Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-b2xwp Total loading time: 1.8 Render date: 2022-10-03T14:54:19.340Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

38 - Systemic Disease and the Liver

from SECTION V - OTHER CONDITIONS AND ISSUES IN PEDIATRIC HEPATOLOGY

Published online by Cambridge University Press:  18 December 2009

Michael K. Farrell M.D.
Affiliation:
Professor, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Pediatric Gastroenterology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
John C. Bucuvalas M.D.
Affiliation:
Professor, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Clinical Director, Medical Director of Liver Transplantation, Department of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

The liver, the largest parenchymal organ in the body, receives 25% of the resting cardiac output [1]. It is also a complex metabolic organ involved in a variety of synthetic and detoxification functions. By virtue of its size, multiple metabolic functions, and prominent position in the circulatory system, the liver is frequently involved in systemic, circulatory, and inflammatory diseases. It is often an “innocent bystander” during systemic diseases; conversely, hepatic dysfunction may be the first clue to a systemic disorder. This chapter reviews hepatic involvement in common childhood systemic diseases.

JAUNDICE IN THE CRITICALLY ILL CHILD

Hepatic dysfunction, manifest as jaundice, occurs in patients with systemic diseases associated with increased bilirubin production, ischemia, hypoxemia, or malnutrition (Table 38.1). Bilirubin production increases with hemolysis, blood transfusions, intraluminal bleeding, extracorporeal oxygenation, and resorption of blood from hematomas. The inflammatory cascade has multiple effects on hepatic function [2–9]. In the healthy patient, the liver has the capacity to conjugate and excrete bilirubin. However, with fasting, malnutrition, positive pressure ventilation, or ischemia, the liver's ability to process bilirubin is compromised and conjugated hyperbilirubinemia results [10, 11] (Figure 38.1). Liver dysfunction improves with correction of the primary disorder, but inadequate or unsuccessful treatment may result in progressive hepatic dysfunction.

INFECTION

Jaundice and conjugated hyperbilirubinemia occur more frequently in infants and children with sepsis, even in the absence of shock. Patients may have mildly elevated serum alkaline phosphatase and aminotransferase levels; isolated hyperbilirubinemia is uncommon [12, 13].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lautt, W W, Greenwall, C V. Conceptual review of the hepatic vasculature. Hepatology 1987;7:952–63.CrossRefGoogle Scholar
Andus, T, Baier, J, Gerok, W. Effects of cytokines on the liver. Hepatology 1991;13:364–75.CrossRefGoogle ScholarPubMed
Bazel, S, Andrejko, K M, Chen, J, Deutschman, C S. Hepatic gene expression and cytokine responses to sterile inflammation: comparison with cecal ligation and puncture sepsis in the rat. Shock 1999;11:347–55.CrossRefGoogle ScholarPubMed
Geller, D A, Nguyen, D, Shapiro, R A. Cytokine induction of interferon regulatory factor-1 in hepatocytes. Surgery 1993;114:235–42.Google ScholarPubMed
Green, R M, Beier, D, Gollan, J L. Regulation of hepatocyte bile salt transporters by endotoxin and inflammatory cytokines in rodents. Gastroenterology 1996;111:193–8.CrossRefGoogle ScholarPubMed
Lichtman, S, Lemasters, J J. Role of cytokines and cytokine-producing cells in reperfusion injury to the liver. Sem Liver Dis 1999;19:171–87.CrossRefGoogle ScholarPubMed
Oka, Y, Murata, A, Nishijima, J, Ogawa, M, Mori, T. The mechanism of hepatic cellular injury in sepsis: an in vitro study of the implications of cytokines and neutrophils in its pathogenesis. J Surg Res 1993;55:1–8.CrossRefGoogle Scholar
Wang, P, Ayala, A, Ba, Z F, Zhou, M. Tumor necrosis factor-alpha produces hepatocellular dysfunction despite normal cardiac output and hepatic microcirculation [see comments]. Am J Physiol 1993;265:G126–32.Google Scholar
Wang, P, Chaudry, I H. Mechanism of hepatocellular dysfunction during hyperdynamic sepsis. Am J Physiol 1996;270:R927–38.Google ScholarPubMed
Schneider, R, Laxer, R M. Systemic onset juvenile rheumatoid arthritis. Baillieres Clin Rheumatol 1998;12:245–71.CrossRefGoogle ScholarPubMed
Johnson, E E, Hedley-White, J. Continuous positive pressure ventilation and portal flow in dogs with pulmonary edema. J Appl Physiol 1972;22:285–9.Google Scholar
Franson, T R, Hierholzer, W J, Brecque, D R. Frequency and characteristics of hyperbilrubinemia associated with bacteremia. Rev Infect Dis 1985;7:1–9.CrossRefGoogle Scholar
Bernstein, J, Brown, A K. Sepsis and jaundice in early infancy. Pediatrics 1962;29:873–82.Google ScholarPubMed
Plemmons, R M, Dooley, D P, Longfield, R N. Septic thrombophlebitis of the portal vein (pylephlebitis): diagnosis and management in the modern era. Clin Infect Dis 1995;21:1114–20.CrossRefGoogle ScholarPubMed
Lang, C H, Fan, J, Cooney, R, Vary, T C. IL-1 receptor antagonist attenuates sepsis-induced alterations in the IGF system and protein synthesis. Am J Physiol 1996;270:E430–7.Google ScholarPubMed
Koo, D J, Chaudry, I H, Wang, P. Kupffer cells are responsible for producing inflammatory cytokines and hepatocellular dysfunction during early sepsis. J Surg Res 1999;83:151–7.CrossRefGoogle ScholarPubMed
Andrejko, K M, Chen, J, Deutschman, C S. Intrahepatic STAT-3 activation and acute phase gene expression predict outcome after CLP sepsis in the rat. Am J Physiol 1998;275:G1423–9.Google ScholarPubMed
Walley, K R, Lukacs, N W, Standiford, T J. Balance of inflammatory cytokines related to severity and mortality of murine sepsis. Infect Immun 1996;64:4733–8.Google ScholarPubMed
Torpy, D J, Bornstein, S R, Chrousos, G P. Leptin and interleukin-6 in sepsis. Horm Metab Res 1998;30:726–9.CrossRefGoogle ScholarPubMed
Szabo, G, Roomics, L, Frendl, G. Liver in sepsis and systemic inflammatory response syndrome. Clin Liver Dis 2002;6:1045–66.CrossRefGoogle ScholarPubMed
Cressman, D E, Greenbaum, L E, DeAngelis, R A. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 1996;274:1379–83.CrossRefGoogle ScholarPubMed
Dalrymple, S A, Slattery, R, Aud, D M. Interleukin-6 is re-quired for a protective immune response to systemic Escherichia coli infection. Infect Immun 1996;64:3231–5.Google Scholar
Billiau, A, Vandekerckhove, F. Cytokines and their interaction with other inflammatory mediators in the pathogenesis of sepsis and septic shock. Eur J Clin Invest 1991;21:559–73.CrossRefGoogle Scholar
Nolan, J. Intestinal endotoxins as mediators of hepatic injury: an idea whose time has come again. Hepatology 1989;10:887–91.CrossRefGoogle Scholar
Wang, Q, Wang, J J, Boyce, S. Endotoxemia and IL-1 beta stimulate mucosal IL-6 production in different parts of the gastrointestinal tract. J Surg Res 1998;76:27–31.CrossRefGoogle ScholarPubMed
Arend, W P, Malyak, M, Guthridge, C J, Gabay, C. Interleukin-1 receptor antagonist: role in biology. Annual Review of Immuno-logy 1998;16:27–55.CrossRefGoogle ScholarPubMed
Buck, C, Bundschu, J, Gallati, H, Bartmann, P, Pohlandt, F. Interleukin-6: a sensitive parameter for the early diagnosis of neonatal bacterial infection. Pediatrics 1994;93:54–8.Google ScholarPubMed
Moseley, R H. Sepsis and cholestasis. Clin Liver Dis 2004;8:83–94.CrossRefGoogle ScholarPubMed
Cohen, J A, Kaplan, M M. Left-sided heart failure presenting as hepatitis. Gastroenterology 1978;74:583–7.Google ScholarPubMed
Hassanein, T, Razack, A, Gavaler, J, Thiel, D H. Heatstroke: its clinical and pathologic presentation, with particular attention to the liver. Am J Gastroenterol 1992;61:1382–9.Google Scholar
Mace, S, Borkat, G, Liebman, J. Hepatic dysfunction and cardiovascular abnormalities: occurrence in infants, children and young adults. Am J Dis Child 1985;139:60–5.CrossRefGoogle ScholarPubMed
Strauss, A W, Santa-Maria, M, Goldring, D. Constrictive pericarditis in children. Am J Dis Child 1975;130:822–6.Google Scholar
Sivan, Y, Nutman, J, Zeevi, B. Acute hepatic failure after open heart surgery in children. Pediatr Cardiol 1987;8:127–30.CrossRefGoogle ScholarPubMed
Logan, R G, Mowry, F M, Judge, R D. Cardiac failure simulating viral hepatitis: three cases with serum transaminase level above 1000. Ann Int Med 1962;56:784–8.CrossRefGoogle Scholar
Killip, T, Payne, M A. High transaminase activity in heart disease. Circulation 1960;21:646–60.CrossRefGoogle ScholarPubMed
Novel, O, Henrion, J, Bernuau, J. Fulminant hepatic failure due to transient circulatory failure in patients with chronic heart disease. Dig Dis Sci 1980;25:49–54.Google Scholar
Garland, J S, Werlin, S L, Rice, T B. Ischemic hepatitis in children: diagnosis and clinical course. Crit Care Med 1988;16:1209–12.CrossRefGoogle ScholarPubMed
Jungermann, K, Katz, N. Functional specialization of different hepatocyte populations. Physiol Rev 1989;69:708–62.CrossRefGoogle ScholarPubMed
Bauer, C, Walcher, F, Kalweit, U. Role of nitric oxide in the regulation of the hepatic microcirculation in vivo. J Hepatol 1997;27:1089–95.CrossRefGoogle ScholarPubMed
Grund, F, Sommerschild, H T, Winecoff, A. Importance of nitric oxide in hepatic arterial blood flow and total hepatic blood volume regulation in pigs. Acta Physiolo Scand 1997;161:303–9.CrossRefGoogle ScholarPubMed
Koeppel, T A, Thies, J C, Schemmer, P. Inhibition of nitric oxide synthesis in ischemia/reperfusion of the rat liver is followed by impairment of hepatic microvascular blood flow. J Hepatol 1997;27:163–9.CrossRefGoogle ScholarPubMed
Tanaka, N, Tanaka, K, Nagashima, Y. Nitric oxide increases hepatic arterial blood flow in rats with carbon tetrachloride-induced acute hepatic injury. Gastroenterology 1999;117:173–80.CrossRefGoogle ScholarPubMed
Pannen, B H, Bauer, M, Noldge-Schomburg, G F. Regulation of hepatic blood flow during resuscitation from hemorrhagic shock: role of NO and endothelins. Am J Physiol 1997;272:H2736–45.Google ScholarPubMed
Peltenburg, H G, Hermens, W T, Willems, G M. Estimation of the fractional catabolic rate constants for the elimination of cytosolic liver enzymes from plasma. Hepatology 1989;10:833–9.CrossRefGoogle ScholarPubMed
Arcieli, J M, Moore, G W, Hutchins, G M. Hepatic morphology in cardiac dysfunction: a clinicopathologic study of 1000 subjects at autopsy. American J of Pathology 1981;104:159–66.Google Scholar
Monte, S M, Arcidi, J M, Moore, G M, Hutchins, G M. Midzonal necrosis as a pattern of hepatocellular injury after shock. Gastroenterology 1984;86:627–31.Google ScholarPubMed
Kanel, G C, Ucci, A, Kaplan, M M. A distinctive perivenular hepatic lesion associated with heart failure. Am J Clin Pathol 1980;73:235–9.CrossRefGoogle ScholarPubMed
Giallourakis, C, Rosenberg, P M, Friedman, L S. The liver in heart failure. Clin Liver Dis 2002;6:947–67.CrossRefGoogle ScholarPubMed
Katzin, H M, Waller, J V, Blumgart, H L. “Cardiac cirrhosis” of the liver: a clinical and pathological study. Arch Int Med 1939;64:457–70.CrossRefGoogle Scholar
Weinberg, A G, Boldande, R P. The liver in congenital heart disease: effects of infantile coarctation of the aorta and the hypoplastic left heart syndrome in infancy. Am J Dis Child 1970;119:390–4.CrossRefGoogle ScholarPubMed
Shiraki, K. Hepatic cell necrosis in the newborn: a pathologic study of 147 cases with a particular reference to congenital heart disease. Am J Dis Child 1970;119:395–400.CrossRefGoogle ScholarPubMed
Ghaferi, A, Hutchins, G. Progression of liver pathology in patients undergoing the Fontan procedure: chronic passive congestion, cardiac cirrhosis, hepatic adenoma, and hepatocellular carcinoma. J Thorac Cardiovasc Surg 2005;129:1348–52.CrossRefGoogle ScholarPubMed
Narkewicz, M, Sondheimer, H, Ziegler, J. Hepatic dysfunction following the Fontan procedure. J Pediatr Gastroenterol Nutr 2003;36:352–7.CrossRefGoogle ScholarPubMed
Sherlock, S. The liver in heart failure: relation of anatomical, functional, and circulatory changes. Br Heart J 1951;13:273–93.CrossRefGoogle ScholarPubMed
Seeto, R, Fenn, B, Rockey, D. Ischemic hepatitis: clinical presentation and pathogenesis. Am J Med 2000;109:109–13.CrossRefGoogle ScholarPubMed
Henrion, J, Schapira, M, Luwaert, R. Hypoxic hepatitis: Clinical and hemodynamic study in 142 consectutive cases. Medicine 2003;82:392–406.CrossRefGoogle Scholar
Tanne, F, Gagnadoux, F, Chazouilleres, O. Chronic liver injury during obstructive sleep apnea. Hepatology 2005;41:1290–6.CrossRefGoogle ScholarPubMed
Henrion, J, Minette, P, Colin, L. Hypoxic hepatitis caused by acute exacerbation of chronic respiratory failure: a case-controlled, hemodynamic study of 17 consecutive cases. Hepatology 1999;29:427–33.CrossRefGoogle ScholarPubMed
Bianchi, L, Ohnacker, H, Beck, K, Zimmerli-Ning, M. Liver damage in heatstroke and its regression. Hum Pathol 1972;3:237–48.CrossRefGoogle ScholarPubMed
Dilawari, J B, Bambery, P, Chawla, Y. Hepatic outflow obstruction (Budd–Chiari syndrome): experience with 177 patients and a review of the literature. Medicine 1994;73:21–56.CrossRefGoogle Scholar
Lang, H, Oldhafer, K J, Weimann, A. The Budd–Chiari syndrome: clinical presentation and diagnostic findings in 45 patients treated by surgery. Bildgebung 1994;61:173–81.Google ScholarPubMed
Gentil-Kocher, S, Bernard, O, Brunelle, F. Budd-Chiari syndrome in children: report of 22 cases. J Pediatr 1988;113:30–8.CrossRefGoogle ScholarPubMed
Bolondi, L, Gaiani, S, LiBassi, S. Diagnosis of Budd–Chiari syndrome by pulsed Doppler ultrasound. Gastroenterology 1991;100:1324–31.CrossRefGoogle ScholarPubMed
Grant, G G, Schiller, V L, Millener, P. Color Doppler imaging of the hepatic vasculature. Am J Roentgenol 1992;159:943–50.CrossRefGoogle ScholarPubMed
Erden, A, Erden, I, Yurdaydin, C, Karayalcin, S. Hepatic outflow obstruction: enhancement patterns of the liver on MR angiography. Eur J Radiol 2003;48:203–8.CrossRefGoogle ScholarPubMed
Meindok, H, Langer, B. Liver scan in Budd–syndrome. J Nucl Med 1975;17:365–86.Google Scholar
Murphy, F B, Steinberg, H V, Shires, G T. The Budd–Chiari syndrome: a review. Am J Roentgenol 1986;147:9–15.CrossRefGoogle ScholarPubMed
Mitchell, M C, Boitnott, J K, Kaufman, S. Budd–Chiari syndrome: etiology, diagnosis and management. Medicine 1982;61:199–218.CrossRefGoogle ScholarPubMed
Valla, D. Obstruction of the hepatic veins. Dig Dis 1990;8:226–39.CrossRefGoogle ScholarPubMed
McDonald, G B, Sharma, P, Matthews, D E. Veno-occlusive disease of the liver after bone marrow transplantation: diagnosis, incidence and predisposing factors. Hepatology 1984;4:116–22.CrossRefGoogle Scholar
Ridker, P M, Ohkuma, S, McDermott, W V. Hepatic veno-occlusive disease associated with the consumption of pyrrolizidine containing dietary supplements. Gastroenterology 1985;88:1050–4.CrossRefGoogle Scholar
Roulet, M, Laurine, R, Rivier, L, Calame, A. Hepatic veno-occlusive disease in the newborn infant of a woman drinking herbal tea. J Pediatr 1988;112:433–6.CrossRefGoogle ScholarPubMed
Bach, N, Thung, S N, Schaffner, F. Comfrey herb tea-induced hepatic veno-occlusive disease. Am J Med 1989;87:97–9.CrossRefGoogle ScholarPubMed
Mohabbat, O, Younos, M S, Merzad, A A. A. An outbreak of hepatic veno-occlusive disease in northwestern Afghanistan. Lancet 1976;2:269–71.CrossRefGoogle Scholar
Labadie, H, Stoessel, P, Callard, P, Beaugrand, M. Hepatic venoocclusive disease and perisinusoidal fibrosis secondary to arsenic poisoning. Gastroenterology 1990;99:1140–3.CrossRefGoogle ScholarPubMed
Bove, K E, Kosmetatos, N, Wedig, K. Vasculopathic hepatotoxicity assoiciated with E-Ferol syndrome in low birth weight infants. JAMA 1985;254:2422–30.CrossRefGoogle Scholar
Avner, E D, Ellis, D, Jaffe, R. Veno-occlusive disease of the liver associated with cysteamine treatment of nephropathic cystinosis. J Pediatr 1983;102:793–6.CrossRefGoogle ScholarPubMed
Etzioni, A, Benderly, A, Rosenthal, E. Defective humoral and cellular immune functions associated with veno-occlusive disease of the liver. J Pediatr 1987;112:549–54.CrossRefGoogle Scholar
Mellis, C, Bale, P M. Familial hepatic veno-occlusive disease with probable immune deficiency. J Pediatr 1976;88:236–42.CrossRefGoogle Scholar
Roscioli, T R, Cliffe, S T, Bloch, D B. Mutations in the gene encoding the PML nuclear body protein Sp110 are associated with immnodeficiency and hepatic veno-occlusive disease. Nat Genet 2006;38:620–2.CrossRefGoogle Scholar
Li, X, Wei, Y, Hao, H. Hyperhomocysteinemia and the MTHFR C677T mutation in Budd–Chiari syndrome. Am J Hematol 2002;71:11–14.CrossRefGoogle ScholarPubMed
Wanless, I R, Godwin, T A, Allen, F. Nodular regenerative hyperplasia of the liver in hematologic disorders: a possible response to obliterative portal venopathy. Medicine 1980;59:367–79.CrossRefGoogle ScholarPubMed
Sty, J R. Ultrasonography: hepatic vein thrombosis in sickle cell anemia. Am J Pediatr Hematol Oncol 1982;4:213–15.Google ScholarPubMed
Khuroo, Ms, Datta, D V. Budd–Chiari syndrome following pregnancy: report of 16 cases, with roentgenologic, hemodynamic and histologic studies of the hepatic outflow tract. Am J Med 1980;80:113–21.CrossRefGoogle Scholar
Goodman, Z D, Ishak, K G. Occlusive venous lesions in alcoholic liver disease: a study of 200 cases. Gastroenterology 1982;83:786–96.Google ScholarPubMed
Maccini, D M, Berg, J C, Bell, G A. Budd–Chiari syndrome and Crohn's disease. Dig Dis Sci 1989;34:1933–6.CrossRefGoogle ScholarPubMed
Schwartz, K B, Wolverson, M, deMello, D E. Budd–Chiari syndrome in a child. J Pediatr Gastroenterol Nutr 1982;1:277–83.CrossRefGoogle Scholar
Schraut, W H, Chilcote, R R. Metastatic Wilm's tumor causing acute hepatic vein occlusion (Budd–Chiari syndrome). Gastroenterology 1985;88:576–9.CrossRefGoogle Scholar
Lewis, J H, Tice, Hl, Zimmerman, H J. Budd–Chiari syndrome associated with oral contraceptive steroids: review of treatment of 47 cases. Dig Dis Sci 1983;28:673–8.CrossRefGoogle ScholarPubMed
Orloff, L A, Orloff, M J. Budd–Chiari syndrome caused by Behcet's disease: treatment by side-to-side portacaval shunt. J Am Coll Surg 1999;188:396–407.CrossRefGoogle ScholarPubMed
Broeckmans, A W, Veltkamp, J J, Bertina, R M. Congential protein C deficiency and venous thrombo-embolism: a study in three Dutch families. N Engl J Med 1983;309:340–3.CrossRefGoogle Scholar
Patel, R K, Lea, N C, Heneghan, M A. Prevalence of the activating JAK2 tyrosine kinase mutation V617F in the Budd–Chiari syndrome. Gastroenterology 2006;130:2031.CrossRefGoogle ScholarPubMed
Delarive, J, Gonvers, J J. Budd–Chiari syndrome related to factor V Leiden mutation. Am J Gastroenterol 1998;93:651–2.CrossRefGoogle ScholarPubMed
Mahmoud, A E, Elias, E, Beauchamp, N, Wilde, J T. Prevalence of the factor V Leiden mutation in hepatic and portal vein thrombosis. Gut 1997;40:798–800.CrossRefGoogle ScholarPubMed
Tsai, M S, Cheng, N Y, WangCK, et al CK, et al. Anticardiolipin antibody-related Budd–Chiari syndrome: report of a case. Kaohsiung J Med Sci 1998;14:48–52.Google ScholarPubMed
Pelletier, S, Landi, B, Piette, J C, Ekert, P. Antiphospholipid syndrome as the second cause of non-tumorous Budd–Chiari syndrome. J Hepatol 1994;21:76–80.CrossRefGoogle ScholarPubMed
Schattenfroh, N, Bechstein, W O, Blumhardt, G. Liver transplantation for PNH with Budd–Chiari syndrome. A case report. Transplant Int 1993;6:354–8.CrossRefGoogle ScholarPubMed
Wyatt, H A, Mowat, A P, Layton, M. Paroxysmal nocturnal haemo-globinuria and Budd–Chiari syndrome. Arch Dis Child 1995;72:241–2.CrossRefGoogle Scholar
Brockington, G M, Zebede, J, Pandian, N G. Constrictive pericarditis. Cardiol Clin 1990;8:645–61.Google ScholarPubMed
Solano, F X, Young, E, Talamo, T S. Constrictive pericarditis mimicking the Budd–Chiari syndrome. Am J Med 1986;80:113–16.CrossRefGoogle ScholarPubMed
Hoffman, H P, Stockland, B, der Heyden, U. Membranous obstruction of the inferior vena cava with Budd–Chiari syndrome: a report of nine cases. J Pediatr Gastroenterol Nutr 1987;6:878–84.CrossRefGoogle ScholarPubMed
Simpson, I W. Membranous obstruction of the inferior vena cava and hepatocellular carcinoma in South Africa. Gastroenterology 1982;82:171–8.Google Scholar
Kage, M, Arakawa, M, Kojiro, M. Histopathology of membranous obstruction of the inferior vena cava in the Budd–Chiari syndrome. Gastroenterology 1992;102:2081–90.CrossRefGoogle ScholarPubMed
Okuda, K, Kage, M, Shrestha, S M. Proposal of a new nomenclature for Budd–Chiari syndrome: hepatic vein thrombosis versus thrombosis of the inferior vena cava at its hepatic portion. Hepatology 1998;28:1191–8.CrossRefGoogle ScholarPubMed
Cho, O, Koo, J, Kim, Y. Collateral pathways in Budd–Chiari syndrome: CT and venographic correlation. Am J of Roentgenology 1996;167:1163–7.CrossRefGoogle ScholarPubMed
McDermott, W V, Ridker, P M. The Budd–Chiari syndrome and hepatic veno-occlusive disease. Arch Surg 1990;125:525–7.CrossRefGoogle ScholarPubMed
Powell-Jackson, P R, Ede, R J, Williams, R. Budd–Chiari syndrome presenting as fulminant hepatic failure. Gut 1986;27:1101–5.CrossRefGoogle ScholarPubMed
Lopez, R R, Benner, K G, Hall, L. Expandable venous stents for treatment of the Budd-Chiari syndrome. Gastroenterology 1991;100:1435–41.CrossRefGoogle ScholarPubMed
Molmenti, E, Segev, D, Arepally, A. The utility of TIPS in the management of Budd–Chiari syndrome. Ann Surg 2005;241:978–81.CrossRefGoogle ScholarPubMed
Feng, L, Peng, Q, Li, K. Management of severe Budd–Chiari syndrome: report of 147 cases. Hepatobiliary Pancreat Dis Int 2004;3:522–5.Google ScholarPubMed
Hemming, A W, Langer, B, Greig, P. Treatment of Budd–Chiari syndrome with portosystemic shunt or liver transplantation. Am J Surg 1996;171:176–81.CrossRefGoogle ScholarPubMed
Sakai, Y, Wall, W J. Liver transplantation for Budd-Chiari syndrome: a retrospective study. Surg Today 1994;24:49–53.CrossRefGoogle ScholarPubMed
Ruh, J, Malago, M, Busch, Y. Management of Budd–Chiari syndrome. Ann Surg 2005;241:978–81.Google Scholar
Murad, S, Valla, D, Groen, P. Determinants of survival and the effect of portosystemic shunting in patients with Budd–Chiari syndrome. Hepatology 2004;39:500–8.CrossRefGoogle Scholar
Johnson, C S, Omata, M, Tong, M J. Liver involvement in sickle cell disease. Medicine 1985;64:349–56.CrossRefGoogle ScholarPubMed
Bauer, T W, Moore, W, Hutchins, G M. The liver in sickle cell disease: a clinicopathologic study of 70 patients. Am J Med 1980;69:833–7.CrossRefGoogle ScholarPubMed
Omata, M, Johnson, C S, Tong, M J, Tatter, D. Pathologic spectrum of liver disease in sickle cell disease. Dig Dis Sci 1986;31:247–56.CrossRefGoogle ScholarPubMed
Schubert, T T. Hepatobiliary system in sickle cell disease. Gastroenterology 1986;86:2013–21.CrossRefGoogle Scholar
Brody, J J, Ryan, W N, Haidar, M A. Serum alkaline phosphatase isoenzymes in sickle cell anemia. JAMA 1975;232:738–41.CrossRefGoogle ScholarPubMed
Sayad, A E, Farah, R A, Rogers, Z R, Squires, R H. Correlation of serum choylglycine level with hepatic dysfunction in children with sickle cell anemia. Clin Pediatr 1999;38:293–6.CrossRefGoogle ScholarPubMed
Ahn, H, Chin-Shang, L, Wang, W. Sickle cell hepatopathy: clinical presentation, treatment, and outcome in pediatric and adult patients. Pediatr Blood Cancer 2005;45:184–90.CrossRefGoogle ScholarPubMed
Buchanan, G R, Glader, B E. Benign course of extreme hyperbilirubinemia in sickle cell disease: analysis of six cases. J Pediatr 1977;91:21–4.CrossRefGoogle ScholarPubMed
Barrett-Conner, E. Sickle cell disease and viral hepatitis. Ann Int Med 1968;69:517–27.CrossRefGoogle Scholar
Zakaria, N, Knisely, A, Portmann, B, Mieli-Vergani, G, Arya, R, Devlin, J. Acute sickle cell hepatopathy represents a potential contraindication for percutaneous liver biopsy. Blood 2003;101:101–3.CrossRefGoogle ScholarPubMed
Sheehy, T W, Law, D E, Wade, B H. Exchange transfusion for sickle cell intrahepatic cholestasis. Arch Int Med 1980;140:1363–6.CrossRefGoogle ScholarPubMed
Ross, A, Graeme-Cook, F, Cosimi, A, Chung, R. Combined liver and kidney transplantation in a patient with sickle cell disease. Transplantation 2002;73:605–8.CrossRefGoogle Scholar
Biachi, M, Arifuddin, R, Mantry, P. Liver transplantation in sickle cell anemia: a case of acute sickle cell intrahepatic cholestasis and a case of sclerosing cholangitis. Transplantation 2005;80:1630–2.CrossRefGoogle Scholar
Yohannan, M D, Arif, M, Ramia, S. Aetiology of icteric hepatitis and fulminant hepatic failure in children and the possible predisposition to hepatic failure by sickle cell disease. Acta Paediatr Scand 1990;79:201–5.CrossRefGoogle ScholarPubMed
Hassan, M, Hasan, D, Giday, S. Hepatitis C in sickle cell disease. J Nat Med Assoc 2003;95:939–42.Google ScholarPubMed
Lykavieris, P, Benichou, J, Benkerrou, M. Autoimmune liver disease in three children with sickle cell disease. J Pediatr Gastroenterol Nutr 2006;42:104–8.CrossRefGoogle ScholarPubMed
Chuang, E, Ruchelli, E, Mulberg, A E. Autoimmune liver disease and sickle cell anemia in children: a report of three cases. J Pediatr Hematol Oncol 1997;19:159–62.CrossRefGoogle ScholarPubMed
el Younis, C, Min, A, Fiel, M. Autoimmune hepatitis in a patient with sickle cell disease. Am J Gastroenterol 1996;91:1016–18.Google Scholar
Garcia-Arias, M, Rodriguez-Galindo, C. Pyogenic hepatic abscess after percutaneous liver biopsy in a patient with sickle cell disease. J Pediatric Hematol Oncol 2005;27:103–5.CrossRefGoogle Scholar
Shulman, S T, Beem, M O. An unique presentation of sickle cell disease: pyogenic hepatic abscess. Pediatrics 1971;47:1019–22.Google ScholarPubMed
Heaton, N D, Pain, J, Cowan, N C. Focal nodular hyperplasia of the liver: a link with sickle cell disease?Arch Dis Child 1991;66:1073–4.CrossRefGoogle ScholarPubMed
Markowitz, R I, Harcke, H T, Ritchie, W G, Huff, D S. Focal nodular hyperplasia of the liver in a child with sickle cell anemia. Am J Roentgenol 1980;134:595–7.CrossRefGoogle Scholar
Terzoli, G S, Mauri, R, Borghetti, L. Cirrhosis associated with multiple transfusions in thalassemia. Arch Dis Child 1984;59:67–70.Google Scholar
Spero, J A, Lewis, J H, Fisher, S E. The high risk of chronic liver disease in multi-transfused juvenile hemophiliac patients. J Pediatr 1979;94:875–8.CrossRefGoogle Scholar
Kanesaki, T, Kinoshita, S, Tsujino, G. Hepatitis C virus infection in children with hemophilia: characterization of antibody response to four different antigens and relationship of antibody response, viremia, and hepatic dysfunction. J Pediatr 1993;123:381–7.CrossRefGoogle ScholarPubMed
Goedert, J J, Eyster, M E, Lederman, M M. End-stage liver disease in persons with hemophilia and transfusion-associated infections. Blood 2002;100:1584–9.Google ScholarPubMed
Eyster, M E, Diamondstone, L S, Lien, J. Natural history of hepatitis C infection in multitransfused hemophiliacs: effect of co-infection with human immunodeficiency virus. J Acquired Immune Defic Syndromes 1993;6:602–10.Google ScholarPubMed
El-Serag, H B, Mason, A C. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 1999;340:745–50.CrossRefGoogle ScholarPubMed
Bresee, J S, Mast, E E, Coleman, P J. Hepatitis C virus infection associated with administration of intravenous immune globulin. JAMA 1996;276:1563–7.CrossRefGoogle ScholarPubMed
Jonas, M M, Baron, M J, Bresee, J S, Schneider, L C. Clinical and virologic features of hepatitis C virus infection associated with intravenous immunoglobulin. Pediatrics 1996;98:211–15.Google ScholarPubMed
Dich, N H, Maj, M C, Goodman, Z D, Klein, M A. Hepatic involvement in Hodgkin's disease. Cancer 1989;64:2121–6.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Urba, W J, Longo, D L. Hodgkin's disease. N Engl J Med 1992;326:678–87.CrossRefGoogle ScholarPubMed
Abt, A B, Kirschner, R H, Belliveau, R E. Hepatic pathology associated with Hodgkin's disease. Cancer 1974;33:1564–71.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Perrera, D R, Greene, M L, Fenster, L F. Cholestasis associated with extrabiliary Hodgkin's disease. Gastroenterology 1974;67:680–85.Google Scholar
Yalcin, S, Kars, A, Sokmensuer, C, Atahan, L. Extrahepatic Hodgkin's disease with intrahepatic cholestasis: report of two cases. Oncology 1999;57:83–5.CrossRefGoogle ScholarPubMed
Rowbotham, D, Wendon, J, Williams, R. Acute liver failure secondary to hepatic infiltration: a single centre experience of 18 cases. Gut 1998;42:576–80.CrossRefGoogle ScholarPubMed
Cohen, I T, Higginns, G R, Powars, D R, Hays, D M. Staging laparotomy for Hodgkin's disease in children: evaluation of the technique. Arch Surg 1977;112:948–53.CrossRefGoogle ScholarPubMed
Birrer, M J, Young, R C. Differential diagnosis of jaundice in lymphoma patients. Sem Liver Dis 1987;7:269–77.CrossRefGoogle ScholarPubMed
Ravindra, K, Stringer, M, Prasad, K. Non–Hodgkin's lymphoma presenting with obstructive jaundice. Br J Surg 2003;90:845–9.CrossRefGoogle ScholarPubMed
Janus, C, Edwards, B K, Sartiban, E, Magrath, I T. Surgical resection and limited chemotherapy for abdominal undifferentiated lymphomas. Cancer Treatment Reports 1984;68:599–605.Google ScholarPubMed
Issaivanan, M, Kochhar, S, Poddar, B, Goraya, J. Burkitt's lymphoma presenting as acute Budd Chiari syndrome. Indian Pediatr 2002;39:83–7.Google ScholarPubMed
Cavalli, G, Casali, A M, Lambertini, F, Busachi, C. Changes in the small biliary passages in the hepatic localization of Hodgkin's disease. Virchow Arch 1979;384:295–306.CrossRefGoogle ScholarPubMed
Wammanda, R, Ali, F, Adama, S. Burkitt's lymphoma presenting as obstructive jaundice. Ann Tropical Paediatr 2004;24:103–6.CrossRefGoogle ScholarPubMed
Bouyn, C, Leclere, J, Raimondo, G. Hepatic focal nodular hyperplasia in children previously treated for a solid tumor. Incidence, risk factors, and outcome. Cancer 2003;97:3107–15.CrossRefGoogle ScholarPubMed
Hutter, R V P, Shipsky, F H, Tan, C T C. Hepatic fibrosis in children with acute leukemia: a complication of therapy. Cancer 1960;13:288–307.3.0.CO;2-L>CrossRefGoogle Scholar
Wiedrich, T, Keller, D, Sunita, A, Gilbert, E. Adverse histopathologic effects of chemotherapeutic agents in childhood leukemia and lymphoma. Pediatr Pathol 1984;2:267–83.CrossRefGoogle ScholarPubMed
DeBruyne, R, Portmann, B, Samyn, M. Chronic liver disease related to 6-thioguanine in children with acute lymphoblastic leukemia. J Hepatol 2006;44:407–10.CrossRefGoogle Scholar
Choi, S I, Simone, J V. Acute nonlymphocytic leukemia in 171 children. Med Pediatr Oncol 1976;2:119–46.CrossRefGoogle ScholarPubMed
Castro-Malaspino, H. Subacute and chronic myelomonocytic leukemia in children. Cancer 1984;54:675–86.3.0.CO;2-Q>CrossRefGoogle Scholar
Allan, R R, Wadsworth, L D, Kalousek, D K, Massing, B G. Congenital erythroleukemia: a case report with morphological, immunophenotypic, and cytogenetic findings. Am J Hematol 1989;31:114–21.CrossRefGoogle ScholarPubMed
Costa, F, Choy, C G, Seiter, K. Hepatic outflow obstruction and liver failure due to leukemic cell infiltration in chronic lymphocytic leukemia. Leukemia Lymphoma 1998;30:403–10.CrossRefGoogle ScholarPubMed
Devictor, D, Tahiri, C, Fabre, M. Early pre-B acute lymphoblastic leukemia presenting as fulminant liver failure. J Pediatr Gastroenterol Nutr 1996;22:103–6.CrossRefGoogle ScholarPubMed
McCord, R G, Gilbert, E F, Joo, P J. Acute leukemia presenting as jaundice with acute liver failure. Clin Pediatr 1973;12:17A.CrossRefGoogle ScholarPubMed
Shehab, T M, Kaminski, M S, Lok, A S. Acute liver failure due to hepatic involvement by hematologic malignancy. Dig Dis Sci 1997;42:1400–5.CrossRefGoogle ScholarPubMed
Zafrani, E S, Leclercq, B, Vernant, J P. Massive blastic infiltration of the liver: a cause of fulminant hepatic failure. Hepatology 1983;3:428–32.CrossRefGoogle ScholarPubMed
Kader, A, Vara, R, Egberongbe, Y. Leukaemia presenting with fulminant hepatic failure in a child. Eur J Paediatr 2004;163:628–9.Google Scholar
Kelleher, J, Monteleone, P, Steele, D. Hepatic dysfunction as the presenting feature of acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2001;23:117–21.CrossRefGoogle ScholarPubMed
Felice, M, Hammermuller, E, DeDavila, M. Acute lymphoblastic leukemia presenting as acute hepatic failure. Leukemia Lymphoma 2000;38:633–7.CrossRefGoogle ScholarPubMed
Saleh, R A, Graham-Pole, J, Cumming, W A. Severe hyperphosphatemia associated with tumor lysis in a patient with T-cell leukemia. Pediatr Emerg Care 1989;5:231–3.CrossRefGoogle Scholar
Jones, D P, Mahmoud, H, Chesney, R W. Tumor lysis syndrome: pathogenesis and management. Pediatr Nephrol 1995;9:206–12.CrossRefGoogle ScholarPubMed
Arrambide, K, Toto, R D. Tumor lysis syndrome. Sem Nephrol 1993;13:273–80.Google ScholarPubMed
Steinherz, P, Gaynon, P, Miller, D. Improved disease-free survival of children with acute lymphoblastic leukemia at high risk for early relapse with the New York regime: new intensive therapy protocol: a report from the Children's Cancer Study Group. J Clin Oncol 1986;4:744–9.CrossRefGoogle Scholar
Wolford, J L, McDonald, G B. A problem oriented approach to intestinal and liver disease after marrow transplantation. J Clin Gastroenterol 1988;10:419–33.CrossRefGoogle ScholarPubMed
El-Sayed, M, El-Haddad, A, Fahmy, O. Liver disease is a major cause of mortality following allogeneic bone-marrow transplantation. European J Gastroenterol Hepatol 2004;16:1347–54.CrossRefGoogle ScholarPubMed
Bertheau, P, Hadengue, A, Cazals-Hatem, D. Chronic cholestasis in patients after allogeneic bone marrow transplantation: several diseases are often associated. Bone Marrow Transplant 1995;16:261–5.Google ScholarPubMed
McDonald, G B, Sharma, P, Matthews, D E. The clinical course of 53 patients with veno-occlusive disease of the liver after marrow transplantation. Transplantation 1985;39:603–8.CrossRefGoogle Scholar
Herbetko, J, Grigg, A P, Buckley, A R, Phillips, G L. Veno-occlusive disease after bone marrow transplantation: findings at duplex sonography. Am J Roentgenol 1992;158:1001–5.CrossRefGoogle ScholarPubMed
Farthing, M J G, Clark, M L, Sloane, J P. Liver disease after bone marrow transplantation. Gut 1982;23:465–74.CrossRefGoogle Scholar
Dulley, F L, Kanfer, E J, Appelbaum, F R. Veno-occlusive disease of the liver after chemoradiotherapy and autologous bone marrow transplantation. Transplantation 1987;43:870–3.CrossRefGoogle ScholarPubMed
Vogelsang, G, Dalal, J. Hepatic venoocclusive disease in blood and bone marrow transplantation in children and young adults: incidence, risk factors, and outcome in a cohort of 241 patients. J Pediatr Hematol Oncol 2002;24:746–50.CrossRefGoogle Scholar
Baglin, T P. Veno-occlusive disease of the liver complicating bone marrow transplantation. Bone Marrow Transplantation 1994;13:1–4.Google ScholarPubMed
Bearman, S I. The syndrome of hepatic veno-occlusive disease after marrow transplantation. Blood 1995;85:3005–20.Google ScholarPubMed
McDonald, G B, Hinds, M S, Fisher, L D. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: a cohort study of 355 patients. Ann Int Med 1993;118:255–67.CrossRefGoogle ScholarPubMed
Reiss, U, Cowan, M, McMillan, A. Hepatic veno-occlusive disease in blood and bone marrow transplantation in children and young adults: incidence, risk factors and outcomes in a cohort of 241 patients. J Pediatr Gastroenterol Nutr 2002;24:706–9.Google Scholar
Lapierre, V, Mahe, C, Auperin, A. Platelet transfusion containing ABO-incompatible plasma and hepatic veno-occlusive disease after hematopoietic transplantation in children. Transplantation 2005;80:314–19.CrossRefGoogle Scholar
Srivastava, A, Poonkuzhali, B, Shaji, R. Glutathione Stransferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood 2004;104:1574–7.CrossRefGoogle Scholar
Rosenthal, J, Sender, L, Secola, R. Phase II trial of heparin prophylaxis for veno-occlusive disease of the liver in children undergoing bone marrow transplantation. Bone Marrow Transplant 1996;18:185–91.Google ScholarPubMed
Bearman, S I, Lee, J L, Baron, A E, McDonald, G B. Treatment of hepatic veno-occlusive disease with recombinant human tissue plasminogen activator and heparin in 42 marrow transplant patients. Blood 1997;89:1501–6.Google ScholarPubMed
Espigado, I, Rodriguez, J M, Parody, R. Reversal of severe hepatic veno-occlusive disease by combined plasma exchange and rt-PA treatment. Bone Marrow Transplant 1995;16:313–16.Google ScholarPubMed
Heying, R, Nurnberger, W, Spiekerkotter, U, Gobel, U. Hepatic veno-occlusive disease with severe capillary leakage after peripheral stem cell transplantation: treatment with recombinant plasminogen activator and C1-estarase inhibitor concentrate. Bone Marrow Transplant 1998;21:947–9.CrossRefGoogle ScholarPubMed
Morris, J D, Harris, R E, Hashmi, R. Antithrombin-III for the treatment of chemotherapy-induced organ dysfunction following bone marrow transplantation. Bone Marrow Transplant 1997;20:871–8.CrossRefGoogle ScholarPubMed
Sjoo, F, Aschan, J, Barkholt, L. N-acetyl-L-cysteine does not affect the pharmacokinetics or myelosuppressive effect of busulfan during conditioning prior to allogeneic stem cell transplantation. Bone Marrow Transplant 2003;32:349–54.CrossRefGoogle ScholarPubMed
Ferrara, J L M, Deeg, H G. Graft-versus-host disease. N Engl J Med 1991;324:667–74.Google ScholarPubMed
Roberts, J P, Aschner, N J, Lake, A. Graft-versus-host disease after liver transplantation in humans: a report of four cases. Hepatology 1991;14:272–81.CrossRefGoogle ScholarPubMed
Parkman, R, Mosier, D, Umansky, I. Graft-versus-host disease after intrauterine and exchange transfusions for hemolytic disease of the newborn. N Engl J Medic 1974;290:359–63.CrossRefGoogle ScholarPubMed
Sullivan, K M. Acute and chronic graft-versus-host disease in man. Int J Cell Cloning 1986;4:42–93.CrossRefGoogle ScholarPubMed
Liedner, V, Higby, D J, Kim, U. Graft-versus-host reaction following blood product transfusion. American J of Medicine 1982;72:951–61.CrossRefGoogle Scholar
Perez-Simon, J, Diez-Campelo, M, Martino, R. Influence of the intensity of the conditioning regimen on the characteristics of acute and chronic graft-versus-host disease after allogeneic transplantation. Br J Haematol 2005;130:394–403.CrossRefGoogle ScholarPubMed
Snover, D C, Weisdorf, S A, Ramsay, N K. Hepatic graft-versus-host disease: a study of the predictive value of liver biopsy in diagnosis. Hepatology 1984;4:123–30.CrossRefGoogle ScholarPubMed
Shulman, H M, Sharma, P, Amos, D. A coded histologic study of hepatic graft versus host disease after human bone marrow transplantation. Hepatology 1988;8:463–70.CrossRefGoogle ScholarPubMed
Ma, S, Au, W, Ng, I. Hepatitic graft-versus-host disease after hematopoietic stem cell transplantation: clinicopathologic features and prognostic implication. Transplantation 2004;77:1252–9.CrossRefGoogle ScholarPubMed
Bombi, J A, Nadal, A, Carreras, E. Assessment of histopathologic changes in the colonic biopsy in acute graft-versus-host disease. Am J Clin Pathol 1995;103:690–5.CrossRefGoogle ScholarPubMed
Epstein, R J, McDonald, G B, Sale, G E. The diagnostic accuracy of the rectal biopsy in acute graft-versus-host disease: a prospective study of thirteen patients. Gastroenterology 1980;78:764–71.Google ScholarPubMed
Sviland, I, Pearson, A D J, Green, M A. Immunopathology of early graft-versus-host disease: a prospective study of skin, rectum and peripheral blood in allogeneic and autologous bone marrow transplant recipients. Transplantation 1991;52:1029–36.CrossRefGoogle ScholarPubMed
Ponec, R J, Hackman, R C, McDonald, G B. Endoscopic and histologic diagnosis of intestinal graft-versus-host disease after marrow transplantation. Gastrointest Endosc 1999;49:612–21.CrossRefGoogle ScholarPubMed
Carreras, E, Granena, A, Navasa, M. Transjugular liver biopsy in BMT. Bone Marrow Transplant 1993;11:21–6.Google ScholarPubMed
Cohen, M B, A-Kader, H H, Lambers, D, Heubi, J E. Complications of percutaneous liver biopsy in children. Gastroenterology 1992;102:629–32.CrossRefGoogle ScholarPubMed
Dickinson, A, Middleton, P, Gluckman, E. Genetic polymorphisms predicting the outcome of bone marrow transplants. Br J Haematol 2004;127:479–90.CrossRefGoogle ScholarPubMed
Wagner, J, Thompson, J, Carter, S, Kernan, N. Effect of graft-versus-host disease prophylaxis on 3-year disease-free survival in recipients of unrelated donor bone marrow (T-cell Depletion Trial): a multi-centre, randomised phase II–III trial. Lancet 2005;266:743–41.Google Scholar
McDonald, G D. Graft versus host disease of the intestine and liver. Immunol Allergy Clin North Am 1988;8:543–57.Google Scholar
Sullivan, K M, Shulman, H M, Storb, R. Chronic graft-versus-host disease in 52 patients: adverse natural course and successful treatment with combination immunosuppression. Blood 1981;57:267–76.Google ScholarPubMed
Horwitz, M, Sullivan, K. Chronic graft-versus-host disease. Blood Rev 2006;20:15–27.CrossRefGoogle ScholarPubMed
Bhushan, V, Collins, RH Jr. Chronic graft-vs-host disease. JAMA 2003;290:2599–603.CrossRefGoogle ScholarPubMed
Shulman, H, Sullivan, K M, Weiden, P L. Chronic graft versus host syndrome in man: a long term clinicopathologic study of 20 Seattle patients. Am J Med 1980;69:204–17.CrossRefGoogle ScholarPubMed
Couriel, D, Saliba, R, Escalon, M. Sirolimus in combination with tacrolimus and corticosteroids for the treatment of resistant chronic graft-versus-host disease. Br J Haematol 2005;130:409–17.CrossRefGoogle ScholarPubMed
Barshes, N R, Myers, G D, Lee, D. Liver transplantation for severe hepatic graft-versus-host disease. An analysis of aggregate survival data. Liver Transplant 2005;11:525–31.CrossRefGoogle ScholarPubMed
Rachelefsky, G S, Kar, N C, Coulson, A. Serum enzyme abnormalities in juvenile rheumatoid arthritis. Pediatrics 1976;58:730–6.Google ScholarPubMed
Schaller, J, Beckwith, B, Wedgwood, R J. Hepatic involvement in juvenile rheumatoid arthritis. J Pediatr 1970;77:203–10.CrossRefGoogle ScholarPubMed
Korneich, H, Malouf, N N, Hanson, V. Acute hepatic dysfunction in juvenile rheumatoid arthritis. J Pediatr 1971;79:27–35.CrossRefGoogle Scholar
David, J, Vouyiouka, O, Ansell, B M. Amyloidosis in juvenile rheumatoid arthritis: a morbidity and mortality study. Clin Exp Rheumatol 1993;11:85–94.Google ScholarPubMed
Bernstein, B, Singsen, B H, King, K K, Hanson, V. Aspirin induced hepatotoxicity and its effect on juvenile rheumatoid arthritis. Am J Dis Child 1977;131:659–63.Google ScholarPubMed
Rich, R R, Johnson, J S. Salicylate hepatotoxicity in patients with juvenile rheumatoid arthritis. Arthritis Rheumatism 1973;16:1–9.CrossRefGoogle ScholarPubMed
Athreya, B H, Moser, G, Cecil, H S, Myers, A R. Aspirin induced hepatoxicity in juvenile rheumatoid arthritis. Arthritis Rheum 1975;18:347–52.CrossRefGoogle Scholar
Young, R S K, Torretti, D, Williams, R H. Reye syndrome associated with long term aspirin therapy. JAMA 1984;251:754–6.CrossRefGoogle ScholarPubMed
Remington, P L, Shabino, C L, McGee, H. Reye syndrome and juvenile rheumatoid arthritis in Michigan. Am J Dis Child 1985;139:870–2.Google ScholarPubMed
Rennebohm, R M, Heubi, J E, Daugherty, C C, Daniels, S R. Reye syndrome in children receiving salicylate therapy for connective tissue disease. J Pediatr 1985;107:877–80.CrossRefGoogle ScholarPubMed
Riley, T, Smith, J. Ibuprofen-induced hepatotoxicity in patients with chronic hepatitis C. Am J Gastroenterol 1998;93:1563–5.CrossRefGoogle ScholarPubMed
Fry, S W, Seeff, L B. Hepatotoxicity of analgesics and antiinflammatory agents. Gastroenterol Clin North Am 1995;24:875–905.Google Scholar
Garcia Rodriguez, L A, Williams, R, Derby, L E. Acute liver injury associated with nonsteroidal anti-inflammatory drugs and the role of risk factors. Arch Int Med 1994;154:311–16.CrossRefGoogle ScholarPubMed
Teoh, N, Farrell, G. Hepatotoxicity associated with non-steroidal anti-inflammatory drugs. Clin Liver Dis2003;7:401–13.CrossRefGoogle Scholar
Mortensen, M E, Rennebohm, R M. Clinical pharmacology and use of nonsteroidal anti-inflammatory drugs. Pediatr Clin North Am 1989;36:1113–39.CrossRefGoogle ScholarPubMed
Rostom, A, Goldkind, L, Laine, L. Nonsteroidal anti-inflammatory drugs and hepatic toxicity: a systematic review of randomized controlled trials in arthritis patients. Clini Gastroenterol Hepatol 2005;3:489–98.CrossRefGoogle ScholarPubMed
Hadchouel, M, Prieur, A, Griscelli, C. Acute hemorrhagic, hepatic and neurologic manifestations in juvenile rheumatoid arthritis: possible relationship to drugs or infection. J Pediatr 1985;106:561–6.CrossRefGoogle ScholarPubMed
Jacobs, J C, Gorin, L J, Hanissian, A S. Consumptive coagulopathy after gold therapy for JRA. J Pediatr 1984;105:674–80.CrossRefGoogle Scholar
Silverman, E D, Miller, J J, Bernstein, B. Consumptive coagulopathy associated with systemic juvenile rheumatoid arthritis. J Pediatr 1983;103:872–8.CrossRefGoogle ScholarPubMed
Watkins, P B, Schade, R, Mills, A S, Carithers, R L, Thiel, D H. Fatal hepatic necrosis associated with parenteral gold therapy. Dig Dis Sci 1988;33:1025–9.CrossRefGoogle ScholarPubMed
Barash, J, Cooper, M, Tauber, A. Hepatic, cutaneous, and hematologic manifestations in juvenile chronic arthritis. Clin Exp Rheumatol 1991;9:541–50.Google ScholarPubMed
Weinblatt, M E, Weissman, B N, Holdsworth, D E. Long term prospective studies of methotrexate in the treatment of rheumatoid arthritis. Arthritis Rheum 1992;35:129–37.CrossRefGoogle ScholarPubMed
Wilkens, R F, Leonard, P A, Clegg, D O. Liver histology in patients receiving low dose pulse methotrexate for treatment of rheumatoid arthritis. Ann Rheum Dis 1990;49:591–3.CrossRefGoogle Scholar
Kremer, J M, Alarcon, G S, Lightfoot, R W. Methotrexate for rheumatoid arthritis: suggested guidelines for monitoring liver toxicity. Arthritis Rheum 1994;37:316–28.CrossRefGoogle ScholarPubMed
Lewis, J H, Schiff, E. Methotrexate-induced chronic liver injury: guidelines for detection and prevention. Am J Gastroenterol 1988;88:1337–45.Google Scholar
Kremer, J M, Kaye, G I, Kaye, N W. Light and electron microscopic analysis of sequential liver biopsy samples from rheumatoid arthritis patients receiving long-term methotrexate therapy. Arthritis Rheum 1995;38:1194–203.CrossRefGoogle ScholarPubMed
Brick, J E, Moreland, L W, Al-Kawas, F. Prospective analysis of liver biopsies before and after methotrexate therapy in rheumatoid arthritis. Sem Arthritis Rheumatol 1989;19:31–44.CrossRefGoogle Scholar
Giannini, E H, Brewer, E J, Kuzima, N. Methotrexate in resistant juvenile rheumatoid arthritis: results of the U.S.A.–U.S.S.R. double-blind, placebo-controlled trial. N Engl J Med 1992;326:1043–9.Google Scholar
Wallace, C A. The use of methotrexate in childhood rheumatic diseases. Arthritis Rheum 1998;41:381–91.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Hashkes, P J, Balistreri, W F, Bove, K E. The relationship of hepatotoxic risk factors and liver histology in methotrexate ther-apy for juvenile rheumatoid arthritis. J Pediatr 1999;134:47–52.CrossRefGoogle Scholar
Hashkes, P J, Balistreri, W F, Bove, K E. The long-term effects of methotrexate therapy on the liver in patients with juvenile rheumatoid arthritis. Arthritis Rheum 1997;40:2226–34.CrossRefGoogle ScholarPubMed
Smith, M E, Ansell, B M, Bywaters, E G L. Mortality and prognosis related to the amyloidosis of Still's disease. Ann Rheum Dis 1968;27:137–45.CrossRefGoogle ScholarPubMed
Strauss, R G, Schubert, W K, McAdams, A J. Amyloidosis in childhood. J Pediatr 1969;74:272–82.CrossRefGoogle ScholarPubMed
Thorne, C, Urowitz, M D, Wanless, I. Liver disease in Felty's syndrome. Am J Med 1982;73:35–40.CrossRefGoogle ScholarPubMed
Cassidy, J T, Petty, R E. Textbook of pediatric rheumatology. Philadelphia: W.B. Saunders; 2001.Google Scholar
Whaley, K, Williamson, J, Dick, W C. Liver disease in Sjorgen's syndrome and rheumatoid arthritis. Lancet 1970;1:861–2.CrossRefGoogle Scholar
Poirier, T, Rankin, G. Gastrointestinal manifestations of progressive systemic scleroderma based on a review of 364 cases. Am J Gastroenter 1972;58:30–44.Google ScholarPubMed
Powell, F, Schroeter, A, Dickinson, E. Primary biliary cirrhosis and the CREST syndrome: a report of 22 cases. Q J Med 1987;62:75–82.Google ScholarPubMed
D'Angelo, W, Fries, J, Masi, A, Shulman, L E. Pathologic observations in systemic sclerosis (scleroderma): a study of fifty-eight autopsy cases and fifty-eight matched controls. Am J Med 1969;46:428–40.CrossRefGoogle ScholarPubMed
Bartholomew, L, Cain, J, Winkelmann, R. Chronic disease of the liver with systemic scleroderma. Am J Dig Dis 1964;9:43–55.CrossRefGoogle ScholarPubMed
Leggett, B A. The liver in systemic lupus erythematosus. J Pediatr Gastroenterol Nutr 1993;8:84–8.Google ScholarPubMed
Runyon, B A, LaBrecque, D, Anuras, S. The spectrum of liver disease in systemic lupus erythematosus: report of 33 histologically proven cases and review of the literature. Am J Med 1980;69:187–94.CrossRefGoogle Scholar
Miller, M H, Urowitz, M B, Gladman, D D, Blendis, L M. The liver in systemic lupus erythematosus. Q J Med 1984;211:401–9.Google Scholar
Searnan, W E, Ishak, K G, Plotz, P H. Aspirin induced hepatotoxicity in patients with systemic lupus erythematosus. Ann Int Med 1974;80:1–8.Google Scholar
Matsumoto, T, Yoshimine, T, Shimouchi, K. The liver in systemic lupus erythematosus: pathologic analysis of 52 cases and review of Japanese autopsy registry. Hum Pathol 1992;23:1151–8.CrossRefGoogle ScholarPubMed
Averbuch, M, Levo, Y. Budd–Chiari syndrome as the major thrombotic complication of systemic lupus erythematosus with the lupus anticoagulant. Ann Rheum Dis 1986;45:435–7.CrossRefGoogle ScholarPubMed
Pappas, S C, Malone, D G, Rabin, L. Hepatic veno-occlusive disease in a patient with systemic lupus erythematosus. Arthritis Rheum 1984;27:104–8.CrossRefGoogle Scholar
Yun, Y Y, Yoh, K A, Yang, H I. A case of Budd–Chiari syndrome with high antiphospholipid antibody in a patient with systemic lupus erythematosus. Korean J Int Med 1996;11:82–6.CrossRefGoogle Scholar
Perez-Ruiz, F R, Orte-Martinez, F J, Zea Mendoza, A C. Nodular regenerative hyperplasia of the liver in rheumatic diseases: report of seven cases and review of the literature. Sem Arthritis Rheumatol 1991;21:47–54.CrossRefGoogle ScholarPubMed
Khoury, G, Tobi, M, Oren, M, Traub, Y M. Massive hepatic infarction in systemic lupus erythematosus. Dig Dis Sci 1990;35:1557–660.CrossRefGoogle ScholarPubMed
Colina, F, Albert, N, Solis, J A, Martinez-Tello, F J. Diffuse nodular regenerative hyperplasia of the liver: a clinicopathologic study of 24 cases. Liver 1989;9:253–65.CrossRefGoogle ScholarPubMed
Laxer, R M, Roberts, E A, Gross, K R. Liver disease in neonatal lupus erythematosus. J Pediatr 1984;116:238–42.CrossRefGoogle Scholar
Watson, R M, Lane, A T, Barnett, N K. Neonatal lupus erythematosus: a clinical, serologic and immunogenetic study with review of the literature. Medicine 1984;63:362–78.CrossRefGoogle Scholar
Rosh, J R, Silverman, E D, Groisman, G. Intrahepatic cholestasis in neonatal lupus erythematosus. J Pediatr Gastroenterol Nutr 1993;17:310–12.CrossRefGoogle ScholarPubMed
Lee, L A, Sokol, R J, Buyon, J P. Hepatobiliary disease in neonatal lupus: prevalence and clinical characteristics in cases enrolled in a national registry. Pediatrics 2002;109:e11.CrossRefGoogle Scholar
Crowe, W E, Bove, K E, Levinson, J E, Hilton, P K. Clinical and pathogenetic implications of histopathology in childhood dermatomyositis. Arthritis Rheum 1982;25:126–32.CrossRefGoogle Scholar
Iorio, R, Sepe, A, Giannattasio, A. Hypertransaminasemia in childhood as a marker of genetic liver disorders. J Gastroenterol 2005;40:820–6.CrossRefGoogle ScholarPubMed
Russo, R, Katsicas, M, Davila, M. Cholestasis in juvenile dermatomyositis: report of three cases. Arthritis Rheum 2001;44:1139–42.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Rowley, A H, Shulman, S T. Kawasaki syndrome. Pediatr Clin North Am 1999;46:313–29.CrossRefGoogle ScholarPubMed
Burns, J C, Mason, W H, Glode, M P. Clinical and epidemiologic characteristics of patients referred for evaluation of possible Kawasaki disease. J Pediatr 1991;118:680–6.CrossRefGoogle ScholarPubMed
Ohshio, G, Furukawa, F, Fujiwara, H, Hamashima, Y. Hepatomegaly and splenomegaly in Kawasaki disease. Pediatr Pathol 1985;4:257–64.CrossRefGoogle ScholarPubMed
Newberger, J, Takahashi, M, Gerber, M. Diagnosis, treatment and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 2004;114:1708–33.CrossRefGoogle Scholar
Ting, E, Capparelli, E, Billman, G. Elevated gamma-glutamyltransferase concentrations in patients with acute Kawasaki disease. Pediatr Infect Dis J 1998;17:431–2.CrossRefGoogle ScholarPubMed
Uehara, R, Yashiro, M, Hayasaka, S. Serum Alanine Aminotransferase Concentrations in Patients with Kawasaki Disease. Pediatr Infect Dis J 2003;22:839–42.CrossRefGoogle ScholarPubMed
Kimura, A, Inoue, O, Kato, H. Serum concentrations of total bile acids in patients with acute Kawasaki syndrome. Arch Pediatr Adolesc Med 1996;150:289–92.CrossRefGoogle ScholarPubMed
Edwards, K M, Glick, A D, Greene, H L. Intrahepatic cholestasis associated with mucocutaneous lymph node syndrome. J Pediatr Gastroenterol Nutr 1985;4:140–2.CrossRefGoogle Scholar
Bader-Meunier, B, Hadchouel, M, Fabre, M. Intrahepatic bile duct abnormalities in children with Kawasaki disease. J Pediatr 1992;120:750–2.CrossRefGoogle Scholar
Landing, B H, Larson, E J. Are infantile periarteritis nodosa with coronary artery involvement and fatal mucocutaneous lymph node syndrome the same: comparison of 20 patients from North America with patients from Hawaii and Japan. Pediatrics 1977;59:651–62.Google ScholarPubMed
Naoe, S, Shibuya, K, Takahashi, K. Pathologic observations concerning the cardiovascular lesions in Kawasaki disease. Cardiol Young 1991;1:212–20.CrossRefGoogle Scholar
Bertino, J S, Willis, E D, Reed, M D, Speck, W T. Salicylate hepatitis: a complication of the treatment of Kawasaki disease. Am J Hosp Pharm 1981;38:1171–2.Google Scholar
Lee, J H, Hung, H Y, Huang, F Y. Kawasaki disease with Reye syndrome: report of one case. Zhonghua Min Xiao Er Ke Yi Xue Hui Za Zh 1992;33:67–71.Google ScholarPubMed
Hassink, S G, Goldsmith, D P. Neonatal onset multi-system inflammatory disease. Arthritis Rheum 1983;26:668–73.CrossRefGoogle Scholar
Yarom, A, Rennenbohm, R M, Levinson, J E. Infantile multisystem inflammatory disease: a specific syndrome?J Pediatr 1985;106:390–6.CrossRefGoogle ScholarPubMed
Feldmann, J, Prieur, A, Quartier, P. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 2002;71:198–203.CrossRefGoogle ScholarPubMed
Kilcline, C, Shinkai, K, Bree, A. Neonatal-onset multisystem inflammatory disorder: the emerging role of pyrin genes in autoinflammatory diseases. Arch Dermatol 2005;141:248–53.CrossRefGoogle ScholarPubMed
Layden, T J, Boyer, J L. Effect of thyroid hormone on bile salt independent bile flow and Na-K ATPase activity in liver plasma membrane enriched in bile canaliculi. J Clin Invest 1976;57:1009–15.CrossRefGoogle ScholarPubMed
Ellaway, C, Silinik, M, Cowell, C. Cholestatic jaundice and congenital hypopituitarism. J Paediatr Child Health 1995;31:51–3.CrossRefGoogle ScholarPubMed
Craft, W H, Underwood, L E, Wyk, J J. High incidence of perinatal insult in children with idiopathic hypopituitarism. J Pediatr 1980;96:397–402.CrossRefGoogle ScholarPubMed
Sheehan, A G, Martin, S R, Stephure, D, Scott, R B. Neonatal cholestasis, hypoglycemia and congenital hypopituitarism. J Pediatr Gastroenterol Nutr 1992;426–30.CrossRefGoogle ScholarPubMed
Yagi, H, Nagashima, K, MiyakeH, et al H, et al. Familial congenital hypopituitarism with central diabetes insipidus. J Clin Endocrinol Metab 1994;78:884–9.Google ScholarPubMed
Adams, L, Feldstein, A, KD, L, Angulo, P. Nonalcoholic fatty liver disease among patients with hypothalamic and pituitary dysfunction. Hepatology 2004;39:909–14.CrossRefGoogle ScholarPubMed
Nakajima, K, Hashimoto, E, Kaneda, H. Pediatric nonalcoholic steatohepatitis associated with hypopituitrarism. J Gastroenterol 2005;40:3312–15.CrossRefGoogle Scholar
Willnow, S, Kiess, W, Butenandt, O. Endocrine disorders in septo-optic dysplasia (De Morsier syndrome): evaluation and follow up of 18 patients. Eur J Pediatr 1996;155:179–84.CrossRefGoogle ScholarPubMed
Minami, K, Izumi, G, Yanagawa, T. Septo-opticdysplasia with congenital hepatic fibrosis. Paediatr Neurol 2003;29:157–9.CrossRefGoogle ScholarPubMed
Leblanc, A, Odievre, M, Hadchouel, M. Neonatal cholestasis and hypoglycemia: possible role of cortisol deficiency. J Pediatr 1981;99:577–80.CrossRefGoogle ScholarPubMed
Soffer, L J, Iannaccone, A, Gabrilove, J L. Cushing's syndrome: a study of 50 patients. Am J Med 1961;30:129–46.CrossRefGoogle Scholar
Lacy, D E, Nathavitharana, K A, Tarlow, M J. Neonatal hepatitis and congenital insensitivity to adrenocorticotropin (ACTH). J Pediatr Gastroenterol Nutr 1993;17:438–40.CrossRefGoogle Scholar
Kirkman, S, Nelson, D. Alcohol induced pseudo-Cushing's disease: a study of prevalence with review of the literature. Metabolism 1988;37:390–4.CrossRefGoogle ScholarPubMed
Binkiewicz, A, Robinson, M, Senior, B. Pseudo-Cushing syndrome caused by alcohol in breast milk. J Pediatr 1978;93:965–7.CrossRefGoogle ScholarPubMed
Balasubramaniam, S, Mitropoulous, K A, Myant, N B. Hormonal control of the activities of cholesterol-7-alpha-hydroxylase and hydroxy methylglutaryl-CoA reductase in rates. In: Matern, S H J, Back, P, Gerok, W. Advances in bile acid research. Stuttgart: Schattauer Verlag; 1975.Google Scholar
Ashkar, F S, Miller, R, Smoak, W M, Glison, A J. Liver disease in hyperthyroidism. South Med J 1971;64:462–5.CrossRefGoogle ScholarPubMed
Beckett, G J, Kellett, H A, Gow, S M. Subclinical liver damage in hyperthyroidism and in thyroxine replacement therapy. Br Med J 1985;291:427–30.CrossRefGoogle Scholar
Yao, J C, Gross, J B, Ludwig, J, Prunell, D C. Cholestatic jaundice in hyperthyroidism. Am J Medicine 1989;86:619–20.CrossRefGoogle ScholarPubMed
Christensen, J F. Prolonged icterus neonatorum and congenital myxedema. Acta Paediatr Scand 1956;45:411–20.CrossRefGoogle Scholar
MacGillivray, M H, Crawford, J D, Robey, J S. Congenital hypothyroidism and prolonged neonatal hyperbilirubinemia. Pediatrics 1967;40:283–6.Google ScholarPubMed
Pearson, C. Serum enzymes in muscular dystrophy and certain other muscular and neuromuscular diseases. I. Serum glutamic oxalacetic transaminase. N Engl J Med 1957;256:1069–75.CrossRefGoogle ScholarPubMed
Zamora, S, Adams, C, Butzner, J. Elevated aminotransferase activity as an indication of muscular dystrophy: case reports and review of the literature. Can J Gastroenterol 1996;10:389–93.CrossRefGoogle ScholarPubMed
Tay, S, Ong, H, Low, P. Transaminitis in Duchenne's muscular dystrophy. Ann Acad Med Singapore 2000;29:719–22.Google ScholarPubMed
Nathwani, R, Pais, S, Reynolds, T, Kaplowitz, N. Serum alanine aminotransferase in skeletal muscle disease. Hepatology 2005;41:380–2.CrossRefGoogle Scholar
Schiano, T. Hepatotoxicity and complementary and alternative medicines. Clin Liver Dis 2003;7:453–73.CrossRefGoogle ScholarPubMed
Saper, R, Kales, S, Paquin, J, Burns, M. Heavy metal content of Ayurvedic herbal medicine products. JAMA 2004;292:2868–73.CrossRefGoogle ScholarPubMed
Rasenack, R, Muller, C, Kleinschmidt, M. Veno-occlusive disease in a fetus caused by pyrrolizidine alkaloids of food origin. Fetal Diagn Ther 2003;18:223–5.CrossRefGoogle Scholar
Lanski, S, Greenwald, M, Perkins, A, Simon, H. Herbal therapy use in a pediatric emergency department population: expect the unexpected. Pediatrics 2003;111:981–5.CrossRefGoogle Scholar
Davis, M, Darden, P. Use of complementary and alternative medicine by children in the United States. Arch Pediatr Adolesc Med 2003;157:393–6.CrossRefGoogle ScholarPubMed
Ojetti, V, Fini, L, Zileri Dal Verme, L. Acute cryptogenic liver failure in an untreated coeliac patient: a case report. Eur J Gastroenterol Hepatol 2005;17:1119–21.CrossRefGoogle Scholar
Stevens, F, McLoughlin, R. Is coeliac disease a potentially treatable cause of liver failure?Eur J Gastroenterol Hepatol 2005;17:1015–17.CrossRefGoogle ScholarPubMed
Hay, J E, Wiesner, R H, Shorter, R G. Primary sclerosing cholangitis and coeliac disease: a novel association. Ann Int Med 1988;109:713–17.CrossRefGoogle ScholarPubMed
Jacobsen, M B, Fausa, O, Elgjo, K, Schrumf, E. Hepatic lesions in adult coeliac disease. Scand J Gastroenterol 1990;25:656–62.CrossRefGoogle ScholarPubMed
Logan, R F A, Ferguson, A, Finlayson, N D C. Primary biliary cirrhosis and coeliac disease: an association?Lancet 1978;1:230–3.CrossRefGoogle Scholar
Niveloni, S, Dezi, R, Pedreira, S. Gluten sensitivity in patients with primary biliary cirrhosis. Am J Gastroenterol 1998;93:404–8.CrossRefGoogle ScholarPubMed
Naschitz, J E, Yeshurun, D, Zuckerman, E. Massive hepatic steatosis complicating adult celiac disease. Am J Gastroenterol 1987;82:1186–9.Google ScholarPubMed
Cassagnou, M, Boruchowicz, A, Guillemore, F. Hepatic steatosis revealing celiac disease: a case complicated by transitory liver failure. Am J Gastroenterol 1996;91:1291–2.Google ScholarPubMed
Shamir, R, Koren, I, Rosenbach, Y. Celiac, fatty liver and pancreatic insufficiency. J Pediatr Gastroenterol Nutr 2001;32:490–2.CrossRefGoogle ScholarPubMed
Waterlow, J C. Amount and rate of disappearance of liver fat in malnourished children in Jamaica. Am J Clin Nutr 1975;28:1330–6.CrossRefGoogle ScholarPubMed
Tenore, A, Berman, W F, Parks, J S, Bongiovanni, A M. Basal and stimulated growth hormone concentrations in inflammatory bowel disease. J Clin Endocrinol Metab 1977;44:622–8.CrossRefGoogle ScholarPubMed
Abraira, C, Virupannavar, C, Nemchausky, B. Protective effects of small amount of glucose on abnormal liver function tests during starvation. Metabolism 1980;29:943–8.CrossRefGoogle Scholar
Bessey, P Q, Watters, J M, Aoki, T T, Wilmore, D W. Combined hormonal infusions simulates the metabolic response to injury. Ann Surg 1984;200:262–80.CrossRefGoogle ScholarPubMed
Doherty, J F, Golden, M H N, Brooks, S E H. Peroxisomes and the fatty liver of malnutrition: a hypothesis. Am J Clin Nutr 1991;54:674–7.CrossRefGoogle ScholarPubMed
Simon, D G, Krause, R, Galambos, J T. Peliosis hepatis in a patient with marasmus. Gastroenterology 1988;95:805–9.CrossRefGoogle Scholar
Williams, C D. Kwashiorkor: a nutritional disease associated with a maize diet. Lancet 1935;2:1151–2.CrossRefGoogle Scholar
Eastlack, J P, Grande, K K, Levy, M L, Nigro, J F. Dermatosis in a child with kwashiorkor secondary to food aversion. Pediatr Dermatol 1999;16:95–102.CrossRefGoogle Scholar
Sinatra, F R, Merritt, R J. Iatrogenic kwashiorkor in infants. Am J Dis Child 1981;135:76–8.Google ScholarPubMed
Taitz, L S, Finberg, L. Kwashiorkor in the Bronx. Am J Dis Child 1966;22:76–8.Google Scholar
Liu, T, Howard, R, Mancini, A. Kwashiorkor in the United States. Fad diets, perceived and true milk allergy, and nutritional ignorance. Arch Dermatol 2006;137:630–6.Google Scholar
Katz, K, Mahlberg, M, Honig, P, Yan, A. Rice nightmare: kwashiorkor in 2 Philadelphia infants fed Rice Dream beverage. J Am Acad Dermatol 2005;52 Suppl 1:S69–72.CrossRefGoogle Scholar
Gelfand, M. Kwashiorkor in a breast-fed infant. Trans Royal Soc Trop Med 1951;45:393–6.CrossRefGoogle Scholar
Jelliff, D B, Jelliff, E F. Causation of kwashiorkor: toward a multi-factorial consensus. Pediatrics 1992;90:110–13.Google Scholar
Golden, M H. Oedematous malnutrition. Br Med J 1998;54:433–44.Google ScholarPubMed
Golden, M H N, Ramdath, D D. Free radicals in the pathogenesis of kwashiorkor. Proc Nutr Soc 1987;46:53–68.CrossRefGoogle ScholarPubMed
Prasad, A S. Zinc and immunity. Mole Cell Biochem 1998;188:63–9.CrossRefGoogle ScholarPubMed
Manar, M, MacPherson, G, Mcardle, F. Selenium status, kwashiorkor and congestive heart failure. Acta Paeditr Scand 2001;90:950–2.CrossRefGoogle ScholarPubMed
Iputo, J, Sammon, A, Tindimwebwa, G. Prostaglandin E2 is raised in kwashiorkor. South African Medical J 2002;92:310–12.Google ScholarPubMed
Mayatepek, E, Becker, K, Gana, L, Hoffman, G, Leichsenring, M. Leukotrienes in the pathophysiology of kwashiorkor. Lancet 1993;342:958–60.CrossRefGoogle ScholarPubMed
Dugler, H, Arik, M, Sekeroglu, M. Pro-inflammatory cytokines in Turkish children with protein-energy malnutrition. Mediators Inflamm 2002;11:363–5.Google Scholar
Wu, G, Fang, Y, Yang, S. Glutathione metabolsim and its implications for health. J Nutr 2004;134:489–92.CrossRefGoogle Scholar
Hendrickse, R G. Kwashiorkor: the hypothesis that incriminates aflatoxin. Pediatrics 1991;88:376–9.Google Scholar
Hatem, N, Hassab, H, Abd Al-Rahman, E. Prevalence of aflatoxins in blood and urine of Egyptian infants with protein-energy malnutrition. Food Nutr Bull 2005;26:49–56.CrossRefGoogle ScholarPubMed
World Helath Organization. Management of severe malnutrition: a manual for physicians and other senior health care workers. Genva: Author, 1999.
Becker, K, Pons-Kuhnemann, J, Fechner, A. Effects of antioxidants on glutathione levels and clinical recovery from the malnutrition syndrome kwashiorkor – a pilot study. Redox Rep 2005;10:215–26.CrossRefGoogle ScholarPubMed
Cilberto, H, Cilberto, M, Briend, A. Antioxidant supplementation for the prevention of kwashiorkor in Malawian children: randomised, placebo controlled trial. BMJ 2005;330:1109–13.CrossRefGoogle Scholar
Miller, K K, Grinspoon, S K, Ciampa, J. Medical findings in outpatients with anorexia nervosa. Arch Int Med 2005;165:561–6.CrossRefGoogle ScholarPubMed
Milner, M R, McAnarney, E R, Klish, W J. Metabolic abnormalities in adolescent patients with anorexia nervosa. J Adolesc Health Care 1985;6:191–5.CrossRefGoogle ScholarPubMed
Nordgren, L, Scheele, C. Hepatic and pancreatic dysfunction in anorexia nervosa. Biol Psychiatry 1977;12:681–6.Google ScholarPubMed
Barrett, P V D. Hyperbilirubinemia of fasting. JAMA 1971;217:1349–53.CrossRefGoogle ScholarPubMed
Niiya, K, Kitagawa, T, Fujishita, M. Bulimia nervosa complicated by deficiency of vitamin K-dependent coagulation factors. JAMA 1983;250:792–3.CrossRefGoogle ScholarPubMed
Felsher, B F, Rickard, D, Redeker, A G. The reciprocal relation between caloric intake and the degree of hyperbilirubinemia in Gilbert's syndrome. N Engl J Med 1970;283:170–4.CrossRefGoogle ScholarPubMed
Gartner, U, Goeser, T, Wolkoff, A W. Effect of fasting on the uptake of bilirubin and sulfobromophthalein by the isolated perfused rat liver. Gastroenterology 1997;113:1701–13.CrossRefGoogle ScholarPubMed
Geubel, A P, DeGalocsy, C, Alves, N. Liver damage caused by therapeutic vitamin A administration: estimate of dose-related toxicity in 41 cases. Gastroenterology 1991;100:1701–09.CrossRefGoogle ScholarPubMed
Etachason, J A, Miller, T D, Squires, R W. Niacin-induced hepatitis: a potential side effect with low-dose-time-release niacin. Mayo Clinic Proc 1991;66:23–8.CrossRefGoogle Scholar
Carvalho, N, Kenney, R, Carrington, P, Dall, D. Severe nutritional deficiencies in toddlers resulting from health food milk alternatives. Pediatrics 2001;107:e46–53.CrossRefGoogle ScholarPubMed
Larrey, D, Pageaux, G P. Hepatotoxicity of herbal remedies and mushrooms. Sem Liver Dis 1995;15:183–7.CrossRefGoogle ScholarPubMed
Huxtable, R J. The myth of beneficent nature: the risks of herbal preparations. Ann Int Med 1992;117:165–6.CrossRefGoogle ScholarPubMed
Woolfe, G M, Petrovic, L M, Rojter, S E. Acute hepatitis associated with the Chinese herbal product Jin-bu-huan. Ann Int Med 1994;121:729–35.CrossRefGoogle Scholar
Quigley, E M M, Marsh, M N, Shaffer, J L, Markin, S S. Hepatobiliary complications of total parenteral nutrition. Gastroenterology 1993;104:286–301.CrossRefGoogle ScholarPubMed
Bowyer, B A, Fleming, C R, Ludwig, J. Does long-term home parenteral nutrition in adult patients cause chronic liver disease?J Parenteral Enteral Nutr 1985;9:11–17.CrossRefGoogle ScholarPubMed
Stanko, R T, Nathan, G, Mendelow, H, Adibi, S A. Development of hepatic cholestasis and fibrosis in patients with massive loss of intestine supported by prolonged parenteral nutrition. Gastroenterology 1987;92:197–202.CrossRefGoogle ScholarPubMed
Bueno, J, Ohwada, S, Kocoshis, S. Factors impacting the survival of children with intestinal failure referred for intestinal transplantation. J Pediatr Surg 1999;34:27–33.CrossRefGoogle ScholarPubMed
Fryer, J, Pellar, S, Ormond, D. Mortality in candidates waiting for combined liver-intestine transplants exceeds that for other candidates waitng for liver transplants. Liver Transplant 2003;9:748–53.CrossRefGoogle Scholar
Benjamin, S R. Hepatobiliary dysfunction in infants and children associated with long term total parenteral nutrition: a clinicopathologic study. Am J Clin Pathol 1981;76:276–83.CrossRefGoogle Scholar
Beale, E F, Nelson, R M, Bucciarelli, R L. Intrahepatic cholestasis associated with parenteral nutrition in premature infants. Pediatrics 1979;64:342–7.Google ScholarPubMed
Peden, V H, Witzleben, C L, Skelton, M A. Total parenteral nutrition. J Pediatr 1971;78:180–1.CrossRefGoogle ScholarPubMed
Rager, R, Finegold, M J. Cholestasis in immature newborn infants: is parenteral alimentation responsible?J Pediatr 1975;86:264–9.CrossRefGoogle ScholarPubMed
Allardyce, D B. Cholestasis caused by lipid emulsions. Surg Gynecol Obstetr 1982;154:641–7.Google ScholarPubMed
Kubota, A, Yonekura, T, Hoki, M. Total parenteral nutrition – associated intrahepatic cholestasis in infants: 25 years' experience. J Pediatr Surg 2000;35:1049–51.CrossRefGoogle ScholarPubMed
Andorsky, D, Lund, D, Lillehei, C. Nutritional and other postoperative management of neonates with short bowel syndrome correlates with clinical outcomes. J Pediatr 2001;139:27–33.CrossRefGoogle ScholarPubMed
Balistreri, W F, Bove, K E. Hepatobiliary consequences of parenteral nutrition. Prog Liver Dis 1989;9:567–600.Google Scholar
Tulikoura, I, Hiukun, K. Morphological fatty changes and function of the liver, serum free fatty acids and triglycerides during parenteral nutrition. Scand J Gastroenterol 1982;19:177–85.CrossRefGoogle Scholar
Wolfe, B M, Walker, B K, Shaul, D B. Effect of total parenteral nutrition on hepatic histology. Arch Surg 1988;123:1084–90.CrossRefGoogle ScholarPubMed
Dahlstrom, K A, Strandvik, B, Kopple, J, Ament, M E. Nutritional status in patients receiving home parenteral nutrition. J Pediatr 1985;107:219–24.CrossRefGoogle Scholar
Tu, W, Kitade, H, Kaibori, M, Nakagawa, M. An enhancement of nitric oxide production regulates energy metabolism in rat hepatocytes after a partial hepatectomy. J Hepatol 1999;30:944–50.CrossRefGoogle ScholarPubMed
Farrell, M K, Balistreri, W F. Parenteral nutrition and hepatobiliary dysfunction. Clin Perinatol 1986;13:197–212.CrossRefGoogle ScholarPubMed
Demircan, M, Ergun, O, Avanoglu, S. Determination of serum bile acids routinely may prevent delay in diagnosis of parenteral nutrition-induced cholestasis. J Pediatr Surg 1999;34:565–7.CrossRefGoogle ScholarPubMed
Toomey, F, Hoag, R, Batton, D, Vain, N. Rickets associated with cholestasis and parenteral nutrition in premature infants. Radiology 1982;142:85–8.CrossRefGoogle ScholarPubMed
Cohen, C, Olsen, M M. Pediatric total parenteral nutrition: liver histopathology. Arch Pathol Lab Med 1981;105:85–8.Google ScholarPubMed
Vileisis, R A, Sorensen, K, Gonzalez-Crussi, F, Hunt, C E. Liver malignancy after total parenteral nutrition. J Pediatr 1982;100:88–90.CrossRefGoogle Scholar
Kaufman, S S. Prevention of parenteral nutrition-associated liver disease in children. Pediatr Transplant 2002;6:37–42.CrossRefGoogle ScholarPubMed
Cavicchi, M, Beau, P, Crenn, P. Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann Int Med 2000;132:525–32.CrossRefGoogle ScholarPubMed
Dahms, B B, Halpin, T C. Serial liver biopsies in parenteral nutrition associated cholestasis of early infancy. Gastroenterology 1981;81:136–44.Google ScholarPubMed
Balistreri, W F. Fetal bile acid synthesis and metabolism: clinical implications. J Inherited Metab Dis 1991;14:459–77.CrossRefGoogle ScholarPubMed
Bernstein, J, Chang, C H, Brough, J A. Conjugated hyperbilirubinemia in infancy associated with parenteral nutrition. J Pediatr 1977;90:361–7.CrossRefGoogle Scholar
Zambrano, E, El-Hennawy, M, Ehrenkranz, R. Total parenteral nutrition induced liver patholgy: an autopsy series of 24 newborn cases. Pediatr Dev Pathol 2004;7:425–32.CrossRefGoogle Scholar
Steinwender, G, Schimp, G, Sixl, B. Effect of early nutritional deprivation and diet on translocation of bacteria from the gastrointestinal tract in the newborn rat. Pediatr Res 1996;39:415–20.CrossRefGoogle ScholarPubMed
O'Brien, D, Nelson, L, Kemp, C. Intestinal permeability and bacterial translocation are uncoupled after small bowel resection. J Pediatr Surg 2002;37:390–4.CrossRefGoogle ScholarPubMed
Dosi, P C, Raut, A J, Chelliah, B P. Perinatal factors underlying neonatal cholestasis. J Pediatr 1985;106:471–4.CrossRefGoogle ScholarPubMed
Sondheimer, J, Asturias, E, Cadnapaphornchai, M. Infection and cholestasis in neonates with intestinal resection and long-term total parenteral nutrition. J Pediatr Gastroenterol Nutr 1998;27:131–7.CrossRefGoogle Scholar
Balasubramaniyan, N, Shahid, D, Suchy, F, Ananthanarayanan, M. Multiple mechanisms of ontogenic regulation of nuclear receptors during rat liver development. Am J Physiol Gastrointest Liver Physiol 2004 [online, DB9].Google ScholarPubMed
Hardikar, W, Ananthanarayanan, M, Suchy, F. Differential ontogenic regulation of basolateral and canalicular bile acid transport proteins in rat liver. J Biolol Chem 1995;270:20841–6.CrossRefGoogle ScholarPubMed
Shneider, B, Dawson, P, Christie, D. Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J Clin Invest 1995;95:745–54.CrossRefGoogle ScholarPubMed
Tomer, G, Ananthanarayanan, M, Weymann, A. Differential developmental regulation of rat liver canalicular membrane transporters Bsep and Mrp2. Pediatr Res 2003;53:288–94.CrossRefGoogle ScholarPubMed
Back, P, Walter, K. Developmental pattern of bile acid metabolism as revealed by bile acid analysis of meconium. Gastroenterology 1980;78:671–6.Google ScholarPubMed
Balistreri, W F, Heubi, J E, Suchy, F J. Immaturity of the enterohepatic circulation in early life: factors predisposing to “physiologic” maldigestion and cholestasis. J Pediatr Gastroenterol Nutr 1983;2:346–54.CrossRefGoogle ScholarPubMed
Bucuvalas, J C, Goodrich, A L, Blitzer, B L, Suchy, F J. Amino acids are potent inhibitors of bile acid uptake by liver plasma membrane vesicles isolated from suckling rats. Pediatr Res 1985;19:1298–365.CrossRefGoogle ScholarPubMed
Senger, H, Boehm, G, Beyreiss, A, Braun, W. Evidence for amino acid induced cholestasis in very-low-birth weight infants with increasing enteral protein intake. Acta Paediatr Scand 1986;75:724–8.CrossRefGoogle ScholarPubMed
Suchy, F J, Courchene, S M, Blitzer, B L. Taurocholate transport by basolateral plasma membrane vesicles isolated from developing rat livers. Am J Physiol 1985;248:G648–54.Google Scholar
Suchy, F J, Bucuvalas, J C, Novak, D. Determinants of bile formation during development: ontogeny of hepatic bile acid metabolism and transport. Sem Liver Dis 1987;7:77–84.CrossRefGoogle ScholarPubMed
Suchy, F J, Balistreri, W F, Breslin, J S. Absence of an acinar gradient for bile acid uptake in developing rat liver. Pediatr Res 1987;21:414–21.CrossRefGoogle ScholarPubMed
Suchy, F J, Sippel, C J, Ananthanarayanan, M. Bile acid transport across the hepatocyte canalicular membrane. FASEB J 1997;11:195–205.CrossRefGoogle ScholarPubMed
Staudinger, J, Goodwin, B, Jones, S. The nuclear receptor PXR is a lithocholate sensor that protects against liver toxicity. Proc Nat Acad Sci U S A 2001;98:3369–74.CrossRefGoogle ScholarPubMed
Xie, W, Radominska-Pandya, A, Shi, Y. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Nat Acad Sci U S A 2001;98:3375–80.CrossRefGoogle ScholarPubMed
Duerksen, D R, vanAerde, J E, Chan, G. Total parenteral nutrition impairs bile flow and alters bile composition in newborn piglets. Dig Dis Sci 1996;41:1864–70.CrossRefGoogle Scholar
Alverdy, J, Aoys, E, Moss, G. Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 1988;104:185–90.Google Scholar
Vileisis, R A, Inwood, R J, Hunt, C E. Prospective controlled study of parenteral nutrition-associated cholestatic jaundice: effect of protein intake. J Pediatr 1980;96:893–7.Google ScholarPubMed
Black, D D, Suttle, E A, Whitington, P F. The effect of short term parenteral nutrition on hepatic function in the human neonate: a prospective randomized study demonstrating alteration of hepatic canalicular function. J Pediatr 1981;99:904–7.CrossRefGoogle ScholarPubMed
Aynsley-Green, A. Plasma hormone concentrations during enteral and parenteral nutrition in the human newborn. J Pediatr Gastroenterol Nutr 1983;2:S108–12.CrossRefGoogle ScholarPubMed
Lucas, A, Bloom, S R, Aynsley-Green, A. Gut hormones and minimal enteral feeding. Acta Paediatr Scand 1986;75:719–23.CrossRefGoogle Scholar
Jones, R S, Grossman, M I. The choleretic effects of glucagon and secretin in the dog. Gastroenterology 1971;60:64–8.Google ScholarPubMed
Sharman-Koendjbiharie, M, Piena-Spoel, M, Hopman, J. Gastrointestinal hormone secretion after surgery in neonates with congenital intestinal anomalies during starvation and introduction of enteral nutrition. J Pediatr Surg 2003;38:1602–6.CrossRefGoogle ScholarPubMed
Lucas, A, Bloom, S R, Aynsley-Green, A. Metabolic and endocrine consequences of depriving pre-term infants of enteral nutrition. Acta Paediatr Scand 1983;72:245–9.CrossRefGoogle Scholar
Roelofsen, H, Shoemaker, B, Bakker, C. Impaired hepatocanalicular organic anion transport in endotoxemic rats. Am J Physiol 1995;269:G427–31.Google ScholarPubMed
Lichtman, S N, Sartor, R B, Keku, J, Schwab, J J. Hepatic inflammation in rats with experimental small bowel overgrowth. Gastroenterology 1990;98:414–24.CrossRefGoogle Scholar
Lichtman, S N, Keku, J, Clark, R L. Biliary tract disease in rats with experimental bacterial overgrowth. Hepatology 1990;13:766–72.CrossRefGoogle Scholar
Lichtman, S N, Sartor, R B. Hepatobiliary injury associated with experimental small-bowel bacterial overgrowth in rats. Immunol Res 1991;10:528–31.CrossRefGoogle ScholarPubMed
Lichtman, S N, Keku, J, Schwab, J H, Sartor, R B. Evidence for pepitoglycan absorption in rats with experimental small bowel bacterial overgrowth. Infect Immun 1991;55:555–62.Google Scholar
Lichtman, S N, Keku, J, Schwab, J H, Sartor, R B. Hepatic injury associated with small bowel bacterial overgrowth in rats is prevented by metronidazole and tetracycline. Gastroenterology 1991;100:513–19.CrossRefGoogle ScholarPubMed
Lichtman, S N, Okoruwa, E E, Keku, J. Degradation of endogenous bacterial cell wall polymers by the muralytic enzyme mutanolysin prevents hepatobiliary injury in genetically susceptible rats with experimental intestinal bacterial overgrowth. J Clin Invest 1992;90:1313–22.CrossRefGoogle ScholarPubMed
Kabuta, A, Okada, A, Imura, Kea. The effect of metronidazole on TPN-associated liver dysfunction in neonates. J Pediatr Surg 1990;25:618–21.CrossRefGoogle Scholar
Matsui, J, Cameron, R G, Kurian, G C, Jeejeebhoy, K N. Nutritional, hepatic, and metabolic effects of cachectin/tumor necrosis factor in rats receiving total parenteral nutrition. Gastroenterology 1993;104:235–43.CrossRefGoogle ScholarPubMed
Capron, J P, Ginestron, J L, Herve, M A, Braillon, A. Metronidazole in the prevention of serum liver enzyme abnormalities during total parenteral nutrition. Lancet 1983;1:446–7.CrossRefGoogle Scholar
Bolder, U, TonNu, H T, Schteingasrt, C D. Hepatocyte transport of bile acids and organic anions in endotoxemic rats: impaired uptake and secretion. Gastroenterology 1997;112:214–25.CrossRefGoogle ScholarPubMed
Mosley, R H. Sepsis associated cholestasis. Gastroenterology 1997;112:302–6.CrossRefGoogle Scholar
Forrest, E, Oien, K, Dickson, S, Galloway, D, Mills, P. Improvement in cholestasis associated with total parenteral nutrition after treatment with an antibody against tumor necrosis factor alpha. Liver 2002;22:317–20.CrossRefGoogle Scholar
Belli, D C, Roy, C C, Fournier, L A. The effect of taurine on the cholestatic potential of sulfated lithocholate and its conjugates. Liver 1991;11:162–9.CrossRefGoogle ScholarPubMed
Guertin, F, Roy, C C, Lepage, A. Effect of taurine on total parenteral nutrition associated cholestasis. J Parenteral Enteral Nutr 1991;15:294–7.CrossRefGoogle ScholarPubMed
Rigo, J, Senterre, J. Is taurine essential for neonates?Biol Neonate 1977;32:221–32.CrossRefGoogle ScholarPubMed
Korpela, H, Nuutinen, L S, Kumpulainen, J. Low serum selenium and glutathione peroxidase activity in patients receiving short-term total parenteral nutrition. Int J Vitam Nutr Res 1989;59:80–4.Google ScholarPubMed
Sokol, R J, Taylor, S F, Devereaux, M W. Hepatic oxidant injury and glutathione depletion during total parenteral nutrition in weanling rats. Am J Physiol 1996;270:G691–700.Google ScholarPubMed
Moss, R L, Haynes, A L, Pastuszyn, A, Glew, R H. Methionine infusion reproduces liver injury of parenteral nutrition cholestasis. Pediatr Res 1999;45:644–8.CrossRefGoogle ScholarPubMed
Fell, J M E, Reynolds, A P, Meadows, N. Manganese toxicity in children receiving long-term parenteral nutrition. Lancet 1996;347:1218–21.CrossRefGoogle ScholarPubMed
Dickerson, R. Manganese intoxication and parenteral nutrition. Nutrition 2001;17:689–93.CrossRefGoogle ScholarPubMed
Wardle, C, Forbers, A, Roberts, N, Jawhari, A, Shenkin, A. Hypermanganesemia in long-term intravenous nutrition and chronic liver disease. J Parenteral Enteral Nutr 1999;23:350–5.CrossRefGoogle ScholarPubMed
Fok, T F, Chui, K K M, Cheung, R. Manganese intake and cholestatic jaundice in neonates receiving parenteral nutrition: a randomized controlled study. Acta Paediatr 2001;80:1009–15.Google Scholar
Ben-Hariz, M, Goulet, O, De-Potter, S. Iron overload in children receiving total parenteral nutrition. J Pediatr 1993;123:238–41.CrossRefGoogle Scholar
Dahlstrom, K, Ament, M, Moukarzel, A. Low blood and plasma carnitine levels in children receiving long-term parenteral nutrition. J Pediatr Gastroenterol Nutr 1990;11:375–9.CrossRefGoogle ScholarPubMed
Moukarzel, A, Dahlstrom, K, Buchman, A, Ament, M E. Carnitine status of children receiving long term total parenteral nutrition: a longitudinal prospective study. J Pediatr 1992;120:759–62.CrossRefGoogle ScholarPubMed
Penn, D, Schmidt-Sommerfeld, E, Wolf, H. Carnitine deficiency in premature infants receiving total parenteral nutrition. Early Hum Dev 1980;4:23–34.CrossRefGoogle ScholarPubMed
Schiff, D, Chan, G, Secombe, D, Hohn, P. Plasma carnitine levels during intravenous feeding of the neonate. J Pediatr 1979;95:1043–6.CrossRefGoogle ScholarPubMed
Worthley, L, Fishlock, R, Snoswell, A. Carnitine deficiency with hyperbilirubinemia, generalized muscle weakness and reactive hypoglycemia in a patient on long-term total parenteral nutrition: treatment with L-carnitine. J Parenteral Enteral Nutr 1983;7:176–80.CrossRefGoogle Scholar
Buchman, A L, Dubin, M, Jenden, D. Lecithin increases plasma free choline and decreases hepatic steatosis in long-term parenteral nutrition patients. Gastroenterology 1992;102:1363–70.CrossRefGoogle Scholar
Buchman, A L, Dubin, M D, Moukarzel, A A. Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology 1995;22:1399–403.Google ScholarPubMed
Buchman, A, Ament, M E, Sohel, M. Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: proof of a human choline requirement: a placebo-controlled trial. J Parenteral Enteral Nutr 2001;25:260–8.CrossRefGoogle ScholarPubMed
Bhatia, J, Moslen, M T, Haque, A K. Total parenteral nutrition-associated alterations in hepatobiliary function and histology on rats: is light exposure a clue?Pediatr Res 1993;33:487–92.CrossRefGoogle ScholarPubMed
Merrit, R J, Sinatra, F R, Henton, D, Neustein, H. Cholestatic effects of intraperitoneal administration of tryptophan to suckling rat pups. Pediatr Res 1984;18:904–7.CrossRefGoogle Scholar
Chessex, P, Lavoie, J, Rouleau, T. Photooxidation of parenteral multivitamins induces hepatic steatosis in a neonatal guinea pig model of intravenous nutrition. Pediatr Res 2002;52:958–63.CrossRefGoogle Scholar
Khashu, M, Harrison, A, Lalari, V. Photoprotection of parenteral nutrition enhances advancement of minimal enteral nutrition in preterm infants. Sem Perinatol 2006;30:139–45.CrossRefGoogle ScholarPubMed
Koo, W W K, Kaplan, L A, Bendon, R. Response to aluminum in parenteral nutrition in infancy. J Pediatr 1986;5877–83.Google Scholar
Bishop, N J, Morely, R, Day, J P, Lucas, A. Aluminum neurotoxicity in preterm infants receiving intravenous feeding solutions. N Engl J Med 1997;336:1557–61.CrossRefGoogle ScholarPubMed
Iyer, K R, Spitz, L, Clayton, P. New insight into mechanisms of parenteral nutrition-associated cholestasis: role of plant sterols. J Pediatric Surg 1998;33:1–6.CrossRefGoogle ScholarPubMed
Clayton, P T, Bowron, A, Mills, K A. Phytosterolaemia in children with parenteral nutrition associated cholestatic liver disease. Gastroenterology 1993;105:1806–13.CrossRefGoogle Scholar
Bindl, L, Lutjohann, D, Buderos, S. High plasma levels of phytosterols in patients on parenteral nutrition: a marker of liver dysfunction. J Pediatr Gastroenterol Nutr 2000;31:313–16.CrossRefGoogle ScholarPubMed
Stein, T P, Mullen, J L. Hepatic fat accumulation in man with excess parenteral glucose. Nutr Res 1985;5:1347–51.CrossRefGoogle Scholar
Buzby, G P, Mullen, J L, Stein, T P, Rosato, E F. Manipulation of TPN substrate and fatty infiltration of the liver. J Surg Res 1981;31:46–54.CrossRefGoogle Scholar
Hall, R I, Grant, J P, Ross, L H, et, al, Quarfordt, S H. Pathogenesis of hepatic steatosis in the parenterally fed rat. J Clin Invest 1984;74:1659–67.CrossRefGoogle ScholarPubMed
Meguid, M M, Chen, T Y, Yang, Z L. Effects of continuous graded total parenteral nutrition on feeding indexes and metabolic concomitants in rats. Am J Physiol 1991;260:E126–40.Google ScholarPubMed
Cavicchi, M, Crenn, P, Beau, P. Severe liver complications associated with long-term parenteral nutrition are dependent on lipid parenteral input. Transplant Proc 1998;30:2547.CrossRefGoogle ScholarPubMed
Colomb, V, Jobert-Giraud, A, Lacaille, F. Role of lipid emulsions in cholestasis associated with long-term parenteral nutrition in children. J Parenteral Enteral Nutr 2000;24:345–50.CrossRefGoogle ScholarPubMed
Tazuke, Y, Drongowski, R, Btaiche, I. Effects of lipid administration on liver apoptotic signals in a mouse model of total parenteral nutrition (TPN). Pediatr Surg Int 2004;20:224–8.CrossRefGoogle Scholar
Mayer, K, Grimm, H, Grimminger, F, Seeger, W. Parenteral nutrition with n-3 lipids in sepsis. Br J Nutr 2002;87 Suppl 1:S69–75.CrossRefGoogle ScholarPubMed
Mayer, K, Meyer, S, Reinholz-Muhly, M. Short-time infusion of fish oil based lipid emulsions, approved for parenteral nutrition, reduces moncyte proinflammatory cytokine generation and adhesive interaction with endothelium in humans. J Immunol 2003;171:4837–43.CrossRefGoogle Scholar
Reimund, J, Rahmi, G, Escalin, G. Efficacy and safety of an olive-based intravenous fat emulsion in adult patients on home parenteral nutrition. Alimentary Pharmacol Ther 2005;21:445–54.CrossRefGoogle Scholar
Rubin, M, Moser, A, Vaserberg, N. Structured triacylglyerol emulsion, containing both medium-and long-chain fatty acids, in long-term parenteral nutrition: a double-blind randomized cross-over study. Nutrition 2000;16:95–100.CrossRefGoogle Scholar
Li, S, Nussbaum, M S, Teague, D. Increasing dextrose concentrations in total parenteral nutrition causes alterations in hepatic morphology and plasma levels of insulin and glucagon in rats. J Surg Res 1988;44:639–48.CrossRefGoogle ScholarPubMed
Li, S, Nussbaum, M S, McFadden, D W. Addition of L-glutamine to total parenteral nutrition and its effects on portal insulin and glucagon and the development of hepatic steatosis in rats. J Surg Res 1990;48:421–6.CrossRefGoogle ScholarPubMed
Shamir, R, Tershakovec, A M, Barsky, D L. Intravenous amino acids, cholestasis and kwashiorkor. J Med 1998;29:37–44.Google ScholarPubMed
Hwang, T, Lue, M, Chen, L. Early use of cyclic TPN prevents further deterioration of liver functions for the TPN patients with impaired liver function. Hepato-Gastroenterology 2000;47:1347–50.Google ScholarPubMed
Rintala, P J, Lindahl, H, Pohjavuori, M. Total parenteral nutrition-associated cholestasis in surgical neonates may be reversed by intravenous cholecystokinin: a preliminary report. J Pediatr Surg 1995;30:827–30.CrossRefGoogle ScholarPubMed
Spagnuolo, M I, Iorio, R, Vegnente, A, Guarino, A. Ursodeoxycholic acid for treatment of cholestasis in children on long term total parenteral nutrition: a pilot study. Gastroenterology 1996;111:716–19.CrossRefGoogle ScholarPubMed
Duerksen, D R, Aerde, J E, Granlich, L. Intravenous ursodeoxycholic acid reduces cholestasis in parenterally fed newborn piglets. Gastroenterology 1996;111:1111–17.CrossRefGoogle ScholarPubMed
Heubi, J, Wiechmann, D, Creutzinger, V. Tauroursodeoxycholic acid (TUDCA) in the prevention of total parenteral nutrition-associated liver disease. J Pediatr 2002;141:237–42.CrossRefGoogle ScholarPubMed
Demircan, M, Ugural, S, Mutus, M. The effects of acetylsalicyclic acid, interferon alpha, and vitamin E on prevention of parenteral nutrition-associated cholestasis: an experimental study. J Pediatr Gastroenterol Nutr 1999;28:291–5.CrossRefGoogle ScholarPubMed
Nussinovitch, M, Zahavi, I, Marcus, H. The choleretic effect of nonsteroidal anti-inflammatory drugs in total parenteral nutrition-associated cholestasis. Israel J Med Sci 1996;32:1262–4.Google ScholarPubMed
Aerde, J E, Duerksen, D R, Gramlich, L. Intravenous fish oil emulsion attenuates total parenteral nutrition-induced cholestasis in newborn piglets. Pediatr Res 1999;45:202–8.CrossRefGoogle ScholarPubMed
Prescott, W, Btaiche, I. Sincalide in patients with parenteral nutrition-associated gallbladder disease. Annals Pharmacother 2004;38:1942–5.CrossRefGoogle ScholarPubMed
Pollack, P F, Rivera, A, Rassin, D K, Nishioka, K. Cysteine supplementation increases glutathione, but not polyamine, concentrations of the small intestine and colon of parenterally fed rabbits. J Pediatr Gastroenterol Nutr 1996;22:364–72.CrossRefGoogle Scholar
Narkewicz, M R, Caldwell, S, Jones, G. Cysteine supplementation and reduction of total parenteral nutrition-induced hepatic lipid accumulation in the weanling rat. J Pediatr Gastroenterol Nutr 1995;21:18–24.CrossRefGoogle ScholarPubMed
Newman, L S, Rose, C S, Maier, L A. Sarcoidosis. N Engl J Med 1997;336:1224–34.CrossRefGoogle ScholarPubMed
Fauroux, B, Clement, A. Paediatric sarcoidosis. Paediatr Respir Rev 2005;6:128–33.CrossRefGoogle ScholarPubMed
Clark, S K. Sarcoidosis in children. Pediatr Dermatol 1987;4:291–9.CrossRefGoogle ScholarPubMed
Devaney, K, Goodman, Z, Epstein, M. Hepatic sarcoidosis. Am J Surg Pathol 1993;17:1271–80.CrossRefGoogle ScholarPubMed
Ishak, K G. Sarcoidosis of the liver and bile ducts. Mayo Clin Proc 1998;73:467–72.CrossRefGoogle ScholarPubMed
Maddrey, W C, Johns, C J, Boitnott, J K, Iber, F L. Sarcoidosis and chronic hepatic disease: a clinical and pathologic study of 20 patients. Medicine 1970;49:375–95.CrossRefGoogle ScholarPubMed
Moreno-Merlo, F, Wanless, I R, Shimamatsu, K. The role of granulomatous phlebitis and thrombosis in the pathogenesis of cirrhosis and portal hypertension in sarcoidosis. Hepatology 1997;26:554–60.CrossRefGoogle ScholarPubMed
Becheur, H, Dall'osto, H, Chatellier, G. Effect of ursodeoxycholic acid on chronic intrahepatic cholestasis due to sarcoidosis. Dig Dis Sci 1997;42:789–91.CrossRefGoogle ScholarPubMed
Falk, R H, Comenzo, R L, Skinner, M. The systemic amyloidoses. N Engl J Med 1998;337:898–909.CrossRefGoogle Scholar
Friedman, S, Janowitz, H D. Systemic amyloidosis and the gastrointestinal tract. Gastroenterol Clin North Am 1998;27:595–614.CrossRefGoogle ScholarPubMed
Gertz, M A, Lacy, M Q, Dispenzieri, A. Amyloidosis. Hematol Oncol Clin North Am 1999;13:1211–33.CrossRefGoogle ScholarPubMed
Gillmore, J D, Lovat, L B, Hawkins, P N. Amyloidosis and the liver. J Hepatol 1999;20 Supp 1:17–33.Google Scholar
McGlennen, R C, Burke, B A, Dehner, L P. Systemic amyloidosis complicating cystic fibrosis. Arch Pathol Lab Med 1986;110:879–94.Google ScholarPubMed
Freeze, H H. Genetic defects in the human glycome. Nat Rev Genet 2006;7:537–51.CrossRefGoogle ScholarPubMed
Marquardt, T, Denecke, J. Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur J Pediatr 2003;162:359–79.Google ScholarPubMed
Damen, G, Klerk, H, Huijmans, J, Hollander, J, Sinaasappel, M. Gastrointestinal and other clinical manifestations in 17 children with congenital disorders of glycosylation type Ia, Ib, and Ic. J Pediatr Gastroenterol Nutr 2004;38:282–7.CrossRefGoogle ScholarPubMed
Eklund, E A, Sun, L, Westphal, V. Congenital disorder of glycosylation (CDG)-Ih patient with a severe hepato-intestinal phenotype and evolving central nervous system pathology. J Pediatr 2005;147:847–50.CrossRefGoogle ScholarPubMed
Miura, Y, Tay, S K, Aw, M M. Clinical and biochemical characterization of a patient with congenital disorder of glycosylation (CDG) IIx. J Pediatr 2005;147:851–3.CrossRefGoogle ScholarPubMed
Mandato, C, Brive, L, Miura, Y. Cryptogenic liver disease in four children: a novel congenital disorder of glycosylation. Pediatr Res 2006;59:293–8.CrossRefGoogle ScholarPubMed
Harms, H K, Zimmer, K P, Kurnik, K. Oral mannose therapy persistently corrects the severe clinical symptoms and biochemical abnormalities of phosphomannose isomerase deficiency. Acta Paediatr 2002;91:1065–72.CrossRefGoogle ScholarPubMed
2
Cited by