Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-zts5g Total loading time: 0.24 Render date: 2021-10-22T01:09:44.237Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

5 - Human life span and life extension

Published online by Cambridge University Press:  06 August 2009

Douglas E. Crews
Affiliation:
Ohio State University
Get access

Summary

Life span

All sexually reproducing species, in their genomes, carry numerous allelic variants predisposing to slow senescence and extended longevity (vitality). All also include numerous variants predisposing to more rapid senescence and shorter life (frailty). Still, the majority of our available alleles are likely to have little direct influence on life span. In wild populations, senescence-promoting (frailty) and senescence-slowing (vitality) variants are likely to be in balance. Alleles predisposing to senescence slowing, and those that shorten life too greatly (high fraility), generally are outcompeted by those predisposing to more modal life spans and reproductive success. Over evolutionary time, genetic variants promoting longevity and nongevity likely have, for most wild populations, been “non-essential” with respect to natural selection and reproductive success (RS). Allelic frequencies for such variants will drift along randomly, except when very early senescence-promoting types reduce RS sufficiently to be selected against. Life extension experiments on laboratory models (calorie restriction, late reproduction, temperature modulation, selective breeding, and transgenic manipulation) expose this underlying DNA variation. In some cases, by revealing genetically determined phenotypic plasticity in response to harsh environments, in others, by selecting more long-lived phenotypes with underlying alleles predisposing carriers to late-life reproduction and survival (traits not conducive to high RS in the wild) to produce later generations. Similarly, reports showing longevity-enhancing or -retarding DNA/protein variants with increased/decreased expression of specific proteins (superoxide dismutasel (SOD), catalase, and the like) and linkage of allelic variants at specific loci to life extension reveal simple mechanisms with large influences on rodent, insect, and worm life spans.

Type
Chapter
Information
Human Senescence
Evolutionary and Biocultural Perspectives
, pp. 197 - 225
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×