Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-md8df Total loading time: 0.298 Render date: 2021-11-28T02:28:38.742Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

9 - Mobility and handover management

Published online by Cambridge University Press:  05 June 2013

Huaxia Chen
Affiliation:
Shanghai Institute of Microsystem and Information Technology
Shengyao Jin
Affiliation:
Shanghai Research Center for Wireless Communications
Honglin Hu
Affiliation:
Shanghai Institute of Microsystem and Information Technology
Yang Yang
Affiliation:
Shanghai Institute of Microsystem and Information Technology
David López-Pérez
Affiliation:
Ireland
Ismail Güvenç
Affiliation:
Florida International University
Xiaoli Chu
Affiliation:
University of Sheffield
Xiaoli Chu
Affiliation:
University of Sheffield
David Lopez-Perez
Affiliation:
Bell Labs, Alcatel-Lucent
Yang Yang
Affiliation:
Shanghai Institute of Microsystem and Information Technology
Fredrik Gunnarsson
Affiliation:
Ericsson Research, Linköping, Sweden
Get access

Summary

Introduction

Compared with current cellular networks, next generation mobile networks are expected to encompass more sophisticated features, including the support of higher data transmission rates and user equipment (UE) mobility, location management, diversified service levels, etc. In order to accommodate these requirements, the 3rd Generation Partnership Project (3GPP) is devoted to the standardization of Long Term Evolution (LTE) and LTE-Advanced systems, which have been recognized as major candidates for the fourth-generation (4G) mobile networks. In LTE/LTE-Advanced systems, the network structure will be heterogeneous. How to maintain and improve mobility, handover (HO), and location management, while avoiding user experience deterioration, is a challenging task. In this chapter, we will study the mobility management challenge and illustrate advanced mobility management schemes.

In LTE/LTE-Advanced systems, the factors that make mobility, HO, and location management a challenging task are as follows

  • The rapid evolution of cellular networks results in the coexistence of multiple radio access technologies (RATs), e.g., Global System for Mobile Communications (GSM), Universal Mobile Telecommunication System (UMTS) and LTE/System Architecture Evolution (SAE). This demands optimized cooperation among multiple RATs to enable UEs to roam from one RAT to another.

  • The introduction of low-power nodes (LPNs) largely increases the total number of base stations (BSs), making the network structure and interference conditions more intricate. Thus, traditional mobility load balancing (MLB) and mobility management schemes need to be revisited to suit the new heterogeneous cellular network (HCN) architecture.

  • The complexity of LTE/LTE-Advanced systems leads to a large number of network parameters. Therefore, efforts need to be made in defining proper key performance indicators and developing optimization techniques for mobility management in various scenarios.

Type
Chapter
Information
Heterogeneous Cellular Networks
Theory, Simulation and Deployment
, pp. 245 - 283
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
1
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×