physiological variation across large spatial scales in marine systems. Comparative Biochemistry and Physiology A 147, 821–827.CrossRefGoogle ScholarPubMed
Overgaard, J., Malmendal, A., Sørensen, J. G., Bundy, J. G., Loeschcke, V., Nielsen, N. C. and Holmstrup, M. (2007). Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology 53, 1218–1232.CrossRefGoogle ScholarPubMed
Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschcke, V. and Holmstrup, M. (2005). Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Journal of Insect Physiology 51, 1173–1182.CrossRefGoogle ScholarPubMed
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics 37, 637–669.CrossRefGoogle Scholar
Parmesan, C., Root, T. L. and Willig, M. R. (2000). Impacts of extreme weather and climate on terrestrial biota. Bulletin of the American Meteorological Society 81, 443–450.2.3.CO;2>CrossRefGoogle Scholar
Petchey, O. L., Gonzales, A. and Wilson, H. B. (1997). Effects on population persistence: the interaction between environmental noise colour, intraspecific competition and space. Proceedings of the Royal Society, Series B 264, 1841–1847.CrossRefGoogle Scholar
Pimm, S. L. and Redfearn, A. (1988). The variability of animal populations. Nature 334, 613–614.CrossRefGoogle Scholar
Porter, W. P., Sabo, J. L., Tracy, C. R.Reichman, O. J. and Ramankutty, N. (2002). Physiology on a landscape scale: plant-animal interactions. Integrative and Comparative Biology 42, 431–453.CrossRefGoogle ScholarPubMed
Pörtner, H. O. (2001). Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146.Google ScholarPubMed
Prosser, C. L. (1986). Adaptational Biology. Molecules to Organisms. New York: John Wiley & Sons.Google Scholar
Pullin, A. S. (1996). Physiological relationships between insect diapause and cold tolerance: coevolution or coincidence?European Journal of Entomology 93, 121–129.Google Scholar
Rako, L., Blacket, M. J., McKechnie, S. W. and Hoffmann, A. A. (2007). Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline. Molecular Ecology 16, 2948–2957.CrossRefGoogle ScholarPubMed
Ramløv, H. (2000). Aspects of natural cold tolerance in ectothermic animals. Human Reproduction 15, 26–46.CrossRefGoogle ScholarPubMed
Renault, D., Nedved, O., Hervant, F. and Vernon, P. (2004). The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera: Tenebrionidae) during exposure to low temperature. Physiological Entomology 29, 139–145.CrossRefGoogle Scholar
Ring, R. A. and Danks, H. V. (1994). Desiccation and cryoprotection: overlapping adaptations. Cryoletters 15, 181–190.Google Scholar
Roff, D. A. (2002). Life History Evolution. Sunderland: Sinauer Associates.Google Scholar
Roff, D. A. and Fairbairn, D. J. (2007). The evolution of trade-offs: where are we?Journal of Evolutionary Biology 20, 433–447.CrossRefGoogle Scholar
Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T. L., Estrella, N., Seguin, B., Tryjanowski, P., Liu, C., Rawlins, S. and Imeson, A. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357.CrossRefGoogle ScholarPubMed
Ruel, J. J. and Ayres, M. P. (1999). Jensen's inequality predicts effects of environmental variation. Trends in Ecology and Evolution 14, 361–366.CrossRefGoogle ScholarPubMed
Ruokolainen, L. and Fowler, M. S. (2008). Community extinction in coloured environments. Proceedings of the Royal Society, Series B 275, 1775–1783.CrossRefGoogle ScholarPubMed
Salt, R. W. (1966). Effect of cooling rate on the freezing temperatures of supercooled insects. Canadian Journal of Zoology 44, 655–659.CrossRefGoogle Scholar
Salt, R. W. and James, H. G. (1947). Low temperature as a factor in the mortality of eggs of Mantis religiosa L. Canadian Entomologist 79, 33–36.CrossRefGoogle Scholar
Scheiner, S. M. (1993). Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics 24, 35–68.CrossRefGoogle Scholar
Schliess, F. and Haüssinger, D. (2002). The cellular hydration state: a critical determinant for cell death and survival. Biological Chemistry 383, 577–583.CrossRefGoogle Scholar
Schluter, D. (2000). The Ecology of Adaptive Radiation. Oxford: Oxford University Press.Google Scholar
Scholander, P. F., Flagg, W., Walters, V. and Irving, L. (1953). Climatic adaptation in arctic and tropical poikilotherms. Physiological Zoology 26, 67–92.CrossRefGoogle Scholar
Schwager, M., Johst, K. and Jeltsch, F. (2006). Does red noise increase or decrease extinction risk? Single extreme events versus series of unfavorable conditions. American Naturalist 167, 879–888.CrossRefGoogle ScholarPubMed
Shelford, V. E. (1913). Animal Communities in Temperate America. Chicago: Chicago University Press.CrossRefGoogle Scholar
Sinclair, B. J. (1997). Seasonal variation in freezing tolerance of the New Zealand alpine cockroach Celatoblatta quinquemaculata. Ecological Entomology 22, 462–467.CrossRefGoogle Scholar
Sinclair, B. J. (1999). Insect cold tolerance: how many kinds of frozen?European Journal of Entomology 96, 157–164.Google Scholar
Sinclair, B. J. (2001a). Biologically relevant environmental data: macros to make the most of microclimate recordings. Cryoletters 22, 125–134.Google ScholarPubMed
Sinclair, B. J. (2001b). Field ecology of freeze tolerance: interannual variation in cooling rates, freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos 93, 286–293.CrossRefGoogle Scholar
Sinclair, B. J., Addo-Bediako, A. and Chown, S. L. (2003a). Climatic variability and the evolution of insect freeze tolerance. Biological Reviews 78, 181–195.CrossRefGoogle ScholarPubMed
Sinclair, B. J. and Chown, S. L. (2003). Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae). Journal of Insect Physiology 49, 45–52.CrossRefGoogle Scholar
Sinclair, B. J. and Chown, S. L. (2005). Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar. Journal of Experimental Biology 208, 969–879.CrossRefGoogle Scholar
Sinclair, B. J., Klok, C. J., Scott, M. B., Terblanche, J. S. and Chown, S. L. (2003b). Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. Journal of Insect Physiology 49, 1049–1061.CrossRefGoogle ScholarPubMed
Sinclair, B. J., Nelson, S., Nilson, T. L., Roberts, S. P. and Gibbs, A. G. (2007). The effect of selection for desiccation resistance on cold tolerance of Drosophila melanogaster. Physiological Entomology 32, 322–327.CrossRefGoogle Scholar
Sinclair, B. J., Vernon, P., Klok, C. J. and Chown, S. L. (2003c). Insects at low temperatures: an ecological perspective. Trends in Ecology and Evolution 18, 257–262.CrossRefGoogle Scholar
Slabber, S., Worland, M. R., Leinaas, H. P. and Chown, S. L. (2007). Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species. Journal of Insect Physiology 53, 113–125.CrossRefGoogle ScholarPubMed
Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10, 1115–1123.CrossRefGoogle ScholarPubMed
Sømme, L. (1982). Supercooling and winter survival in terrestrial arthropods. Comparative Biochemistry and Physiology A 73, 519–543.CrossRefGoogle Scholar
Sømme, L. (1996). The effect of prolonged exposures at low temperatures in insects. CryoLetters 17, 341–346.Google Scholar
Sømme, L. and Zachariassen, K. E. (1981). Adaptations to low temperature in high altitude insects from Mount Kenya. Ecological Entomology 6, 119–204.CrossRefGoogle Scholar
Spicer, J. I. and Gaston, K. J. (1999). Physiological Diversity and its Ecological Implications. Oxford: Blackwell Science.Google Scholar
Stige, L. C., Chan, K.-S., Zhang, Z.Frank, D. and Stenseth, N. C. (2007). Thousand-year- long Chinese time series reveals climatic forcing of decadal locust dynamics. Proceedings of the National Academy of Sciences, USA 104, 16188–16193.Google ScholarPubMed
Storey, K. B. and Storey, J. M. (1996). Natural freezing survival in animals. Annual Review of Ecology and Systematics 27, 365–386.CrossRefGoogle Scholar
Terblanche, J. S. and Chown, S. L. (2006). The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). Journal of Experimental Biology 209, 1064–1073.CrossRefGoogle Scholar
Terblanche, J. S., Deere, J. A., Clusella Trullas, S., Janion, C. and Chown, S. L. (2007). Critical thermal limits depend on methodological context. Proceedings of the Royal Society, Series B 274, 2935–2942.CrossRefGoogle ScholarPubMed
Terblanche, J. S., Clusella-Trullas, S., Deere, J. A. and Chown, S. L. (2008). Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Journal of Insect Physiology 54, 114–127.CrossRefGoogle Scholar
Torrence, C. and Campo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79, 61–78.2.0.CO;2>CrossRefGoogle Scholar
Turnock, W. J. and Fields, P. G. (2005). Winter climates and cold hardiness in terrestrial insects. European Journal of Entomology 102, 561–576.CrossRefGoogle Scholar
Umina, P. A., Weeks, A. R., Kearney, M. R., McKechnie, S. W. and Hoffmann, A. A. (2005). A rapid shift in a clinal pattern in Drosophila reflecting climate change. Science 308, 691–693.CrossRefGoogle Scholar
Laak, S. (1982). Physiological adaptations to low temperature in freezing-tolerant Phyllodecta laticollis beetles. Comparative Biochemistry and Physiology A 73, 613–620.CrossRefGoogle Scholar
Vasseur, D. A. and Yodzis, P. (2004). The color of environmental noise. Ecology 85, 1146–1152.CrossRefGoogle Scholar
Vernon, P. and Vannier, G. (2002). Evolution of freezing susceptibility and freezing tolerance in terrestrial arthropods. Comptes Rendus Biologies 325, 1185–1190.CrossRefGoogle ScholarPubMed
Virtanen, T., Neuvonen, S. and Nikula, A. (1998). Modelling topoclimatic patterns of egg mortality of Epirrita autumnata (Lepidoptera: Geometridae) with a geographical information system: predictions for current climate and warmer climate scenarios. Journal of Applied Ecology 35, 311–322.CrossRefGoogle Scholar
Voituron, Y., Mouquet, N., Mazancourt, C. and Clobert, J. (2002). To freeze or not to freeze? An evolutionary perspective on the cold-hardiness strategies of overwintering ectotherms. American Naturalist 160, 255–270.Google ScholarPubMed
West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. New York: Oxford University Press.Google Scholar
Williams, J. B., Ruehl, N. C. and Lee, R. E. (2004). Partial link between the seasonal acquisition of cold-tolerance and desiccation resistance in the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae). Journal of Experimental Biology 207, 4407–4414.CrossRefGoogle Scholar
Worland, M. R. (2005). Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica. Journal of Insect Physiology 51, 881–894.CrossRefGoogle ScholarPubMed
Worland, M. R., Block, W. and Grubor-Lajsic, G. (2000). Survival of Heleomyza borealis (Diptera, Heleomyzidae) larvae down to –60 °C. Physiological Entomology 25, 1–5.CrossRefGoogle Scholar
Worland, M. R. and Convey, P. (2001). Rapid cold hardening in Antarctic microarthropods. Functional Ecology 15, 515–524.CrossRefGoogle Scholar
Worland, M. R., Grubor-Lajsic, G. and Montiel, P. O. (1998). Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus (Tullberg). Journal of Insect Physiology 44, 211–219.CrossRefGoogle Scholar
Worland, M. R., Leinaas, H. P. and Chown, S. L. (2006). Supercooling point frequency distributions in Collembola are affected by moulting. Functional Ecology 20, 323–329.CrossRefGoogle Scholar
Yoder, J. A., Benoit, J. B., Denlinger, D. L. and Rivers, D. B. (2006). Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. Journal of Insect Physiology 52, 202–214.CrossRefGoogle Scholar
Zachariassen, K. E. (1985). Physiology of cold tolerance in insects. Physiological Reviews 65, 799–837.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats