Skip to main content Accessibility help
Hostname: page-component-7d684dbfc8-2bg86 Total loading time: 0.001 Render date: 2023-09-28T18:02:07.253Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Section 2 - Early Prenatal Problems

Published online by Cambridge University Press:  15 November 2017

David James
University of Nottingham
Philip Steer
Imperial College London
Carl Weiner
University of Kansas
Bernard Gonik
Wayne State University, Detroit
Stephen Robson
University of Newcastle
Get access


Complications arise more frequently during the first trimester than at any other stage of pregnancy. Most present with bleeding, pain, or both. Vaginal bleeding occurs in about 20% of clinically diagnosed pregnancies. It causes considerable anxiety for the woman and her partner. In the vast majority of cases, no intervention alters the outcome. The main aim of clinical management is a prompt and accurate diagnosis, with reassurance if the pregnancy is appropriately developed and viable, or appropriate intervention if not. This chapter focuses on the principles of diagnosis and management and three principal diagnoses: miscarriage, ectopic pregnancy, and gestational trophoblastic disease. The other differential diagnoses are shown in Table 5.1.

High-Risk Pregnancy
Management Options
, pp. 85 - 206
Publisher: Cambridge University Press
First published in: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Krause, SA, Graves, BW. Midwifery triage of first trimester bleeding. J Nurse Midwifery 1999; 44: 537–48.CrossRefGoogle ScholarPubMed
Smith, NC. Epidemiology of spontaneous abortion. Contemp Rev Obstet Gynaecol 1988; 1: 43–8.Google Scholar
Zinaman, MJ, Clegg, DE, Brown, CC, O’Connor, J, Selevan, SG. Estimates of human fertility and pregnancy loss. Fertil Steril 1996; 65: 503–9.Google ScholarPubMed
Hemminki, E. Treatment of miscarriage: Current practice and rationale. Obstet Gynecol 1988; 91: 247–53.Google Scholar
Stabile, I, Campbell, S, Grudzinskas, JG. Ultrasonic assessment of complications during first trimester of pregnancy. Lancet 1987; 2: 1237–40.Google ScholarPubMed
O’Herlihy, C. Deaths in early pregnancy. In Cantwell, R, Clutton-Brock, T, Cooper, G, et al. (eds), Saving Mothers’ Lives: Reviewing Maternal Deaths to Make Motherhood Safer 2006–08. The Eighth Report of the Confidential Enquiries into Maternal Deaths in the United Kingdom. London: BJOG, 2011, pp. 81–4.Google Scholar
Grimes, DA. The morbidity and mortality of pregnancy: still a risky business. Am J Obstet Gynecol 1994; 170: 1489–94.Google Scholar
Stirtzinger, R, Robinson, GE. The psychological effects of spontaneous abortion. Can Med Assn J 1989; 140: 799806.Google Scholar
Conway, K. Miscarriage. J Psychosomatic Obstet Gynecol 1991; 12: 121–31.CrossRefGoogle Scholar
Murphy, FA, Lipp, A, Powles, DL. Follow-up for improving psychological well being for women after a miscarriage. Cochrane Database Syst Rev 2012; (3): CD008679.CrossRefGoogle Scholar
Huxley, RR. Nausea and vomiting in early pregnancy. Its role in placental development. Obstet Gynecol 2000; 95: 779–82.Google ScholarPubMed
Furneaux, EC, Langley-Evans, AJ, Langley-Evans, SC. Nausea and vomiting of pregnancy. Obstet Gynecol Surv 2001; 56: 775–82.CrossRefGoogle ScholarPubMed
Weigel, MM, Weigel, RM. Nausea and vomiting of pregnancy and pregnancy outcome: An epidemiological study. Br J Obstet Gynaecol 1989; 96: 1304–11.Google Scholar
Regan, L, Braude, PB, Trembath, PL. Influence of past reproductive performance on risk of spontaneous abortion. Br Med J 1989; 299: 541–5.CrossRefGoogle ScholarPubMed
Knudsen, UB, Hansen, V, Juul, S, Secher, NJ. Prognosis of a new pregnancy following previous spontaneous abortions. Europ J Obstet Gynecol Reprod Biol 1991; 39: 31–6.CrossRefGoogle ScholarPubMed
Canis, M, Wattize, A, M. B. Multifunctional analysis or fertility after conservative laparoscopic treatment of ectopic pregnancy in a series of 223 patients. Fertil Steril 1991; 56: 453–60.Google Scholar
Pouly, JL, Chapron, C, Manhes, H. Multifactorial analysis of fertility after conservative laparoscopic treatment of ectopic pregnancy in a series of 223 patients. Fertil Steril 1991; 56: 453–60.CrossRefGoogle Scholar
Semer, DA, Macfee, MS. Gestational trophoblastic disease: epidemiology. Semin Oncol 1995; 22: 109–12.Google ScholarPubMed
Peckham, CH. Uterine bleeding during pregnancy. Obstet Gynecol 1970; 78: 1418.Google Scholar
Grobman, WA, Peaceman, AM. What are the rates and mechanisms of first and second trimester pregnancy loss in twins. Clin Obstet Gynecol 1998; 41: 3745.CrossRefGoogle ScholarPubMed
Brown, DL, Doubilet, PM. Transvaginal sonography for diagnosing ectopic pregnancy: positivity criteria and performance characteristics. J Ultrasound Med 1994; 13: 259–66.CrossRefGoogle ScholarPubMed
Condous, G, Okaro, E, Khalid, A, et al. The accuracy of transvaginal ultrasonography for the diagnosis of ectopic pregnancy prior to surgery. Hum Reprod 2005; 20: 1404–9.CrossRefGoogle Scholar
Barnhart, KT, Gosman, G, Ashby, R, Sammel, M. The medical management of ectopic pregnancy: a meta-analysis comparing “single dose” and “multidose” regimens. Obstet Gynecol 2003; 101: 778–84.Google ScholarPubMed
Nepomnaschy, PA, Weinberg, CR, Wilcox, AJ, Baird, DD. Urinary hCG patterns during the week following implantation. Hum Reprod 2008; 23: 271–7.Google ScholarPubMed
Mills, MS. Ultrasonography of early embryonic growth and fetal development. MD thesis, University of Bristol, 1992.Google Scholar
Hollander, HJ. Estimation of gestational age by mean gestational sac diameter. Die Ultraschalldiagnostik in der Schwangerschaft 1972: 47–53.Google Scholar
Merchiers, EH, Dhont, M, De Sutter, PA, Beghin, CJ, Vandekerckhove, DA. Predictive value of early embryonic cardiac activity for pregnancy outcome. Am J Obstet Gynecol 1991; 165: 1114.CrossRefGoogle ScholarPubMed
Robinson, HP, Shaw-Dunn, J. Fetal heart rates as determined by sonar in early pregnancy. J Obstet Gynaecol Br Commonw 1973; 80: 805–9.CrossRefGoogle ScholarPubMed
Bourne, T, Bottomley, C. When is a pregnancy nonviable and what criteria should be used to define miscarriage? Fertil Steril 2012; 98: 1091–6.CrossRefGoogle ScholarPubMed
Nyberg, DA, Filly, RA, Mahony, BS, et al. Early gestation: correlation of HCG levels and sonographic identification. AJR Am J Roentgenol 1985; 144: 951–4.CrossRefGoogle ScholarPubMed
Jouppila, P, Huhtaniemi, I, Tapanainen, J. Early pregnancy failure: study by ultrasonic and hormonal methods. Obstet Gynecol 1980; 55: 42–7.Google ScholarPubMed
Wilson, RD, Kendrick, V, Wittmann, BK, McGillivray, B. Spontaneous abortion and pregnancy outcome after normal first trimester ultrasound examination. Obstet Gynecol 1986; 67: 352–5.Google ScholarPubMed
Verhaegen, J, Gallos, ID, van Mello, NM, et al. Accuracy of single progesterone test to predict early pregnancy outcome in women with pain or bleeding: meta-analysis of cohort studies. BMJ 2012; 345: e6077.CrossRefGoogle ScholarPubMed
Stovall, TG, Ling, FW, Carson, SA, Buster, JE. Serum progesterone and uterine curettage in differential diagnosis of ectopic pregnancy. Fertil Steril 1992; 57: 456–8.CrossRefGoogle ScholarPubMed
Kadar, N, DeVore, G, Romero, R. Discriminatory hCG zone: its use in the sonographic evaluation for ectopic pregnancy. Obstet Gynecol 1981; 58: 156–61.Google ScholarPubMed
Barnhart, KT, Sammel, MD, Rinaudo, PF, et al. Symptomatic patients with an early viable intrauterine pregnancy: HCG curves redefined. Obstet Gynecol 2004; 104: 50–5.CrossRefGoogle ScholarPubMed
Senapati, SB, Barnhart, KT. Biomarkers for ectopic pregnancy and pregnancy of unknown location. Fertil Steril 2013; 99: 1107–16.CrossRefGoogle ScholarPubMed
Rausch, M, Sammel, MD, Takacs, P et al. Development of a multiple marker test for ectopic pregnancy. Obstet Gynecol 2011; 117: 573–82.CrossRefGoogle ScholarPubMed
Regan, L, Rai, R. Epidemiology and the medical causes of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol 2000; 14: 839–54.CrossRefGoogle ScholarPubMed
Hutchon, DJR, Cooper, S. Terminology for early pregnancy loss must be changed. BMJ 1998; 317: 1081.CrossRefGoogle ScholarPubMed
World Health Organization. Spontaneous and Induced Abortions. Technical report series No. 41. Geneva: WHO, 1970.Google Scholar
Bigrigg, MA, Read, MD. Management of women referred to early pregnancy assessment unit: care and cost effectiveness. BMJ 1991; 302: 577–9.CrossRefGoogle ScholarPubMed
Draycott, T, Read, M. The managed care of early pregnancy problems. Curr Opin Obstet Gynecol 1997; 9: 262–6.CrossRefGoogle ScholarPubMed
Chard, T. Frequency of implantation and early pregnancy loss in natural cycles. Baillieres Clin Obstet Gynaecol 1991; 5: 179–89.CrossRefGoogle ScholarPubMed
Macklon, NS, Geraedts, JP, Fauser, BC. Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Hum Reprod Update 2002; 8: 333–43.CrossRefGoogle ScholarPubMed
Blohm, F, Friden, B, Milsom, I. A prospective longitudinal population based study of clinical miscarriage in an urban Swedish population. BJOG 2008; 115: 176–83.Google Scholar
Hooker, AB, Lemmers, M, Thurkow, AL, et al. Systematic review and meta-analysis of intrauterine adhesions after miscarriage: prevalence, risk factors and long-term reproductive outcome. Hum Reprod Update 2014; 20: 262–78.CrossRefGoogle ScholarPubMed
Tuuli, MG, Norman, SM, Odibo, AO, Macones, GA, Cahill, AG. Perinatal outcomes in women with subchorionic hematoma: a systematic review and meta- analysis. Obstet Gynecol 2011; 117: 1205–12.CrossRefGoogle ScholarPubMed
Wahabi, HA, Fayed, AA, Esmaeil, SA, Bahkali, KH. Progestogen for treating threatened miscarriage. Cochrane Database Syst Rev 2018; (8): CD005943. doi: 10.1002/14651858.CD005943.pub5.CrossRefGoogle ScholarPubMed
European Society of Human Reproduction and Embryology. Guideline on the management of recurrent pregnancy loss. (accessed June 2019).CrossRefGoogle Scholar
Pandya, PP, Snijders, RJ, Psara, N, Hilbert, L, Nicolaides, KH. The prevalence of non-viable pregnancy at 10–13 weeks of gestation. Ultrasound Obstet Gynecol 1996; 7: 170–3.Google ScholarPubMed
Forna, F, Gülmezoglu, AM. Surgical procedures to evacuate incomplete abortion. Cochrane Database Syst Rev 2001; (1): CD001993.CrossRefGoogle Scholar
Wieringa-de Waard, M, Hartman, EE, Ankum, WM, et al. Expectant management versus surgical evacuation in first trimester miscarriage: health-related quality of life in randomized and non-randomized patients. Hum Reprod 2002; 17: 1638–42.CrossRefGoogle Scholar
Ankum, WM, Wieringa-de Waard, M, Bindels, PJE. Management of spontaneous miscarriage in the first trimester: an example of putting informed shared decision making into practice. BMJ 2001; 322: 1343–6.CrossRefGoogle Scholar
Nanda, K, Lopez, LM, Grimes, DA, Peloggia, A, Nanda, G. Expectant care versus surgical treatment for miscarriage. Cochrane Database Syst Rev 2012; (3): CD003518.CrossRefGoogle ScholarPubMed
Trinder, J, Brocklehurst, P, Porter, R, et al. Management of miscarriage: expectant, medical, or surgical? Results of randomised controlled trial (miscarriage treatment (MIST) trial). BMJ 2006; 332: 1235–40.CrossRefGoogle ScholarPubMed
Shelley, JM, Healy, D, Grover, S. A randomised trial of surgical, medical and expectant management of first trimester spontaneous miscarriage. Aust N Z J Obstet Gynaecol 2005; 45: 122–7.CrossRefGoogle ScholarPubMed
Petrou, S, McIntosh, E. Women’s preferences for attributes of first-trimester miscarriage management: a stated preference discrete-choice experiment. Value Health 2009; 12: 551–9.CrossRefGoogle ScholarPubMed
Petrou, S, Trinder, J, Brocklehurst, P, Smith, L. Economic evaluation of alternative management methods of first-trimester miscarriage based on results from the MIST trial. BJOG 2006; 113: 879–89.CrossRefGoogle ScholarPubMed
Harwood, B, Nansel, T. Quality of life and acceptability of medical versus surgical management of early pregnancy failure. BJOG 2008; 115: 501–8.Google ScholarPubMed
Luise, C, Jermy, K, Collins, WP, Bourne, TH. Expectant management of incomplete, spontaneous first-trimester miscarriage: outcome according to initial ultrasound criteria and value of follow-up visits. Ultrasound Obstet Gynecol 2002; 19: 580–2.CrossRefGoogle ScholarPubMed
Gronlund, L, Gronlund, AL, Clevin, L, et al. Spontaneous abortion: expectant management, medical treatment or surgical evacuation. Acta Obstet Gynecol Scand 2002; 81: 781–2.CrossRefGoogle ScholarPubMed
Child, TJ, Thomas, J, Rees, M, MacKenzie, IZ. A comparative study of surgical and medical procedures: 932 pregnancy terminations up to 63 days gestation. Hum Reprod 2001; 16: 6771.CrossRefGoogle ScholarPubMed
Nielsen, S, Hahlin, M, Platz-Christensen, J. Randomised trial comparing expectant with medical management for first trimester miscarriages. Br J Obstet Gynaecol 1999; 106: 804–7.Google Scholar
Hurd, WW, Whitfield, RR, Randolph, JF, Kercher, ML. Expectant management versus elective curettage for the treatment of spontaneous abortion. Fertil Steril 1997; 68: 601–6.Google Scholar
Royal College of Obstetricians and Gynaecologists. The Management of Early Pregnancy Loss. Green-top Guideline No. 25. London: RCOG, 2006.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists. Recommendations from the Study Group on Problems in Early Pregnancy: Advances in Diagnosis and Management. London: RCOG, 1997.CrossRefGoogle ScholarPubMed
Schwarzler, P, Holden, D, Nielson, S, et al. The conservative management of first trimester miscarriages and the use of colour Doppler sonography for patient selection. Hum Reprod 1999; 14: 1341–5.CrossRefGoogle ScholarPubMed
Prieto, JA, Eriksen, NL, Blanco, JD. A randomized trial of prophylactic doxycycline for curettage in incomplete abortion. Obstet Gynecol 1995; 85: 692–6.Google ScholarPubMed
Xiang, L, Wei, Z, Cao, Y. Symptoms of an intrauterine hematoma associated with pregnancy complications: a systematic review. PLoS One 2014; 9: e111676.CrossRefGoogle ScholarPubMed
Moini, A, Hosseini, R, Jahangiri, N, Shiva, M, Akhoond, MR. Risk factors for ectopic pregnancy: a case–control study. J Res Med Sci 2014; 19: 844–9.CrossRefGoogle ScholarPubMed
Kirk, E, Papageorghiou, AT, Condous, G, et al. The diagnostic effectiveness of an initial transvaginal scan in detecting ectopic pregnancy. Hum Reprod 2007; 22: 2824–8.CrossRefGoogle Scholar
Atri, M, Valenti, DA, Bret, PM, Gillett, P. Effect of transvaginal sonography on the use of invasive procedures for evaluating patients with a clinical diagnosis of ectopic pregnancy. J Clin Ultrasound 2003; 31: 18.CrossRefGoogle ScholarPubMed
Kirk, E, Daemen, A, Papageorghiou, AT, et al. Why are some ectopic pregnancies characterized as pregnancies of unknown location at the initial transvaginal ultrasound examination? Acta Obstet Gynecol Scand 2008; 87: 1150–4.CrossRefGoogle ScholarPubMed
Condous, G, Lu, C, Van Huffel, SV, Timmerman, D, Bourne, T. Human chorionic gonadotrophin and progesterone levels in pregnancies of unknown location. Int J Gynaecol Obstet. 2004; 86: 351–7.CrossRefGoogle ScholarPubMed
Condous, G, Timmerman, D, Goldstein, S, et al. Pregnancies of unknown location: consensus statement. Ultrasound Obstet Gynecol 2006; 28: 121–2.Google ScholarPubMed
van Mello, NM, Mol, F, Opmeer, BC, et al. Diagnostic value of serum hCG on the outcome of pregnancy of unknown location: a systematic review and meta-analysis. Hum Reprod Update. 2012; 18: 603–17.Google Scholar
Banerjee, S, Aslam, N, Woelfer, B, et al. Expectant management of early pregnancies of unknown location: a prospective evaluation of methods to predict spontaneous resolution of pregnancy. BJOG 2001; 108: 158–63.Google Scholar
Royal College of Obstetricians and Gynaecologists. The Management of Tubal Pregnancies. London: RCOG, 2010.CrossRefGoogle ScholarPubMed
National Institute for Health and Care Excellence. Ectopic Pregnancy and Miscarriage: Diagnosis and Initial Management in Early Pregnancy. Clinical Guideline CG154. London: NICE, 2012 [updated February 2015]. (accessed March 2017).CrossRefGoogle ScholarPubMed
Trio, D, Strobelt, N, Picciolo, C, Lapinski, RH, Ghidini, A. Prognostic factors for successful expectant management of ectopic pregnancy. Fertil Steril 1995; 63: 469–72.CrossRefGoogle ScholarPubMed
Day, A, Sawyer, E, Mavrelos, D, et al. Use of serum progesterone measurements to reduce need for follow-up in women with pregnancies of unknown location. Ultrasound Obstet Gynecol 2009; 33: 704–10.CrossRefGoogle ScholarPubMed
Korhonen, J, Stenman, UH, Ylostalo, P. Serum human chorionic gonadotropin dynamics during spontaneous resolution of ectopic pregnancy. Fertil Steril 1994; 61: 632–6.CrossRefGoogle ScholarPubMed
Rozenberg, P, Chevret, S, Camus, E, et al. Medical treatment of ectopic pregnancies: a randomized clinical trial comparing methotrexate-mifepristone and methotrexate-placebo. Hum Reprod 2003; 18: 1802–8.CrossRefGoogle ScholarPubMed
Tanaka, T, Hayashi, H, Kutsuzawa, T, Fujimoto, S, Ichinoe, K. Treatment of interstitial ectopic pregnancy with methotrexate: report of a successful case. Fertil Steril 1982; 37: 851–2.CrossRefGoogle Scholar
Yao, M, Tulandi, T. Current status of surgical and nonsurgical management of ectopic pregnancy. Fertil Steril 1997; 67: 421–33.CrossRefGoogle ScholarPubMed
Hajenius, PJ, Mol, F, Mol, BW, et al. Interventions for tubal ectopic pregnancy. Cochrane Database Syst Rev 2007; (1): CD000324.CrossRefGoogle ScholarPubMed
Newbatt, E, Beckles, Z, Ullman, R, Lumsden, MA. Ectopic pregnancy and miscarriage: summary of NICE guidance. BMJ 2012; 345: e8136.CrossRefGoogle ScholarPubMed
Nurmohamed, L, Moretti, ME, Schechter, T, et al. Outcome following high-dose methotrexate in pregnancies misdiagnosed as ectopic. Am J Obstet Gynecol 2011; 205: 533 e1–3.CrossRefGoogle ScholarPubMed
Lipscomb, GH, McCord, ML, Stovall, TG, et al. Predictors of success of methotrexate treatment in women with tubal ectopic pregnancies. N Engl J Med 1999; 341: 1974–8.Google ScholarPubMed
Fernandez, H, Yves Vincent, SC, Pauthier, S, Audibert, F, Frydman, R. Randomized trial of conservative laparoscopic treatment and methotrexate administration in ectopic pregnancy and subsequent fertility. Hum Reprod 1998; 13: 3239–43.Google ScholarPubMed
Sowter, MC, Farquhar, CM, Petrie, KJ, Gudex, G. A randomised trial comparing single dose systemic methotrexate and laparoscopic surgery for the treatment of unruptured tubal pregnancy. BJOG 2001; 108: 192203.CrossRefGoogle ScholarPubMed
Nieuwkerk, PT, Hajenius, PJ, Van der Veen, F, et al. Systemic methotrexate therapy versus laparoscopic salpingostomy in tubal pregnancy. Part II. Patient preferences for systemic methotrexate. Fertil Steril 1998; 70: 518–22.Google ScholarPubMed
Vermesh, M, Presser, SC. Reproductive outcome after linear salpingostomy for ectopic gestation: a prospective 3-year follow-up. Fertil Steril 1992; 57: 682–4.CrossRefGoogle ScholarPubMed
Murphy, AA, Nager, CW, Wujek, JJ, et al. Operative laparoscopy versus laparotomy for the management of ectopic pregnancy: a prospective trial. Fertil Steril 1992; 57: 1180–5.CrossRefGoogle ScholarPubMed
Gray, DT, Thorburn, J, Lundorff, P, Lindblom, B. Laparoscopic treatment of ectopic pregnancy. Lancet 1995; 346: 706–7.CrossRefGoogle Scholar
Lundorff, P, Thorburn, J, Lindblom, B. Fertility outcome after conservative surgical treatment of ectopic pregnancy evaluated in a randomized trial. Fertil Steril 1992; 57: 9981002.Google ScholarPubMed
Sau, AK, Sau, M. Can we offer completely non-surgical management for ectopic pregnancy? BMJ 2000; 322: 793.CrossRefGoogle ScholarPubMed
Carson, SA, Buster, JE. Ectopic pregnancy. N Engl J Med 1993; 329: 1174–81.CrossRefGoogle Scholar
Dubuisson, JB, Morice, P, Chapron, C, De Gayffier, A, Mouelhi, T. Salpingectomy: the laparoscopic surgical choice for ectopic pregnancy. Hum Reprod 1996; 11: 1199–203.CrossRefGoogle ScholarPubMed
Mol, BW, Hajenius, PJ, Ankum, WM, van der Veen, F, Bossuyt, PM. Cut-off level–what do you want it to be? Fertil Steril 1997; 67: 980–1.CrossRefGoogle ScholarPubMed
Clausen, I. Conservative versus radical surgery for tubal pregnancy: a review. Acta Obstet Gynecol Scand 1996; 75: 812.CrossRefGoogle ScholarPubMed
Mol, F, van Mello, NM, Strandell, A, et al. Salpingotomy versus salpingectomy in women with tubal pregnancy (ESEP study): an open-label, multicentre, randomised controlled trial. Lancet 2014; 383: 1483–9.CrossRefGoogle ScholarPubMed
Ego, A, Subtil, D, Cosson, M, et al. Survival analysis of fertility after ectopic pregnancy. Fertil Steril 2001; 75: 560–6.CrossRefGoogle ScholarPubMed
Job-Spira, N, Fernandez, H, Bouyer, J, et al. Ruptured tubal ectopic pregnancy: risk factors and reproductive outcome: results of a population-based study in France. Am J Obstet Gynecol 1999; 180: 938–44.CrossRefGoogle ScholarPubMed
Mol, BW, Matthijsse, HC, Tinga, DJ, et al. Fertility after conservative and radical surgery for tubal pregnancy. Hum Reprod 1998; 13: 1804–9.CrossRefGoogle ScholarPubMed
Deepa, J, Oladimeji, O, Funlayo, O. Factors that determine patient satisfaction after surgical treatment of ectopic pregnancy: improving the patient journey! Eur J Obstet Gynecol Reprod Biol 2014; 178: 60–5.CrossRefGoogle ScholarPubMed
Capmas, P, Bouyer, J, Fernandez, H. Treatment of ectopic pregnancies in 2014: new answers to some old questions. Fertil Steril 2014; 101: 615–20.CrossRefGoogle ScholarPubMed
Skubisz, MM, Horne, AW, Johns, TG, et al. Combination gefitinib and methotrexate compared with methotrexate alone to treat ectopic pregnancy. Obstet Gynecol 2013; 122: 745–51.CrossRefGoogle Scholar
Kirk, E, Bottomley, C, Bourne, T. Diagnosing ectopic pregnancy and current concepts in the management of pregnancy of unknown location. Hum Reprod Update 2014; 20: 250–61.CrossRefGoogle ScholarPubMed
Ankum, WM, Van der Veen, F, Hamerlynck, JV, Lammes, FB. Laparoscopy: a dispensable tool in the diagnosis of ectopic pregnancy? Hum Reprod 1993; 8: 1301–6.CrossRefGoogle ScholarPubMed
Lang, PF, Makinen, JI, Irjala, KM, et al. Laparoscopic instillation of hyperosmolar glucose vs. expectant management of tubal pregnancies with serum hCG ≤ 2500 mIU/mL. Acta Obstet Gynecol Scand 1997; 76: 797800.CrossRefGoogle Scholar
Laatikainen, T, Tuomivaara, L, Kaar, K. Comparison of a local injection of hyperosmolar glucose solution with salpingostomy for the conservative treatment of tubal pregnancy. Fertil Steril 1993; 60: 80–4.Google Scholar
Scully, R, Bonfiglio, TA, Kurman, RJ, Silverberg, SG, Wilkinson, EJ. Histological Typing of Female Genital Tract Tumours (World Health Organization International Histological Classification of Tumours). 2nd edn. New York, NY: Springer-Verlag, 1994.CrossRefGoogle ScholarPubMed
Rose, PG. Hydatidifrom mole: diagnosis and management. Semin Oncol 1995; 22: 149–56.CrossRefGoogle ScholarPubMed
Bower, M, Brock, C, Fisher, RA, Newlands, ES, Rustin, GJ. Gestational choriocarcinoma. Ann Oncol 1995; 6: 503–8.Google Scholar
Lage, JM, Bagg, A, Berchem, GJ. Gestational trophoblastic diseases. Curr Opin Obstet Gynecol 1996; 8: 7982.Google ScholarPubMed
Bagshawe, KD, Dent, J, Webb, J. Hydatidiform mole in England and Wales 1973–1983. Lancet 1986; ii: 673–7.CrossRefGoogle ScholarPubMed
Palmer, JR. Advances in the epidemiology of gestational trophoblastic disease. J Reprod Med 1994; 39: 155–62.CrossRefGoogle ScholarPubMed
Kohorn, EI. The new FIGO 2000 staging and risk factor scoring system for gestational trophoblastic disease: description and critical assessment. Int J Gynecol Cancer 2001; 11: 73–7.CrossRefGoogle Scholar
Altieri, A, Franceschi, S, Ferlay, J, Smith, J, La Vecchia, C. Epidemiology and aetiology of gestational trophoblastic diseases. Lancet Oncol 2003; 4: 670–8.CrossRefGoogle ScholarPubMed
Bracken, MB. Incidence and aetiology of hydatidiform mole: an epidemiological review. Br J Obstet Gynaecol 1987; 94: 1123–35.CrossRefGoogle ScholarPubMed
Smith, HO, Hilgers, RD, Bedrick, EJ, et al. Ethnic differences at risk for gestational trophoblastic disease in New Mexico: A 25-year population-based study. Am J Obstet Gynecol 2003; 188: 357–66.CrossRefGoogle ScholarPubMed
Sebire, NJ, Foskett, M, Fisher, RA, et al. Risk of partial and complete hydatidiform molar pregnancy in relation to maternal age. BJOG 2002; 109: 99102.CrossRefGoogle ScholarPubMed
Parazzini, F, La Vecchia, C, Pampallona, S. Parental age and risk of complete and partial hydatidiform mole. Br J Obstet Gynaecol 1986; 93: 582–5.CrossRefGoogle ScholarPubMed
Graham, IH, Fajardo, AM, Richards, RL. Epidemiological study of complete and partial hydatidiform mole in Abu Dhabi: influence age and ethnic group. J Clin Pathol 1990; 43: 661–4.CrossRefGoogle ScholarPubMed
Sebire, NJ, Fisher, RA, Fockett, M, et al. Risk of recurrent hydatidiform mole and subsequent pregnancy outcome following complete or partial hydatidiform molar pregnancy. Br J Obstet Gynaecol 2003; 110: 22–6.CrossRefGoogle ScholarPubMed
Fisher, RA, Hodges, MD. Genomic imprinting in gestational trophoblastic disease–a review. Placenta 2003; 24: S111–18.Google ScholarPubMed
Sebire, NJ. Histopathological diagnosis of hydatidiform mole: contemporary features and clinical implications. Fetal Pediatr Pathol 2010; 29: 116.CrossRefGoogle ScholarPubMed
Fisher, RA, Hodges, MD, Newlands, ES. Familial recurrent hydatidiform mole: a review. J Reprod Med 2004; 49: 595601.CrossRefGoogle ScholarPubMed
Petignat, P, Billieux, MH, Blouin, JL, Dahoun, S, Vassilakos, P. Is genetic analysis useful in the routine management of hydatidiform mole? Hum Reprod 2003; 18: 243–9.CrossRefGoogle Scholar
Zaragoza, MV, Surti, U, Redline, RW, et al. Parental origin and phenotype of triploidy in spontaneous abortions: predominance of diandry and association with the partial hydatidiform mole. Am J Hum Genet 2000; 66: 1807–20.CrossRefGoogle ScholarPubMed
Fryns, JP, van de Kerckhove, A, Goddeeris, P, van den Berghe, H. Unusually long survival in a case of full triploidy of maternal origin. Hum Genet 1977; 38: 147–55.Google Scholar
Seckl, MJ, Fisher, RA, Salerno, G, et al. Choriocarcinoma and partial hydatidiform moles. Lancet 2000; 356: 36–9.CrossRefGoogle ScholarPubMed
Trophoblastic Tumour Screening and Treatment Centre. Information for clinicians. London: Department of Medical Oncology, Charing Cross Hospital, 2013. (accessed March 2017).CrossRefGoogle ScholarPubMed
Jauniaux, E, Kadri, R, Hustin, J. Partial mole and triploidy: screening patients with first-trimester spontaneous abortion. Obstet Gynecol 1996; 88: 616–19.Google ScholarPubMed
Niemann, I, Petersen, LK, Hansen, ES, Sunde, L. Differences in current clinical features of diploid and triploid hydatidiform mole. BJOG 2007; 114: 1273–7.CrossRefGoogle ScholarPubMed
Soto-Wright, V, Bernstein, M, Goldstein, DP, Berkowitz, RS. The changing clinical presentation of complete molar pregnancy. Obstet Gynecol 1995; 86: 775–9.CrossRefGoogle Scholar
Fowler, DJ, Lindsay, I, Seckl, MJ, Sebire, NJ. Routine pre-evacuation ultrasound diagnosis of hydatidiform mole: experience of more than 1000 cases from a regional referral center. Ultrasound Obstet Gynecol 2006; 27: 5660.Google Scholar
Stone, M, Bagshawe, KD. An analysis of the influence of maternal age, gestational age, contraceptive method and mode of primary treatment of patients with hydatidiform moles on the incidence of subsequent chemotherapy. Br J Obstet Gynaecol 1979; 86: 782–92.Google Scholar
Gillespie, AM, Tidy, J, Bright, N, et al. Primary gynaecological management of gestational trophoblastic tumours and the subsequent development of persistent trophoblastic disease. Br J Obstet Gynaecol 1998; 107 (suppl 17 abstr. 287): 95.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists. Gestational Trophoblastic Disease. Green-top Guideline No. 38. London: RCOG, 2010.CrossRefGoogle ScholarPubMed
Bahar, AM, el-Ashnehi, MS, Senthilselvan, A. Hydatidiform mole in the elderly: hysterectomy or evacuation? Int J Gynaecol Obstet 1989; 29: 233–8.CrossRefGoogle Scholar
Sebire, NJ, Foskett, M, Fisher, RA, Lindsay, I, Seckl, MJ. Persistent gestational trophoblastic disease is rarely, if ever, derived from non-molar first-trimester miscarriage. Med Hypotheses 2005; 64: 689–93.CrossRefGoogle ScholarPubMed
Alazzam, M, Tidy, J, Hancock, BW, Osborne, R, Lawrie, TA. First-line chemotherapy in low-risk gestational trophoblastic neoplasia. Cochrane Database Syst Rev 2012; (7): CD007102.Google ScholarPubMed
Sebire, NJ, Foskett, M, Short, D, et al. Shortened duration of human chorionic gonadotrophin surveillance following complete or partial hydatidiform mole: evidence for revised protocol of a UK regional trophoblastic disease unit. BJOG 2007; 114: 760–2.Google ScholarPubMed
Hancock, BW, Tidy, JA. Current management of molar pregnancy. J Reprod Med 2002; 47: 347–54.Google ScholarPubMed
Feltmate, CM, Growdon, WB, Wolfberg, AJ, et al. Clinical characteristics of persistent gestational trophoblastic neoplasia after partial hydatidiform molar pregnancy. J Reprod Med 2006; 51: 902–6.Google ScholarPubMed
Hancock, BW, Nazir, K, Everard, JE. Persistent gestational trophoblastic neoplasia after partial hydatidiform mole incidence and outcome. J Reprod Med 2006; 51: 764–6.CrossRefGoogle ScholarPubMed
Curry, SL, Hammond, CB, Tyrey, L, Creasman, WT, Parker, RT. Hydatidiform mole: diagnosis, management, and long-term followup of 347 patients. Obstet Gynecol 1975; 45: 18.CrossRefGoogle Scholar
Wang, Q, Fu, J, Hu, L, Fang, F, et al. Prophylactic chemotherapy for hydatidiform mole to prevent gestational trophoblastic neoplasia. Cochrane Database Syst Rev 2017; (9): CD007289.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Costa, HL, Doyle, P. Influence of oral contraceptives in the development of post-molar trophoblastic neoplasia: a systematic review. Gynecol Oncol 2006; 100: 579–85.CrossRefGoogle ScholarPubMed
Savage, P. Molar pregnancy: a review. Obstetrician and Gynaecologist 2008; 10 (10): 38.CrossRefGoogle ScholarPubMed
Bagshawe, KD, Harland, S. Immunodiagnosis and monitoring of gonadotrophin-producing metastases in the central nervous system. Cancer 1976; 38: 112–18.CrossRefGoogle ScholarPubMed
Shapter, AP, McLellan, R. Gestational trophoblastic disease. Obstet Gynecol Clin North Am 2001; 28: 805–17.CrossRefGoogle Scholar
Pezeshki, M, Hancock, BW, Silcocks, P, et al. The role of repeat uterine evacuation in the management of persistent gestational trophoblastic disease. Gynecol Oncol 2004; 95: 423–9.CrossRefGoogle ScholarPubMed
Savage, P, Seckl, MJ. The role of repeat uterine evacuation in trophoblast disease. Gynecol Oncol 2005; 99: 251–2.CrossRefGoogle Scholar
FIGO Committee on Gynecologic Oncology. Current FIGO staging for cancer of the vagina, fallopian tube, ovary, and gestational trophoblastic neoplasia. Int J Gynaecol Obstet 2009; 105: 34.Google Scholar
Matsui, H, Iitsuka, Y, Seki, K, Sekiya, S. Comparison of chemotherapies with methotrexate, VP-16 and actinomycin-D in low-risk gestational trophoblastic disease. Remission rates and drug toxicities. Gynecol Obstet Invest 1998; 46: 58.CrossRefGoogle ScholarPubMed
Bagshawe, KD, Dent, J, Newlands, ES, Begent, RH, Rustin, GJ. The role of low-dose methotrexate and folinic acid in gestational trophoblastic tumours (GTT). Br J Obstet Gynaecol 1989; 96: 795802.CrossRefGoogle ScholarPubMed
Deng, L, Zhang, J, Wu, T, Lawrie, TA. Combination chemotherapy for primary treatment of high-risk gestational trophoblastic tumour. Cochrane Database Syst Rev 2013; 1: CD005196.Google ScholarPubMed
Ngan, S, Seckl, MJ. Gestational trophoblastic neoplasia management: an update. Curr Opin Oncol 2007; 19: 486–91.CrossRefGoogle ScholarPubMed
Lurain, JR, Sand, PK, Carson, SA, Brewer, JI. Pregnancy outcome subsequent to consecutive hydatidiform moles. Am J Obstet Gynecol 1982; 142: 1060–1.Google ScholarPubMed
Berkowitz, RS, Goldstein, DP, Bernstein, MR, Sablinska, B. Subsequent pregnancy outcome in patients with molar pregnancy and gestational trophoblastic tumors. J Reprod Med 1987; 32: 680–4.Google ScholarPubMed
Berkowitz, RS, Goldstein, DP. Chorionic tumors. N Engl J Med 1996; 335: 1740–8.CrossRefGoogle ScholarPubMed
Garner, EIO, Lipson, E, Bernstein, MR, Goldstein, DP, Berkowitz, RS. Subsequent pregnancy experience in patients with molar pregnancy and gestational trophoblastic tumor. J Reprod Med 2002; 47: 380–6.Google ScholarPubMed
Garrett, LA, Garner, EI, Feltmate, CM, Goldstein, DP, Berkowitz, RS. Subsequent pregnancy outcomes in patients with molar pregnancy and persistent gestational trophoblastic neoplasia. J Reprod Med 2008; 53: 481–6.Google ScholarPubMed
Petersen, RW, Ung, K, Holland, C, Quinlivan, JA. The impact of molar pregnancy on psychological symptomatology, sexual function, and quality of life. Gynecol Oncol 2005; 97: 535–42.CrossRefGoogle ScholarPubMed
Szulman, AE. Trophoblastic disease: clinical pathology of hydatidiform moles. Obstet Gynecol Clin North Am 1988; 15: 443–56.Google ScholarPubMed
Horn, LC, Bilek, K. Clinicopathologic analysis of gestational trophoblastic disease–report of 158 cases. Gen Diagn Pathol 1997; 143: 173–8.Google ScholarPubMed
Schlaerth, JB, Morrow, CP, Rodriguez, M. Diagnostic and therapeutic curettage in gestational trophoblastic disease. Am J Obstet Gynecol 1990; 162: 1465–70.CrossRefGoogle ScholarPubMed
Newlands, ES, Bower, M, Holden, L, Short, D, Seckl, MJ, Rustin, GJ, et al. Management of resistant gestational trophoblastic tumors. J Reprod Med 1998; 43: 111–18.Google ScholarPubMed
Dobson, LS, Lorigan, PC, Coleman, RE, Hancock, BW. Persistent gestational trophoblastic disease: results of MEA (methotrexate, etoposide and dactinomycin) as first-line chemotherapy in high risk disease and EA (etoposide and dactinomycin) as second-line therapy for low risk disease. Br J Cancer 2000; 82: 1547–52.CrossRefGoogle ScholarPubMed
Qureshi, H, Massey, E, Kirwan, D, et al. BCSH guideline for the use of anti-D immunoglobulin for the prevention of haemolytic disease of the fetus and newborn. Transfus Med 2014; 24: 820.Google Scholar
Matthews, CD, Matthews, AE. Transplacental haemorrhage in spontaneous and induced abortion. Lancet 1969; 1: 694–5.CrossRefGoogle ScholarPubMed
Schorge, JO, Goldstein, DP, Bernstein, MR, Berkowitz, RS. Gestational trophoblastic disease. Curr Treat Options Oncol 2000; 1: 169–75.
ACOG Practice Bulletin #53. Diagnosis and treatment of gestational trophoblastic disease. Obstet Gynecol 2004; 103: 1365–77.
Soothill, P, Finning, K, Latham, T, et al. Use of cffDNA to avoid administration of anti-D to pregnant women when the fetus is RhD-negative: implementation in the NHS. BJOG 2015; 122: 1682–6.


Regan, L, Rai, R. Epidemiology and the medical causes of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol 2000; 14: 839–54.CrossRefGoogle ScholarPubMed
Goddijn, M, Leschot, NJ. Genetic aspects of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol 2000; 14: 855–65.CrossRefGoogle ScholarPubMed
Marlow, N, Bennett, C, Draper, ES, et al. Perinatal outcomes for extremely preterm babies in relation to place of birth in England: the EPICure 2 study. Arch Dis Child Fetal Neonatal Ed 2014; 99: F181–8.CrossRefGoogle ScholarPubMed
World Health Organization. Definitions and Indicators in Family Planning, Maternal and Child Health and Reproductive Health. Geneva: WHO, 2001.Google Scholar
Stephenson, MD, Awartani, KA, Robinson, WP. Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: a case-control study. Hum Reprod 2002; 17: 446–51.CrossRefGoogle ScholarPubMed
Coulam, CB, Faulk, WP, McIntyre, JA. Immunotherapy for recurrent spontaneous abortion and its analogies to treatment for cancer. Am J Reprod Immunol 1991; 25: 114–19.CrossRefGoogle ScholarPubMed
Wilcox, AJ, Weinberg, CR, O’Connor, JF, et al. Incidence of early loss of pregnancy. N Engl J Med 1988; 319: 189–94.CrossRefGoogle ScholarPubMed
Wang, X, Chen, C, Wang, L, et al. Conception, early pregnancy loss, and time to clinical pregnancy: a population-based prospective study. Fertil Steril 2003; 79: 577–84.CrossRefGoogle ScholarPubMed
Wyatt, PR, Owolabi, T, Meier, C, Huang, T. Age-specific risk of fetal loss observed in a second trimester serum screening population. Am J Obstet Gynecol 2005; 192: 240–6.CrossRefGoogle Scholar
Rai, R, Regan, L. Recurrent miscarriage. Lancet 2006; 368: 601–11.CrossRefGoogle ScholarPubMed
Carrington, B, Sacks, G, Regan, L. Recurrent miscarriage: pathophysiology and outcome. Curr Opin Obstet Gynecol 2005; 17: 591–7.CrossRefGoogle ScholarPubMed
Practice Committee of American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril 2013; 99: 63.CrossRefGoogle Scholar
Stirrat, GM. Recurrent miscarriage. Lancet 1990; 336: 673–5.CrossRefGoogle ScholarPubMed
Regan, L. Recurrent miscarriage (editorial). BMJ 1991; 302: 543–4.CrossRefGoogle Scholar
Strobino, B, Fox, HE, Kline, J, et al. Characteristics of women with recurrent spontaneous abortions and women with favorable reproductive histories. Am J Public Health 1986; 76: 986–91.CrossRefGoogle ScholarPubMed
Brigham, SA, Conlon, C, Farquharson, RG. A longitudinal study of pregnancy outcome following idiopathic recurrent miscarriage. Hum Reprod 1999; 14: 2868–71.CrossRefGoogle ScholarPubMed
Jivraj, S, Anstie, B, Cheong, YC, et al. Obstetric and neonatal outcome in women with a history of recurrent miscarriage: a cohort study. Hum Reprod 2001; 16: 102–6.CrossRefGoogle ScholarPubMed
Sullivan, AE, Silver, RM, LaCoursiere, DY, Porter, TF, Branch, DW. Recurrent fetal aneuploidy and recurrent miscarriage. Obstet Gynecol 2004; 104: 784–8.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists. The Investigation and Treatment of Couples with Recurrent First-trimester and Second-trimester Miscarriage. Green-top Guideline No. 17. London: RCOG, 2011. Scholar
American College of Obstetricians and Gynecologists. ACOG practice bulletin. Management of recurrent pregnancy loss. Number 24, February 2001. (Replaces Technical Bulletin Number 212, September 1995). Int J Gynaecol Obstet 2002; 78: 179–90.Google Scholar
Nakano, Y, Akechi, T, Furukawa, TA, Sugiura-Ogasawara, M. Cognitive behavior therapy for psychological distress in patients with recurrent miscarriage. Psychol Res Behav Manag 2013; 6: 3743.CrossRefGoogle ScholarPubMed
Vansenne, F, Goddijn, M, Redeker, B, et al. Knowledge and perceived risks in couples undergoing genetic testing after recurrent miscarriage or for poor semen quality. Reprod Biomed Online 2011; 23: 525–33.CrossRefGoogle ScholarPubMed
Jaoul, M, Ozon, A, Marx de Fossey, I, et al. [What does a thorough personality questionnaire, the MMPI-2, tell us about psychological aspects of recurrent miscarriage?]. Gynecol Obstet Fertil 2013; 41: 297304.CrossRefGoogle Scholar
Jauniaux, E, Farquharson, RG, Christiansen, OB, Exalto, N. Evidence-based guidelines for the investigation and medical treatment of recurrent miscarriage. Hum Reprod 2006; 21: 2216–22.CrossRefGoogle ScholarPubMed
Li, W, Newell-Price, J, Jones, GL, Ledger, WL, Li, TC. Relationship between psychological stress and recurrent miscarriage. Reprod Biomed Online 2012; 25: 180–9.CrossRefGoogle ScholarPubMed
Mevorach-Zussman, N, Bolotin, A, Shalev, H, et al. Anxiety and deterioration of quality of life factors associated with recurrent miscarriage in an observational study. J Perinat Med 2012; 40: 495501.CrossRefGoogle ScholarPubMed
Larsen, EC, Christiansen, OB, Kolte, AM, Macklon, N. New insights into mechanisms behind miscarriage. BMC Med 2013; 11: 154. doi: 10.1186/1741-7015-11-154; ScholarPubMed
Li, M, Huang, SJ. Innate immunity, coagulation and placenta-related adverse pregnancy outcomes. Thromb Res 2009; 124: 656–62.CrossRefGoogle ScholarPubMed
Hassold, T, Chiu, D. Maternal age-specific rates of numerical chromosome abnormalities with special reference to trisomy. Hum Genet 1985. 70: 1117.CrossRefGoogle ScholarPubMed
Ní Bhrolcháin, M, Beaujouan, E. Fertility postponement is largely due to rising educational enrolment. Popul Stud (Camb) 2012; 66: 311–27.CrossRefGoogle ScholarPubMed
MRC/RCOG Working Party on Cervical Cerclage. Interim report of the Medical Research Council/Royal College of Obstetricians and Gynaecologists multicentre randomized trial of cervical cerclage. Br J Obstet Gynaecol 1988; 95: 437–45.Google Scholar
Dechanet, C, Brunet, C, Anahory, T, et al. [Effects of cigarette smoking on embryo implantation and placentation and analysis of factors interfering with cigarette smoke effects (Part II)]. Gynecol Obstet Fertil 2011; 39: 567–74.Google Scholar
Delabaere, A, Huchon, C, Deffieux, X, et al. [Epidemiology of loss pregnancy]. J Gynecol Obstet Biol Reprod (Paris) 2014; 43: 764–75.Google ScholarPubMed
Christiansen, OB, ed. Recurrent Pregnancy Loss. London: John Wiley & Sons, 2014.CrossRefGoogle ScholarPubMed
Bell, JC, Raynes-Greenow, C, Turner, RM, et al. Maternal alcohol consumption during pregnancy and the risk of orofacial clefts in infants: a systematic review and meta-analysis. Paediatr Perinat Epidemiol 2014; 28: 322–32.CrossRefGoogle ScholarPubMed
Polygenis, D, Wharton, S, Malmberg, C, et al. Moderate alcohol consumption during pregnancy and the incidence of fetal malformations: a meta-analysis. Neurotoxicol Teratol 1998; 20: 61–7.CrossRefGoogle ScholarPubMed
Boots, C, Stephenson, MD. Does obesity increase the risk of miscarriage in spontaneous conception: a systematic review. Semin Reprod Med 2011; 29: 507–13.CrossRefGoogle ScholarPubMed
Pineles, BL, Park, E, Samet, LM. Systematic review and meta-analysis of miscarriage and maternal exposure to tobacco smoke during pregnancy. Am J Epidemiol 2014; 179: 807–23.CrossRefGoogle ScholarPubMed
Murphy, FA, Lipp, A, Powles, DL. Follow-up for improving psychological well being for women after a miscarriage. Cochrane Database Syst Rev 2012; (3): CD008679.CrossRefGoogle Scholar
Musters, AM, Taminiau-Bloem, EF, van den Boogaard, E, van der Veen, F, Goddijn, M. Supportive care for women with unexplained recurrent miscarriage: patients’ perspectives. Hum Reprod 2011; 26: 873–7.CrossRefGoogle ScholarPubMed
Lathi, RB, Gray-Hazard, FK, Heerema-McKenney, A, Taylor, J, Chueh, JT. First trimester miscarriage evaluation. Semin Reprod Med 2011; 29: 463–9.CrossRefGoogle ScholarPubMed
Clark, DA, Daya, S, Coulam, CB, Gunby, J. Implication of abnormal human trophoblast karyotype for the evidence-based approach to the understanding, investigation, and treatment of recurrent spontaneous abortion. The Recurrent Miscarriage Immunotherapy Trialists Group. Am J Reprod Immunol 1996; 35: 495–8.CrossRefGoogle ScholarPubMed
Kroon, B, Harrison, K, Martin, N, Wong, B, Yazdani, A. Miscarriage karyotype and its relationship with maternal body mass index, age, and mode of conception. Fertil Steril 2011; 95: 1827–9.CrossRefGoogle ScholarPubMed
Sugiura-Ogasawara, M, Ozaki, Y, Katano, K, et al. Abnormal embryonic karyotype is the most frequent cause of recurrent miscarriage. Hum Reprod 2012; 27: 2297–303.CrossRefGoogle ScholarPubMed
Grande, M, Borrell, A, Garcia-Posada, R, et al. The effect of maternal age on chromosomal anomaly rate and spectrum in recurrent miscarriage. Hum Reprod 2012; 27: 3109–17.CrossRefGoogle ScholarPubMed
Ogasawara, M, Aoki, K, Okada, S, Suzumori, K. Embryonic karyotype of abortuses in relation to the number of previous miscarriages. Fertil Steril 2000; 73: 300–4.CrossRefGoogle ScholarPubMed
Philipp, T, Philipp, K, Reiner, A, Beer, F, Kalousek, DK. Embryoscopic and cytogenetic analysis of 233 missed abortions: factors involved in the pathogenesis of developmental defects of early failed pregnancies. Hum Reprod 2003; 18: 1724–32.CrossRefGoogle ScholarPubMed
Menasha, J, Levy, B, Hirschhorn, K, Kardon, NB. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med 2005; 7: 251–63.CrossRefGoogle ScholarPubMed
Rubio, C, Pehlivan, T, Rodrigo, L, et al. Embryo aneuploidy screening for unexplained recurrent miscarriage: a minireview. Am J Reprod Immunol 2005; 53: 159–65.CrossRefGoogle ScholarPubMed
Dukhovny, S, Zutshi, P, Abbott, JF. Recurrent second trimester pregnancy loss: evaluation and management. Curr Opin Endocrinol Diabetes Obes 2009; 16: 451–8.CrossRefGoogle ScholarPubMed
Kwinecka-Dmitriew, B, Zakrzewska, M, Latos-Bielenska, A, Skrzypczak, J. Frequency of chromosomal aberrations in material from abortions. Ginekol Pol 2010; 81: 896901.Google ScholarPubMed
De Braekeleer, M, Dao, TN. Cytogenetic studies in couples experiencing repeated pregnancy losses. Hum Reprod 1990; 5: 519–28.CrossRefGoogle ScholarPubMed
Sierra, S, Stephenson, M. Genetics of recurrent pregnancy loss. Semin Reprod Med 2006; 24: 1724.CrossRefGoogle ScholarPubMed
Stephenson, MD, Sierra, S. Reproductive outcomes in recurrent pregnancy loss associated with a parental carrier of a structural chromosome rearrangement. Hum Reprod 2006; 21: 1076–82.CrossRefGoogle ScholarPubMed
Meza-Espinoza, JP, Anguiano, LO, Rivera, H. Chromosomal abnormalities in couples with reproductive disorders. Gynecol Obstet Invest 2008; 66: 237–40.CrossRefGoogle ScholarPubMed
Franssen, MT, Korevaar, JC, Leschot, NJ, et al. Selective chromosome analysis in couples with two or more miscarriages: case-control study. BMJ 2005; 331: 137–41.CrossRefGoogle ScholarPubMed
Diedrich, U, Hansmann, I, Janke, D, et al. Chromosome anomalies in 136 couples with a history of recurrent abortions. Hum Genet 1983; 65: 4852.CrossRefGoogle ScholarPubMed
Brookfield, JF. Q&A: promise and pitfalls of genome-wide association studies. BMC Biol 2010; 8: 41.CrossRefGoogle ScholarPubMed
Topalidou, M, Effraimidou, S, Farmakiotis, D, et al. Low protein Z levels, but not the intron F G79A polymorphism, are associated with unexplained pregnancy loss. Thromb Res 2009; 124: 24–7.CrossRefGoogle Scholar
Goodman, C, Goodman, CS, Hur, J, et al. The association of apoprotein E polymorphisms with recurrent pregnancy loss. Am J Reprod Immunol 2009; 61: 34–8.Google ScholarPubMed
Finan, RR, Mustafa, FE, Al-Zaman, I, et al. STAT3 polymorphisms linked with idiopathic recurrent miscarriages. Am J Reprod Immunol 2010; 63: 22–7.Google ScholarPubMed
Baek, KH, Lee, EJ, Kim, YS. Recurrent pregnancy loss: the key potential mechanisms. Trends Mol Med 2007; 13: 310–17.CrossRefGoogle ScholarPubMed
Su, MT, Lin, SH, Chen, YC. Genetic association studies of angiogenesis- and vasoconstriction-related genes in women with recurrent pregnancy loss: a systematic review and meta-analysis. Hum Reprod Update 2011; 17: 803–12.CrossRefGoogle ScholarPubMed
Salker, M, Teklenburg, G, Molokhia, M, et al. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS One 2010; 5: e10287.CrossRefGoogle ScholarPubMed
Beshay, VE, Bukulmez, O. Sperm DNA damage: how relevant is it clinically? Curr Opin Obstet Gynecol 2012; 24: 172–9.CrossRefGoogle ScholarPubMed
Robinson, L, Gallos, ID, Conner, SJ, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod 2012; 27: 2908–17.CrossRefGoogle ScholarPubMed
Ashton, D, Amin, HK, Richart, RM, Neuwirth, RS. The incidence of asymptomatic uterine anomalies in women undergoing transcervical tubal sterilization. Obstet Gynecol 1988; 72: 2830.Google ScholarPubMed
Lin, PC. Reproductive outcomes in women with uterine anomalies. J Womens Health (Larchmt) 2004; 13: 33–9.CrossRefGoogle ScholarPubMed
Sugiura-Ogasawara, M, Ozaki, Y, Suzumori, N. Mullerian anomalies and recurrent miscarriage. Curr Opin Obstet Gynecol 2013; 25: 293–8.CrossRefGoogle ScholarPubMed
Saravelos, SH, Cocksedge, KA, Li, TC. The pattern of pregnancy loss in women with congenital uterine anomalies and recurrent miscarriage. Reprod Biomed Online 2010; 20: 416–22.CrossRefGoogle ScholarPubMed
Maneschi, F, Zupi, E, Marconi, D, et al. Hysteroscopically detected asymptomatic müllerian anomalies: prevalence and reproductive implications. J Reprod Med 1995; 40: 684–8.Google ScholarPubMed
Sugiura-Ogasawara, M, Ozaki, Y, Katano, K, et al. Uterine anomaly and recurrent pregnancy loss. Semin Reprod Med 2011; 29: 514–21.CrossRefGoogle ScholarPubMed
Rackow, BW, Arici, A. Reproductive performance of women with müllerian anomalies. Curr Opin Obstet Gynecol 2007; 19: 229–37.CrossRefGoogle ScholarPubMed
Kroon, B, Johnson, N, Chapman, M, et al. Fibroids in infertility: consensus statement from ACCEPT (Australasian CREI Consensus Expert Panel on Trial evidence). Aust N Z J Obstet Gynaecol 2011; 51: 289–95.Google Scholar
Pritts, EA, Parker, WH, Olive, DL. Fibroids and infertility: an updated systematic review of the evidence. Fertil Steril 2009; 91: 1215–23.CrossRefGoogle Scholar
Saravelos, SH, Yan, J, Rehmani, H, Li, TC. The prevalence and impact of fibroids and their treatment on the outcome of pregnancy in women with recurrent miscarriage. Hum Reprod 2011; 26: 3274–9.CrossRefGoogle ScholarPubMed
Benson, CB, Chow, JS, Chang-Lee, W, Hill, JA, Doubilet, PM. Outcome of pregnancies in women with uterine leiomyomas identified by sonography in the first trimester. J Clin Ultrasound 2001; 29: 261–4.CrossRefGoogle ScholarPubMed
Simpson, JL. Causes of fetal wastage. Clin Obstet Gynecol 2007; 50: 1030.CrossRefGoogle ScholarPubMed
Bajekal, N, Li, TC. Fibroids, infertility and pregnancy wastage. Hum Reprod Update 2000; 6: 614–20.CrossRefGoogle ScholarPubMed
Hart, R, Khalaf, Y, Yeong, CT, et al. A prospective controlled study of the effect of intramural uterine fibroids on the outcome of assisted conception. Hum Reprod 2001; 16: 2411–17.CrossRefGoogle ScholarPubMed
Casini, ML, Rossi, F, Agostini, R, Unfer, V. Effects of the position of fibroids on fertility. Gynecol Endocrinol 2006; 22: 106–9.CrossRefGoogle ScholarPubMed
Klatsky, PC, Tran, ND, Caughey, AB, Fujimoto, VY. Fibroids and reproductive outcomes: a systematic literature review from conception to delivery. Am J Obstet Gynecol 2008; 198: 357–66.CrossRefGoogle ScholarPubMed
Pérez-Medina, T, Bajo-Arenas, J, Salazar, F, et al. Endometrial polyps and their implication in the pregnancy rates of patients undergoing intrauterine insemination: a prospective, randomized study. Hum Reprod 2005; 20: 1632–5.CrossRefGoogle ScholarPubMed
Maheshwari, A, Gurunath, S, Fatima, F, Bhattacharya, S. Adenomyosis and subfertility: a systematic review of prevalence, diagnosis, treatment and fertility outcomes. Hum Reprod Update 2012; 18: 374–92.CrossRefGoogle ScholarPubMed
Tremellen, KP, Russell, P. The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure. II: Adenomyosis and macrophages. J Reprod Immunol 2012; 93: 5863.CrossRefGoogle ScholarPubMed
Alfirevic, Z, Stampalija, T, Roberts, D, Jorgensen, AL. Cervical stitch (cerclage) for preventing preterm birth in singleton pregnancy. Cochrane Database Syst Rev 2012; (4): CD008991.CrossRefGoogle Scholar
Berghella, V, Pereira, L, Gariepy, A, Simonazzi, G. Prior cone biopsy: prediction of preterm birth by cervical ultrasound. Am J Obstet Gynecol 2004; 191: 1393–7.CrossRefGoogle ScholarPubMed
Bruinsma, FJ, Quinn, MA. The risk of preterm birth following treatment for precancerous changes in the cervix: a systematic review and meta-analysis. BJOG 2011; 118: 1031–41.CrossRefGoogle ScholarPubMed
Milhan, D. DES exposure: implications for childbearing. Int J Childbirth Educ 1992; 7: 21–8.Google ScholarPubMed
Word, RA, Li, XH, Hnat, M, Carrick, K. Dynamics of cervical remodeling during pregnancy and parturition: mechanisms and current concepts. Semin Reprod Med 2007; 25: 6979.CrossRefGoogle ScholarPubMed
Stenlund, PM, Ekman, G, Aedo, AR, Bygdeman, M. Induction of labor with mifepristone: a randomized, double-blind study versus placebo. Acta Obstet Gynecol Scand 1999; 78: 793–8.Google ScholarPubMed
Hassan, S, Romero, R, Hendler, I, et al. A sonographic short cervix as the only clinical manifestation of intra-amniotic infection. J Perinat Med 2006; 34: 1319.CrossRefGoogle ScholarPubMed
Kiefer, DG, Keeler, SM, Rust, OA, et al. Is midtrimester short cervix a sign of intra-amniotic inflammation? Am J Obstet Gynecol 2009; 200: 374.e1–5.CrossRefGoogle Scholar
Hein, M, Helmig, RB, Schønheyder, HC, Ganz, T, Uldbjerg, N. An in vitro study of antibacterial properties of the cervical mucus plug. Am J Obstet Gynecol 2001; 185: 586–92.CrossRefGoogle Scholar
Becher, N, Adams Waldorf, K, Hein, M, Uldbjerg, N. The cervical mucus plug: structured review of the literature. Acta Obstet Gynecol Scand 2009; 88: 502–13.CrossRefGoogle ScholarPubMed
Hassan, SS, Romero, R, Berry, SM, et al. Patients with an ultrasonographic cervical length ≤ 15 mm have nearly a 50% risk of early spontaneous preterm delivery. Am J Obstet Gynecol 2000; 182: 1458–67.CrossRefGoogle ScholarPubMed
To, MS, Skentou, C, Liao, AW, Cacho, A, Nicolaides, KH. Cervical length and funneling at 23 weeks of gestation in the prediction of spontaneous early preterm delivery. Ultrasound Obstet Gynecol 2001; 18: 200–3.CrossRefGoogle ScholarPubMed
Alijotas-Reig, J, Garrido-Gimenez, C. Current concepts and new trends in the diagnosis and management of recurrent miscarriage. Obstet Gynecol Surv 2013; 68: 445–66.CrossRefGoogle ScholarPubMed
Cocksedge, KA, Li, TC, Saravelos, SH, Metwally, M. A reappraisal of the role of polycystic ovary syndrome in recurrent miscarriage. Reprod Biomed Online 2008; 17: 151–60.CrossRefGoogle ScholarPubMed
Kalra, SK, Ratcliffe, SJ, Dokras, A. Is the fertile window extended in women with polycystic ovary syndrome? Utilizing the Society for Assisted Reproductive Technology registry to assess the impact of reproductive aging on live-birth rate. Fertil Steril 2013; 100: 208–13.CrossRefGoogle Scholar
Usadi, RS, Legro, RS. Reproductive impact of polycystic ovary syndrome. Curr Opin Endocrinol Diabetes Obes 2012; 19: 505–11.CrossRefGoogle ScholarPubMed
Kinsley, B. Achieving better outcomes in pregnancies complicated by type 1 and type 2 diabetes mellitus. Clin Ther 2007; 29 (Suppl D): S153–60.CrossRefGoogle ScholarPubMed
McGrogan, A, Snowball, J, de Vries, CS. Pregnancy losses in women with Type 1 or Type 2 diabetes in the UK: an investigation using primary care records. Diabet Med 2014; 31: 357–65.CrossRefGoogle ScholarPubMed
Stagnaro-Green, A, Abalovich, M, Alexander, E, et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 2011; 21: 1081–125.CrossRefGoogle ScholarPubMed
van den Boogaard, E, Vissenberg, R, Land, JA, et al. Significance of (sub)clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: a systematic review. Hum Reprod Update 2011; 17: 605–19.CrossRefGoogle ScholarPubMed
Abalovich, M, Gutierrez, S, Alcaraz, G, et al. Overt and subclinical hypothyroidism complicating pregnancy. Thyroid 2002; 12: 63–8.CrossRefGoogle ScholarPubMed
Casey, BM, Dashe, JS, Wells, CE, et al. Subclinical hyperthyroidism and pregnancy outcomes. Obstet Gynecol 2006; 107: 337–41.CrossRefGoogle ScholarPubMed
Abalovich, M, Mitelberg, L, Allami, C, et al. Clinical hypothyroidism and thyroid autoimmunity in women with infertility. Gynecol Endocrinol 2007; 23: 279–83.CrossRefGoogle Scholar
Negro, R, Formoso, G, Mangieri, T, et al. Levothyroxine treatment in euthyroid pregnant women with autoimmune thyroid disease: effects on obstetrical complications. J Clin Endocrinol Metab 2006; 91: 2587–91.CrossRefGoogle ScholarPubMed
De Carolis, C, Greco, E, Guarino, MD, et al. Anti-thyroid antibodies and antiphospholipid syndrome: evidence of reduced fecundity and of poor pregnancy outcome in recurrent spontaneous aborters. Am J Reprod Immunol 2004; 52: 263–6.CrossRefGoogle ScholarPubMed
Bukulmez, O, Arici, A. Luteal phase defect: myth or reality. Obstet Gynecol Clin North Am 2004; 31: 727–44.CrossRefGoogle ScholarPubMed
Regan, L, Owen, EJ, Jacobs, HS. Hypersecretion of luteinising hormone, infertility, and miscarriage. Lancet 1990; 336: 1141–4.CrossRefGoogle ScholarPubMed
van Hooff, M, Schoute, E, Schoemaker, J. Hypersecretion of luteinizing hormone (LH) and ovarian steroids in women with recurrent abortion. Hum Reprod 1994; 9: 179–80.Google ScholarPubMed
Clifford, K, Rai, R, Watson, H, Franks, S, Regan, L. Does suppressing luteinising hormone secretion reduce the miscarriage rate? Results of a randomized controlled trial. BMJ 1996; 312: 1508–11.CrossRefGoogle Scholar
Li, TC, Spuijbroek, MD, Tuckerman, E, et al. Endocrinological and endometrial factors in recurrent miscarriage. BJOG 2000; 107: 1471–9.CrossRefGoogle ScholarPubMed
Li, TC, Tuckerman, EM, Laird, SM. Endometrial factors in recurrent miscarriage. Hum Reprod Update 2002; 8: 4352.CrossRefGoogle ScholarPubMed
Patel, BG, Lessey, BA. Clinical assessment and management of the endometrium in recurrent early pregnancy loss. Semin Reprod Med 2011; 29: 491506.CrossRefGoogle ScholarPubMed
Zenclussen, AC. Regulatory T cells in pregnancy. Semin Imunol 2006; 28: 31–9.Google ScholarPubMed
Praprotnik, S, Agmon-Levin, N, Porat-Katz, BS, et al. Prolactin’s role in the pathogenesis of the antiphospholipid syndrome. Lupus 2010; 19: 1515–19.CrossRefGoogle ScholarPubMed
Nigro, G, Mazzocco, M, Mattia, E, et al. Role of the infections in recurrent spontaneous abortion. J Matern Fetal Neonatal Med 2011; 24: 983–9.CrossRefGoogle ScholarPubMed
Hay, PE. Bacterial vaginosis and miscarriage. Curr Opin Infect Dis 2004; 17: 41–4.CrossRefGoogle ScholarPubMed
Tafuri, A, Alferink, J, Möller, P, Hämmerling, GJ, Arnold, B. T cell awareness of paternal alloantigens during pregnancy. Science 1995; 270: 630–3.CrossRefGoogle ScholarPubMed
Zenclussen, AC. CD4(+)CD25+ T regulatory cells in murine pregnancy. J Reprod Immunol 2005; 65: 101–10.CrossRefGoogle Scholar
Alijotas-Reig, J. Immunological puzzle related to recurrent miscarriage: overview. Curr Immunol Rev 2009; 5: 175–86.CrossRefGoogle Scholar
Zenclussen, AC, Gerlof, K, Zenclussen, ML, et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol 2005; 166: 811–22.CrossRefGoogle Scholar
Sollwedel, A, Bertoja, AZ, Zenclussen, ML, et al. Protection from abortion by heme oxygenase-1 up-regulation is associated with increased levels of Bag-1 and neuropilin-1 at the fetal-maternal interface. J Immunol 2005; 175: 4875–85.CrossRefGoogle Scholar
Rocklin, RE, Kitzmiller, JL, Carpenter, CB, Garovoy, MR, David, JR. Maternal-fetal relation. Absence of an immunologic blocking factor from the serum of women with chronic abortions. N Engl J Med 1976; 295: 1209–13.CrossRefGoogle ScholarPubMed
Tangri, S, Wegmann, TG, Lin, H, Raghupathy, R. Maternal anti-placental reactivity in natural, immunologically-mediated fetal resorptions. J Immunol 1994; 152: 4903–11.Google ScholarPubMed
Thellin, O, Coumans, B, Zorzi, W, Igout, A, Heinen, E. Tolerance to the foeto-placental “graft”: ten ways to support a child for nine months. Curr Opin Immunol 2000; 12: 731–7.CrossRefGoogle ScholarPubMed
Wang, Q, Li, TC, Wu, YP, et al. Reappraisal of peripheral NK cells in women with recurrent miscarriage. Reprod Biomed Online 2008; 17: 814–19.CrossRefGoogle ScholarPubMed
Seshadri, S, Sunkara, SK. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update 2014; 20: 429–38.CrossRefGoogle ScholarPubMed
Lash, GE, Bulmer, JN, Innes, BA, et al. Prednisolone treatment reduces endometrial spiral artery development in women with recurrent miscarriage. Angiogenesis 2011; 14: 523–32.CrossRefGoogle ScholarPubMed
Hutton, B, Sharma, R, Fergusson, D, et al. Use of intravenous immunoglobulin for treatment of recurrent miscarriage: a systematic review. BJOG 2007; 114: 134–42.CrossRefGoogle ScholarPubMed
Christiansen, OB, Larsen, EC, Egerup, P, et al. Intravenous immunoglobulin treatment for secondary recurrent miscarriage: a randomised, double-blind, placebo-controlled trial. BJOG 2015; 122: 500–8.CrossRefGoogle ScholarPubMed
Katz, U, Achiron, A, Sherer, Y, Shoenfeld, Y. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev 2007; 6: 257–9.CrossRefGoogle ScholarPubMed
Martinez-Zamora, MA, Cervera, R, Balasch, J. Recurrent miscarriage, antiphospholipid antibodies and the risk of thromboembolic disease. Clin Rev Allergy Immunol 2012; 43: 265–74.CrossRefGoogle ScholarPubMed
Sater, MS, Finan, RR, Abu-Hijleh, FM, Abu-Hijleh, TM, Almawi, WY. Anti-phosphatidylserine, anti-cardiolipin, anti-beta2 glycoprotein I and anti-prothrombin antibodies in recurrent miscarriage at 8–12 gestational weeks. Eur J Obstet Gynecol Reprod Biol 2012; 163: 170–4.CrossRefGoogle ScholarPubMed
Diejomaoh, MF. Recurrent spontaneous miscarriage is still a challenging diagnostic and therapeutic quagmire. Med Princ Pract 2015; 24 (Suppl 1): 3855.CrossRefGoogle Scholar
Alijotas-Reig, J, Vilardell-Tarres, M. Is obstetric antiphospholipid syndrome a primary nonthrombotic, proinflammatory, complement-mediated disorder related to antiphospholipid antibodies? Obstet Gynecol Surv 2010; 65: 3945.CrossRefGoogle ScholarPubMed
Galarza-Maldonado, C, Kourilovitch, MR, Pérez-Fernández, OM, et al. Obstetric antiphospholipid syndrome. Autoimmun Rev 2012; 11: 288–95.CrossRefGoogle ScholarPubMed
Ludvigsson, JF, Montgomery, SM, Ekbom, A. Celiac disease and risk of adverse fetal outcome: a population-based cohort study. Gastroenterology 2005; 129: 454–63.CrossRefGoogle ScholarPubMed
Tursi, A, Giorgetti, G, Brandimarte, G, Elisei, W. Effect of gluten-free diet on pregnancy outcome in celiac disease patients with recurrent miscarriages. Dig Dis Sci 2008; 53: 2925–8.CrossRefGoogle ScholarPubMed
Bradley, RJ, Rosen, MP. Subfertility and gastrointestinal disease: “unexplained” is often undiagnosed. Obstet Gynecol Surv 2004; 59: 108–17.Google Scholar
Kumar, A, Meena, M, Begum, N, et al. Latent celiac disease in reproductive performance of women. Fertil Steril 2011; 95: 922–7.CrossRefGoogle ScholarPubMed
Gleicher, N, el-Roeiy, A, Confino, E, Friberg, J. Reproductive failure because autoantibodies: unexplained infertility and pregnancy wastage. Am J Obstet Gynecol 1989; 160: 1376–80.CrossRefGoogle ScholarPubMed
Gleicher, N. Some thoughts on the reproductive autoimmune failure syndrome (RAFS) and Th-1 versus Th-2 immune responses. Am J Reprod Immunol 2002; 48: 252–4.CrossRefGoogle ScholarPubMed
Gleicher, N, el-Roeiy, A. The reproductive autoimmune failure syndrome. Am J Obstet Gynecol 1988; 159: 223–7.CrossRefGoogle ScholarPubMed
Gleicher, N. Reproductive failure prior to the onset of clinical autoimmune disease. Rheumatology (Oxford) 1999; 38: 485–7.CrossRefGoogle ScholarPubMed
de Jong, PG, Goddijn, M, Middeldorp, S. Testing for inherited thrombophilia in recurrent miscarriage. Semin Reprod Med 2011; 29: 540–7.CrossRefGoogle ScholarPubMed
Brenner, B. Thrombophilia and pregnancy loss in first intended pregnancy. J Thromb Haemost 2005; 3: 2176–7.CrossRefGoogle ScholarPubMed
Greer, IA. Thrombophilia: implications for pregnancy outcome. Thromb Res 2003; 109: 7381.CrossRefGoogle ScholarPubMed
McNamee, K, Dawood, F, Farquharson, RG. Thrombophilia and early pregnancy loss. Best Pract Res Clin Obstet Gynecol 2012; 26: 91102.CrossRefGoogle ScholarPubMed
Kist, WJ, Janssen, NG, Kalk, JJ, et al. Thrombophilias and adverse pregnancy outcome: a confounded problem! Thromb Haemost 2008; 99: 7785.Google ScholarPubMed
Dutch Society for Obstetrics and Gynaecology. Habitual Abortion. Guideline No. 20. Utrecht; 1999.Google Scholar
Battinelli, EM, Marshall, A, Connors, JM. The role of thrombophilia in pregnancy. Thrombosis 2013; 2013: 516420.CrossRefGoogle ScholarPubMed
Kovac, M, Mikovic, Z, Mitic, G, et al. Does anticoagulant therapy improve pregnancy outcome equally, regardless of specific thrombophilia type? Clin Appl Thromb Hemost 2014; 20: 184–9.CrossRefGoogle ScholarPubMed
Rey, E, Kahn, SR, David, M, Shrier, I. Thrombophilic disorders and fetal loss: a meta-analysis. Lancet 2003; 361: 901–8.CrossRefGoogle ScholarPubMed
Laurino, MY, Bennett, RL, Saraiya, DS, et al. Genetic evaluation and counseling of couples with recurrent miscarriage: recommendations of the National Society of Genetic Counselors. J Genet Couns 2005; 14: 165–81.CrossRefGoogle ScholarPubMed
Carp, H, Toder, V, Aviram, A, et al. Karyotype of the abortus in recurrent miscarriage. Fertil Steril 2001; 75: 678–82.CrossRefGoogle ScholarPubMed
Barber, JC, Cockwell, AE, Grant, E, et al. Is karyotyping couples experiencing recurrent miscarriage worth the cost? BJOG 2010; 117: 885–8.CrossRefGoogle ScholarPubMed
Robert, JM, Macara, LM, Chalmers, EA, Smith, GC. Inter-assay variation in antiphospholipid antibody testing. BJOG 2002; 109: 348–9.Google ScholarPubMed
Miyakis, S, Lockshin, MD, Atsumi, T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006; 4: 295306.CrossRefGoogle Scholar
Rai, RS, Regan, L, Clifford, K, et al. Antiphospholipid antibodies and β2-glycoprotein-I in 500 women with recurrent miscarriage: results of a comprehensive screening approach. Hum Reprod 1995; 10: 2001–5.CrossRefGoogle ScholarPubMed
de la Rochebrochard, E, Thonneau, P. Paternal age and maternal age are risk factors for miscarriage: results of a multicentre European study. Hum Reprod 2002; 17: 1649–56.CrossRefGoogle ScholarPubMed
Clifford, K, Rai, R, Regan, L. Future pregnancy outcome in unexplained recurrent first trimester miscarriage. Hum Reprod 1997; 12: 387–9.CrossRefGoogle ScholarPubMed
Liddell, HS, Pattison, NS, Zanderigo, A. Recurrent miscarriage: outcome after supportive care in early pregnancy. Aust N Z J Obstet Gynaecol 1991; 31: 320–2.CrossRefGoogle ScholarPubMed
Haas, DM, Ramsey, PS. Progestogen for preventing miscarriage. Cochrane Database Syst Rev 2013; (10): CD003511.CrossRefGoogle Scholar
Rai, R, Backos, M, Baxter, N, Chilcott, I, Regan, L. Recurrent miscarriage: an aspirin a day? Hum Reprod 2000; 15: 2220–3.CrossRefGoogle Scholar
Tulppala, M, Marttunen, M, Söderstrom-Anttila, V, et al. Low-dose aspirin in prevention of miscarriage in women with unexplained or autoimmune related recurrent miscarriage: effect on prostacyclin and thromboxane A2 production. Hum Reprod 1997; 12: 1567–72.Google ScholarPubMed
Kaandorp, SP, Goddijn, M, van der Post, JA, et al. Aspirin plus heparin or aspirin alone in women with recurrent miscarriage. N Engl J Med 2010; 362: 1586–96.CrossRefGoogle ScholarPubMed
Clark, P, Walker, ID, Langhorne, P, et al.; Scottish Pregnancy Intervention Study (SPIN) collaborators. SPIN (Scottish Pregnancy Intervention) study: a multicenter, randomized controlled trial of low-molecular-weight heparin and low-dose aspirin in women with recurrent miscarriage. Blood 2010; 115: 4162–7.CrossRefGoogle ScholarPubMed
Ogilvie, CM, Braude, P, Scriven, PN. Successful pregnancy outcomes after preimplantation genetic diagnosis (PGD) for carriers of chromosome translocations. Hum Fertil (Camb) 2001; 4: 168–71.CrossRefGoogle ScholarPubMed
Scriven, PN, Flinter, FA, Braude, PR, Ogilvie, CM. Robertsonian translocations: reproductive risks and indications for preimplantation genetic diagnosis. Hum Reprod 2001; 16: 2267–73.CrossRefGoogle ScholarPubMed
Regan, L, Rai, R, Backos, M, El Gaddal, S. Recurrent miscarriage and parental karyotype abnormalities: prevalence and future pregnancy outcome. Abstracts of the 17th Annual Meeting of the ESHRE, Lausanne, Switzerland 2001. Hum Reprod 2001; 16 (Suppl 1): 177–8.Google Scholar
Lalioti, MD. Can preimplantation genetic diagnosis overcome recurrent pregnancy failure? Curr Opin Obstet Gynecol 2008; 20: 199204.CrossRefGoogle ScholarPubMed
Grimbizis, GF, Camus, M, Tarlatzis, BC, Bontis, JN, Devroey, P. Clinical implications of uterine malformations and hysteroscopic treatment results. Hum Reprod Update 2001; 7: 161–74.CrossRefGoogle ScholarPubMed
Porcu, G, Cravello, L, D’Ercole, C, et al. Hysteroscopic metroplasty for septate uterus and repetitive abortions: reproductive outcome. Eur J Obstet Gynecol Reprod Biol 2000; 88: 81–4.CrossRefGoogle ScholarPubMed
Pace, S, Cipriano, L, Pace, G, Catania, R, Montanino, G. Septate uterus: reproductive outcome after hysteroscopic metroplasty. Clin Exp Obstet Gynecol 2006; 33: 110–12.Google ScholarPubMed
Tang, AW, Quenby, S. Recent thoughts on management and prevention of recurrent early pregnancy loss. Curr Opin Obstet Gynecol 2010; 22: 446–51.CrossRefGoogle ScholarPubMed
Roy, KK, Singla, S, Baruah, J, et al. Reproductive outcome following hysteroscopic myomectomy in patients with infertility and recurrent abortions. Arch Gynecol Obstet 2010; 282: 553–60.CrossRefGoogle ScholarPubMed
Campo, S, Campo, V, Gambadauro, P. Reproductive outcome before and after laparoscopic or abdominal myomectomy for subserous or intramural myomas. Eur J Obstet Gynecol Reprod Biol 2003; 110: 215–19.CrossRefGoogle ScholarPubMed
Kodaman, PH, Arici, A. Intra-uterine adhesions and fertility outcome: how to optimize success? Curr Opin Obstet Gynecol 2007; 19: 207–14.CrossRefGoogle ScholarPubMed
Jacobsen, LJ, DeCherney, A. Results of conventional and hysteroscopic surgery. Hum Reprod 1997; 12: 1376–81.CrossRefGoogle ScholarPubMed
Homer, HA, Li, TC, Cooke, ID. The septate uterus: a review of management and reproductive outcome. Fertil Steril 2000; 73: 114.CrossRefGoogle ScholarPubMed
Sugiura-Ogasawara, M, Lin, BL, Aoki, K, et al. Does surgery improve live birth rates in patients with recurrent miscarriage caused by uterine anomalies? J Obstet Gynaecol 2015; 35: 155–8.CrossRefGoogle ScholarPubMed
Jaslow, CR, Kutteh, WH. Effect of prior birth and miscarriage frequency on the prevalence of acquired and congenital uterine anomalies in women with recurrent miscarriage: a cross-sectional study. Fertil Steril 2013; 99: 1916–22.e1.CrossRefGoogle ScholarPubMed
Boivin, J, Lancastle, D. Medical waiting periods: imminence, emotions and coping. Womens Health 2010; 6: 5969.Google ScholarPubMed
Royal College of Obstetricians and Gynaecologists. Cervical Cerclage. Green-top Guideline No. 60. London: RCOG, 2011.Google Scholar
Drakeley, AJ, Roberts, D, Alfirevic, Z. Cervical cerclage for prevention of preterm delivery: meta-analysis of randomized trials. Obstet Gynecol 2003; 102: 621–7. Erratum in: Obstet Gynecol 2004; 103: 201.Google ScholarPubMed
MRC/RCOG Working Party on Cervical Cerclage. Final report of the Medical Research Council/Royal College of Obstetricians and Gynaecologists multicentre randomised trial of cervical cerclage. Br J Obstet Gynaecol 1993; 100: 516–23.Google Scholar
Berghella, V, Odibo, AO, To, MS, Rust, OA, Althuisius, SM. Cerclage for short cervix on ultrasonography: meta-analysis of trials using individual patient-level data. Obstet Gynecol 2005; 106: 181–9.CrossRefGoogle ScholarPubMed
Gibb, DM, Salaria, DA. Transabdominal cervicoisthmic cerclage in the management of recurrent second trimester miscarriage and preterm delivery. Br J Obstet Gynaecol 1995; 102: 802–6.CrossRefGoogle ScholarPubMed
Anthony, GS, Walker, RG, Cameron, AD, et al. Transabdominal cervico-isthmic cerclage in the management of cervical incompetence. Eur J Obstet Gynecol Reprod Biol 1997; 72: 127–30.CrossRefGoogle ScholarPubMed
Debbs, RH, De La Vega, GA, Pearson, S, et al. Transabdominal cerclage after comprehensive evaluation of women with previous unsuccessful transvaginal cerclage. Am J Obstet Gynecol 2007; 197: 317.e1–4.CrossRefGoogle ScholarPubMed
Zaveri, V, Aghajafari, F, Amankwah, K, Hannah, M. Abdominal versus vaginal cerclage after a failed transvaginal cerclage: a systematic review. Am J Obstet Gynecol 2002; 187: 868–72.CrossRefGoogle ScholarPubMed
Thuesen, LL, Diness, BR, Langhoff-Roos, J. Pre-pregnancy transabdominal cerclage. Acta Obstet Gynecol Scand 2009; 88: 483–6.CrossRefGoogle ScholarPubMed
Drakeley, AJ, Roberts, D, Alfirevic, Z. Cervical stitch (cerclage) for preventing pregnancy loss in women. Cochrane Database Syst Rev 2003; (1): CD003253.CrossRefGoogle Scholar
McDonald, IA. Suture of the cervix for inevitable miscarriage. J Obstet Gynaecol Br Emp 1957; 64: 346–50.CrossRefGoogle ScholarPubMed
Birmingham Clinical Trials Unit. Cerclage Suture Type for an Insufficient Cervix and its effect on Health (C-STICH). (accessed March 2017).Google Scholar
Shirodkar, VN. A new method of operative treatment for habitual abortions in the second trimester of pregnancy. Antiseptic 1955; 52: 299300.Google Scholar
Benson, RC, Durfee, RB. Transabdominal cervico-uterine cerclage during pregnancy for the treatment of cervical incompetency. Obstet Gynecol Clin North Am 1965; 25: 145–55.Google ScholarPubMed
Umstad, MP, Quinn, MA, Ades, A. Transabdominal cervical cerclage. Aust N Z J Obstet Gynaecol 2010; 50: 460–4.CrossRefGoogle ScholarPubMed
Tulandi, T, Alghanaim, N, Hakeem, G, Tan, XJ. Pre- and post-conceptional abdominal cerclage by laparoscopy or laparotomy. Minim Invasive Gynecol 2014; 21: 987.CrossRefGoogle ScholarPubMed
Burger, NB, Einarsson, JI, Brölmann, HA, Vree, FE, McElrath, TF, Huirne, JA. Preconceptional laparoscopic abdominal cerclage: a multicenter cohort study. Am J Obstet Gynecol 2012; 207: 273.e1.CrossRefGoogle ScholarPubMed
Burger, NB, Brölmann, HA, Einarsson, JI, Langebrekke, A, Huirne, JA. Effectiveness of abdominal cerclage placed via laparotomy or laparoscopy: systematic review. J Minim Invasive Gynecol 2011; 18: 696704.CrossRefGoogle ScholarPubMed
Althuisius, S, Dekker, G, Hummel, P, et al. Cervical Incompetence Prevention Randomized Cerclage Trial (CIPRACT): effect of therapeutic cerclage with bed rest vs. bed rest only on cervical length. Ultrasound Obstet Gynecol 2002; 20: 163–7.CrossRefGoogle ScholarPubMed
Noori, M, Helmig, RB, Hein, M, Steer, PJ. Could a cervical occlusion suture be effective at improving perinatal outcome? BJOG 2007; 114: 532–6.CrossRefGoogle ScholarPubMed
Khan, KS, Hills, R. Can we trust the results of trials that are stopped early? BJOG 2006; 113: 766–8.CrossRefGoogle ScholarPubMed
Wahabi, HA, Alzeidan, RA, Bawazeer, GA, Alansari, LA, Esmaeil, SA. Preconception care for diabetic women for improving maternal and fetal outcomes: a systematic review and meta-analysis. BMC Pregnancy Childbirth 2010; 10: 63.CrossRefGoogle ScholarPubMed
Abbassi-Ghanavati, M. Thyroid autoantibodies and pregnancy outcomes. Clin Obstet Gynecol 2011; 54: 499505.CrossRefGoogle ScholarPubMed
Negro, R, Schwartz, A, Gismondi, R, et al. Universal screening versus case finding for detection and treatment of thyroid hormonal dysfunction during pregnancy. J Clin Endocrinol Metab 2010; 95: 1699–707.CrossRefGoogle ScholarPubMed
Garber, JR, Cobin, RH, Gharib, H, et al. Clinical practice guidelines for hypothyroidism in adults: co-sponsored by American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr Pract 2012; 18: 9881028.CrossRefGoogle Scholar
Vissenberg, R, van den Boogaard, E, van Wely, M, et al. Treatment of thyroid disorders before conception and in early pregnancy: a systematic review. Hum Reprod Update 2012; 18: 360–73.CrossRefGoogle ScholarPubMed
Sieiro Netto, L, Medina Coeli, C, Micmacher, E, et al. Influence of thyroid autoimmunity and maternal age on the risk of miscarriage. Am J Reprod Immunol 2004; 52: 312–16.CrossRefGoogle ScholarPubMed
Dal Lago, A, Vaquero, E, Pasqualetti, P, et al. Prediction of early pregnancy maternal thyroid impairment in women affected with unexplained recurrent miscarriage. Hum Reprod 2011; 26: 1324–30.CrossRefGoogle ScholarPubMed
Milewicz, T, Spałkowska, M, Wasyl, B, et al. [The role of thyroid antibodies in the pathogenesis of the infertility and miscarriage]. Przegl Lek 2011; 68: 284–6.Google ScholarPubMed
Thangaratinam, S, Tan, A, Knox, E, et al. Association between thyroid autoantibodies and miscarriage and preterm birth: meta-analysis of evidence. BMJ 2011; 342: d2616.CrossRefGoogle ScholarPubMed
Liu, H, Shan, Z, Li, C, et al. Maternal subclinical hypothyroidism, thyroid autoimmunity, and the risk of miscarriage: a prospective cohort study. Thyroid 2014; 24: 1642–9.CrossRefGoogle ScholarPubMed
Gallot, V, Nedellec, S, Capmas, P, et al. [Early recurrent miscarriage: evaluation and management.]. J Gynecol Obstet Biol Reprod (Paris) 2014; 43: 812–41.Google ScholarPubMed
Dhillon-Smith, RK, Middleton, LJ, Sunner, KK, et al. Levothyroxine in women with thyroid peroxidase antibodies before conception. N Engl J Med 2019; 380 (14): 1316–25. Scholar
Xiao, J, Chen, S, Zhang, C, Chang, S. The effectiveness of metformin ovulation induction treatment in patients with PCOS: a systematic review and meta-analysis. Gynecol Endocrinol 2012; 28: 956–60.CrossRefGoogle ScholarPubMed
Nardo, LG, El-Toukhy, T, Stewart, J, Balen, AH, Potdar, N. British Fertility Society Policy and Practice Committee: adjuvants in IVF: evidence for good clinical practice. Hum Fertil (Camb) 2015; 18: 215.CrossRefGoogle Scholar
Palomba, S, Falbo, A, Orio, F, Zullo, F. Effect of preconceptional metformin on abortion risk in polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril 2009; 92: 1646–58.CrossRefGoogle ScholarPubMed
Jakubowicz, DJ, Iuorno, MJ, Jakubowicz, S, Roberts, KA, Nestler, JE. Effects of metformin on early pregnancy loss in the polycystic ovary syndrome. J Clin Endocrinol Metab 2002; 87: 524–9.CrossRefGoogle ScholarPubMed
Nawroth, F. Hyperprolactinaemia and the regular menstrual cycle in asymptomatic women: should it be treated during therapy for infertility? Reprod Biomed Online 2005; 11: 581–8.CrossRefGoogle ScholarPubMed
Souter, I, Baltagi, LM, Toth, TL, Petrozza, JC. Prevalence of hyperprolactinemia and abnormal magnetic resonance imaging findings in a population with infertility. Fertil Steril 2010; 94: 1159–62.CrossRefGoogle Scholar
Raghupathy, R, Al-Mutawa, E, Al-Azemi, M, et al. Progesterone-induced blocking factor (PIBF) modulates cytokine production by lymphocytes from women with recurrent miscarriage or preterm delivery. J Reprod Immunol 2009; 80: 91–9.CrossRefGoogle ScholarPubMed
Oates-Whitehead, RM, Haas, DM, Carrier, JA. Progestogen for preventing miscarriage. Cochrane Database Syst Rev 2003; (4): CD003511.CrossRefGoogle Scholar
Szekeres-Bartho, J, Balasch, J. Progestagen therapy for recurrent miscarriage. Hum Reprod Update 2008; 14: 2735.CrossRefGoogle ScholarPubMed
Coomarasamy, A, Truchanowicz, EG, Rai, R. Does first trimester progesterone prophylaxis increase the live birth rate in women with unexplained recurrent miscarriages? BMJ 2011; 18: 342.d1914.Google Scholar
Conde-Agudelo, A, Romero, R, Nicolaides, K, et al. Vaginal progesterone vs. cervical cerclage for the prevention of preterm birth in women with a sonographic short cervix, previous preterm birth, and singleton gestation: a systematic review and indirect comparison metaanalysis. Am J Obstet Gynecol 2013; 208: 42.e142.e18.CrossRefGoogle ScholarPubMed
Carp, H. A systematic review of dydrogesterone for the treatment of recurrent miscarriage. Gynecol Endocrinol 2015; 31: 422–30.CrossRefGoogle ScholarPubMed
El-Zibdeh, MY. Dydrogesterone in the reduction of recurrent spontaneous abortion. J Steroid Biochem Mol Biol 2005; 97: 431–4.CrossRefGoogle ScholarPubMed
Kumar, A, Begum, N, Prasad, S, Aggarwal, S, Sharma, S. Oral dydrogesterone treatment during early pregnancy to prevent recurrent pregnancy loss and its role in modulation of cytokine production: a double-blind, randomized, parallel, placebo-controlled trial. Fertil Steril 2014; 102: 1357–63CrossRefGoogle ScholarPubMed
Freedman, RS, Berry, A. Progesterone deficiency in pregnancy. S Afr J Obstet Gynaecol 1970; 46: 72–6.Google Scholar
Coomarasamy, A, Williams, H, Truchanowicz, E, et al. A randomized trial of progesterone in women with recurrent miscarriages. N Engl J Med 2015; 373: 2141–8. doi: 10.1056/NEJMoa1504927.CrossRefGoogle ScholarPubMed
Saccone, G, Schoen, C, Franasiak, JM, Scott, RT, Berghella, V. Supplementation with progestogens in the first trimester of pregnancy to prevent miscarriage in women with unexplained recurrent miscarriage: a systematic review and meta-analysis of randomized, controlled trials. Fertil Steril 2017; 107: 430–8.CrossRefGoogle ScholarPubMed
Coomarasamy, A, Devall, AJ, Cheed, V, et al. A randomized trial of progesterone in women with bleeding in early pregnancy. N Engl J Med 2019; 380: 1815–24. ScholarPubMed
Coomarasamy, A, Devall, AJ, Brosens, JJ, et al. Micronized vaginal progesterone to prevent miscarriage: a critical evaluation of randomized evidence. Am J Obstet Gynecol 2020; S0002-9378(19)32762–0. Online ahead of print. ScholarPubMed
Okeke Ogwulu, CB, Goranitis, I, Devall, AJ, et al. The cost-effectiveness of progesterone in preventing miscarriages in women with early pregnancy bleeding: an economic evaluation based on the PRISM trial. BJOG 2020; 127: 757–67. ScholarPubMed
Newbatt, E, Beckles, Z, Ullman, R, Lumsden, MA; Guideline Development Group. Ectopic pregnancy and miscarriage: summary of NICE guidance. BMJ 2012; 345: e8136. Scholar
Peterson, CM. Progestogens, progesterone antagonists, progesterone, and androgens: synthesis, classification, and uses. Clin Obstet Gynecol 1995; 38: 813–20.Google Scholar
Romero, R, Stanczyk, FZ. Progesterone is not the same as 17a-hydroxyprogesterone caproate: implications for obstetrical practice. Am J Obstet Gynecol 2013; 208: 421–6. ScholarPubMed
Harrison, RF. Human chorionic gonadotrophin (hCG) in the management of recurrent abortion; results of a multi-centre placebo-controlled study. Eur J Obstet Gynecol Reprod Biol 1992; 47: 175–9.CrossRefGoogle ScholarPubMed
Quenby, S, Farquharson, RG. Human chorionic gonadotropin supplementation in recurring pregnancy loss: a controlled trial. Fertil Steril 1994; 62: 708–10.CrossRefGoogle ScholarPubMed
Wilkowska-Trojniel, M, Zdrodowska-Stefanow, B, Ostaszewska-Puchalska, I, et al. The influence of Chlamydia trachomatis infection on spontaneous abortions. Adv Med Sci 2009; 54: 8690.CrossRefGoogle Scholar
Akande, V, Turner, C, Horner, P, et al. Impact of Chlamydia trachomatis in the reproductive setting: British Fertility Society Guidelines for practice. Hum Fertil (Camb) 2010; 13: 115–25.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. Sexually Transmitted Diseases Treatment Guidelines, 2010. ScholarPubMed
Howie, SE, Horner, PJ, Horne, AW. Chlamydia trachomatis infection during pregnancy: known unknowns. Discov Med 2011; 12: 5764.CrossRefGoogle ScholarPubMed
Ugwumadu, A, Manyonda, I, Reid, F, Hay, P. Effect of early oral clindamycin on late miscarriage and preterm delivery in asymptomatic women with abnormal vaginal flora and bacterial vaginosis: a randomised controlled trial. Lancet 2003; 361: 983–8.CrossRefGoogle ScholarPubMed
Lamont, RF, Taylor-Robinson, D. The role of bacterial vaginosis, aerobic vaginitis, abnormal vaginal flora and the risk of