Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-5k9ck Total loading time: 0.809 Render date: 2022-06-28T01:27:50.603Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

12 - Post partum hemorrhage: Prevention, diagnosis, and management

Published online by Cambridge University Press:  01 February 2010

William F. Baker Jr., M.D., F.A.C.P.
Affiliation:
Associate Clinical Professor of Medicine Center for Health Sciences, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA, Thrombosis, Hemostasis and Special Hematology, Clinic, Kern Medical Center, Bakersfield, California
Joseph Mansour M.D.
Affiliation:
Associate Professor Department of Obstetrics and Gynecology, Kern Medical Center, Bakersfield, California, USA
Arthur Fontaine M.D.
Affiliation:
Chairman of Radiology, Mercy Hospital, Bakersfield, California, USA
Rodger L. Bick
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Eugene P. Frenkel
Affiliation:
University of Texas Southwestern Medical Center, Dallas
William F. Baker
Affiliation:
University of California, Los Angeles
Ravi Sarode
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Introduction

Although childbirth is a wonderful and enjoyable experience by most, it still is an anatomically traumatic event, associated with tissue injury, vascular disruption and the potential for blood loss. All deliveries are accompanied by physiologic hemorrhage from the genital tract, and the abdominal soft tissue in cesarean section (Table 12.1). Post partum hemorrhage (PPH) is an obstetrical complication, which can transform a normal physiologic process of labor and delivery into a life-threatening emergency within minutes. A routine cesarean section can be complicated by massive hemorrhage. The healthy mother may quickly become a patient in the critical care unit, requiring all of the available skill and resources of physicians, nurses, the medical laboratory and the blood bank for survival. A thorough knowledge of the risk factors, preventive strategies, approach to diagnosis and management of PPH are required to properly care for women presenting for delivery. Once PPH is diagnosed, hospital facilities and/or referral centers, laboratories and blood banks must be readily available to provide the optimal chance for a successful outcome. The availability of blood replacement and modern critical care are major determinants of survival in women who develop post partum hemorrhagic shock. Mortality from PPH is strongly correlated with substandard care. Clearly, it is the problem of PPH that most vividly illustrates the difference, worldwide, between management of the puerperium in developed countries from that in underdeveloped countries.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

The Department of Health. Why Mothers Die. Report on confidential enquiries into maternal deaths in the United Kingdom 1994/96. London: HMSO; 1998.
Etuk, S. J., Asuquo, E. E.Effects of community and health facility interventions on postpartum hemorrhage. Int. J. Gynaecol. Obstet., 2000; 70(3): 381–3.CrossRefGoogle ScholarPubMed
WHO. Preventing Maternal Deaths. Geneva: WHO; 1989.
Abou, Zahr C. R. E.Maternal Mortality: A Global Factbook. Geneva: World Health Organization; 1991.Google Scholar
Mousa, H. A., Walkinshaw, S.Major postpartum haemorrhage. Curr. Opin. Obstet. Gynecol., 2001; 13(6): 595–603.CrossRefGoogle ScholarPubMed
Kraunitz, A., Hughs, J., Grimes, D., et al. Causes of maternal mortality in the United States. Obstet. Gynecol., 1985; 65: 605–12.Google Scholar
Chichakli, L. O., Atrash, H. K., MacKay, A. P., et al. Pregnancy-related mortality in the United States due to hemorrhage: 1979–1992. Obstet. Gynecol., 1999; 94(5 Pt 1): 721–5.Google ScholarPubMed
Combs, C. A., Murphy, E. L., Laros, R. K. JrFactors associated with postpartum hemorrhage with vaginal birth. Obstet. Gynecol., 1991; 77: 69–76.Google ScholarPubMed
Combs, C. A., Murphy, E. L., Laros, R. K. JrFactors associated with hemorrhage in cesarean deliveries. Obstet. Gynecol., 1991; 77: 77–82.Google ScholarPubMed
Pahlavan, P., Nezhat, C.Hemorrhage in obstetrics and gynecology. Curr. Opin. Obstet. Gynecol., 2001; 13(4): 419–24.CrossRefGoogle ScholarPubMed
Prendiville, W., Elbourne, D., Chalmers, I.The effects of routine oxytocic administration in the management of the third stage of labour: an overview of the evidence from controlled trials. Br. J. Obstet. Gynaecol., 1988; 95: 3–16.CrossRefGoogle ScholarPubMed
Prendiville, W., Harding, J. E., Elbourne, D., et al. The Bristol third stage trial: active versus physiological management of third stage of labour. BMJ, 1988; 297: 1295–300.CrossRefGoogle ScholarPubMed
Etuk, S. J., Itam, I. H., Asuquo, E. E.Morbidity and mortality in booked women who deliver outside orthodox health facilities in Calabar, Nigeria. Acta Trop., 2000; 75(3): 309–13.CrossRefGoogle ScholarPubMed
Bonnar, J.Massive obstetric haemorrhage. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol., 2000; 14(1): 1–18.CrossRefGoogle ScholarPubMed
Gerstenfeld, T. S., Wing, D. A.Rectal misoprostol versus intravenous oxytocin for the prevention of postpartum hemorrhage after vaginal delivery. Am. J. Obstet. Gynecol., 2001; 185(4): 878–82.CrossRefGoogle ScholarPubMed
WHO. The Prevention and Management of Post Partum Haemorrhage. Report of a technical working group. Geneva: WHO; 1990.
Higgins, S.Obstetric haemorrhage. Emerg. Med., (Fremantle), 2003; 15(3): 227–31.CrossRefGoogle ScholarPubMed
Pritchard, J. A., Baldwin, R. M., Dickey, J. C., et al. Blood volume changes in pregnancy and the puerperium. II. Red blood cell loss and changes in apparent blood volume during and following vaginal delivery, cesarean section, and cesarean section plus total hysterectomy. Obstet. Gynecol., 1962; 84: 1271–82.Google Scholar
El-Refaey, H., Rodeck, C.Post-partum haemorrhage: definitions, medical and surgical management. A time for change. Br. Med. Bull., 2003; 67: 205–17.CrossRefGoogle Scholar
McCormick, M. L., Sanghvi, H. C., Kinzie, B., et al. Preventing postpartum hemorrhage in low-resource settings. Int. J. Gynaecol. Obstet., 2002; 77(3): 267–75.CrossRefGoogle ScholarPubMed
Sharma, S., El-Refaey, H.Prostaglandins in the prevention and management of postpartum haemorrhage. Best Pract. Res. Clin. Obstet. Gynaecol., 2003; 17(5): 811–23.CrossRefGoogle ScholarPubMed
Waterstone, M., Bewley, S., Wolfe, C.Incidence and predictors of severe obstetric morbidity: case-control study. BMJ, 2001; 322(7294): 1089–93; discussion, 93–4.CrossRefGoogle ScholarPubMed
Rangel-Frausto, M. S., Pittet, D., Costignan, M., et al. The natural history of the systemic inflammatory response syndrome (SIRS). JAMA, 1995; 273: 117–23.CrossRefGoogle Scholar
Bone, R. S.Toward a theory of the systemic inflammatory response syndrome: What we do and do not know about cytokine regulation. Crit. Care Med., 1996; 24: 163–72.CrossRefGoogle Scholar
Shyu, K. G., Chang, H., Linn, C. C., et al. Concentrations of serum interleukin-8 after successful cardiopulmonary resuscitation in patients with cardiopulmonary arrest. Am. Heart. J., 1997; 134: 551–6.CrossRefGoogle ScholarPubMed
Geppert, A., Zorn, G., Karth, G. D., et al. Soluble selectins and the systemic inflammatory response syndrome after successful cardiopulmonary resuscitation. Crit. Care Med., 2000; 28: 2360–5.CrossRefGoogle ScholarPubMed
Levi, M., Jonge, E., Poll, T., et al. Disseminated intravascular coagulation. Semin. Thromb. Hemost., 1999; 82: 695–705.Google ScholarPubMed
Gando, S.Disseminated intravascular coagulation in trauma patients. Semin. Thromb. Hemost., 2001; 27(6): 585–92.CrossRefGoogle ScholarPubMed
Mammen, E. F., Anderson, G. F., Barnard, M. I.Disseminated intravascular coagulation in man. Thromb. Diath. Haemorrh., 1969; 36(Suppl.): 171–6.Google Scholar
Garcia-Fernandez, N., Montes, R., Purroy, A., et al. Hemostatic disturbances with systemic inflammatory response syndrome (SIRS) and associated acute renal failure (ARF). Thromb. Res., 2000; 100: 19–25.CrossRefGoogle Scholar
Roumen, R. M., Hendricks, T., et al. Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Ann. Surg., 1993; 218: 769–76.CrossRefGoogle ScholarPubMed
Schrager, S., Sabo, L.Sheehan syndrome: a rare complication of postpartum hemorrhage. J. Am. Board Fam. Pract., 2001; 14(5): 389–91.Google ScholarPubMed
Karpati, P. C., Rossignol, M., Pirot, M., et al. High incidence of myocardial ischemia during postpartum hemorrhage. Anesthesiology 2004; 100(1): 30–6; discussion, 5 A.CrossRefGoogle ScholarPubMed
Levi, M., ten Cate, H.Disseminated intravascular coagulation. N. Engl. J. Med., 1999; 341: 586–92.CrossRefGoogle ScholarPubMed
Gynecologists ACoOa. Hemorrhagic shock. Int. J. Gynaecol. Obstet., 1997; 57: 219–26.
Phillips, T. F., Soulier, G., Wilson, R. F.Outcome of massive transfusion exceeding two blood volumes in trauma and emergency surgery. J. Tramua, 1987; 27: 903–10.CrossRefGoogle ScholarPubMed
Smith, H. O., Romero, A. Shock in the gynecologic patient. In Rock, J. A., Jones, H. W. III, eds., Te Linde's Operative Gynecology. Philadelphia, PA: Lippincott, Williams and Wilkins; 2003: pp. 209–32.Google Scholar
Gando, S., Satoshi, N., Osamu, K.Disseminated intravascular coagulation and sustained systemic inflammatory response syndrome predict organ dysfunctions after trauma: Application of clinical decision analysis. Ann. Surg., 1999; 229: 1–15.CrossRefGoogle ScholarPubMed
Lipitz, S., Admon, D., Menczer, J., et al. Midtrimester bleeding: Variables which affect the outcome of pregnancy. Gynecol. Obstet. Invest., 1991; 32: 24.CrossRefGoogle ScholarPubMed
Ajayi, R. A., Soothill, P. W., Campbell, S., et al. Antenatal testing to predict outcome in pregnancies with unexpected antepartum haemorrhage. Br. J. Obstet. Gynaecol., 1992; 99: 122.CrossRefGoogle Scholar
Cunningham, F. C., Gant, N. F., Leveno, K. J., eds. Williams Obstetrics. 21st edn. New York, NY: McGraw-Hill; 2001.Google Scholar
Farine, D., Fox, H. E., Jackobson, S., et al. Vaginal ultrasound for diagnosis of placenta previa. Am. J. Obstet. Gynecol., 1988; 159: 566.CrossRefGoogle ScholarPubMed
Hertzberg, B. S., Bowie, J. D., Carroll, B. A., et al. Diagnosis of placenta previa during the third trimester: Role of transperineal sonography. Am. J. Roentgenol., 1992; 159: 83.CrossRefGoogle ScholarPubMed
Smith, R. S., Lauria, M. R., Comstock, C. H., et al. Transvaginal ultrasonography for all placentas that appear to be low-lying or over the internal cervical os. Ultrasound Obstet. Gynecol., 1997; 9: 22.CrossRefGoogle ScholarPubMed
Wald, D. A.Postpartum hemorrhage resulting from uterine artery pseudoaneurysm. J. Emerg. Med., 2003; 25(1): 57–60.CrossRefGoogle ScholarPubMed
Davidsen, M. B., Madsen, P. V., Wilken-Jensen, C.True aneurysm of the uterine artery. Eur. J. Surg., 1995; 161: 775–6.Google ScholarPubMed
Clark, S. L., Koomings, P. P., Phelan, J. P.Placenta previa/accreta and previous cesarean section. Obstet. Gynecol., 1985; 66: 89–92.Google Scholar
Chesley, L. C.Plasma and red cell volumes during pregnancy. Am. J. Obstet. Gynecol., 1972; 112: 440–50.CrossRefGoogle ScholarPubMed
Dildy, G. A., 3rd. Postpartum hemorrhage: new management options. Clin. Obstet. Gynecol., 2002; 45(2): 330–44.CrossRefGoogle ScholarPubMed
Bletka, M., Hlavaty, V., Trnkova, M., et al. Volume of whole blood and absolute amount of serum proteins in the early stage of late toxemia of pregnancy. Am. J. Obstet. Gynecol., 1970; 106: 10–13.Google Scholar
Nizzi, F., Mues, G.Hemorrhagic problems in obstetrics, exclusive of disseminated intravascular coagulation. Hem./Onc. Clinics North Am., 2000; 14: 1171–82.CrossRefGoogle ScholarPubMed
Khan, R., Sharma, S.Use of misoprostol in third stage of labour. Lancet, 2002; 359(9307): 708–9; author reply, 9–10.CrossRefGoogle ScholarPubMed
Kadir, R. A., Economides, D. L., Sabin, C., et al. Frequency of inherited bleeding disorders in women with menorrhagia. Lancet, 1998; 351: 485–9.CrossRefGoogle ScholarPubMed
Schuurmans, N., Mac Kinnon, C., Lane, C., et al. Prevention and management of postpartum haemorrhage. J. Soc. Obstet. Gynaecol. Can., 2000; 22: 271–81.Google Scholar
Thomas, J. M.The treatment of obstetric haemorrhage in women who refuse blood transfusion. Ltr. Br. J. Obstet. Gynaecol., 1998; 105: 127–8.CrossRefGoogle ScholarPubMed
Baker, W. F. JrIron deficiency in pregnancy, obstetrics and gynecology. Hem./Onc. Clinics North Am., 2000; 14: 1061–77.CrossRefGoogle Scholar
Deering, S. H., Landy, H. J., Tchado, N., et al. Hypodysfibrinogenemia during pregnancy, labor, and delivery. Obstet. Gynecol., 2003; 101: 1092–4.Google Scholar
Roque, H., Stephenson, M., Lee, M. J., et al. Pregnancy-related thrombosis in a woman with congenital afibrinogenemia: a report of two successful pregnancies. Am. J. Hematol., 2004; 76: 267–70.CrossRefGoogle Scholar
Nizzi, F., Sapatnekar, S., Bick, R. L. Hereditary coagulation protein defects. In Bick, R. L., ed. Disorders of Thrombosis and Hemostasis: Clinical and Laboratory Practice. Third edn. Philadelphia, PA: Lippincott, Williams and Wilkins; 2002: pp. 117–37.Google Scholar
Kobayashi, T., Kanayama, N., Tokunaga, N., et al. Prenatal and peripartum management of congenital afibrinogenemia. Br. J. Haematol., 2000; 109: 364–6.CrossRefGoogle Scholar
Parameswaran, R., Dickinson, J., DeLord, S., et al. Spontaneous intracranial bleeding in two patients with congenital afibrinogenaemia and the role of replacement therapy. Haemophilia, 2000; 6: 705–8.CrossRefGoogle ScholarPubMed
Schroeder, M. L. Principles and practice of transfusion medicine. In Lee, G. R., Foerster, J., Lukens, J., et al. eds., Wintrobe's Clinical Hematology. 10th edn. Baltimore: Lippincott, Williams and Wilkins; 1999: pp. 817–74.Google Scholar
Roberts, H. R., White, G. C. Inherited disorders of prothrombin conversion. In Colman, R. W., Hirsh, J., Marder, V. I., et al. eds., Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia, PA: Lippincott, Williams and Wilkins; 2001: pp. 839–53.Google Scholar
Rodgers, G. M., Greenberg, G. S. Inherited coagulation disorders. In Lee, G. R., Foerster, J., Lukens, J., et al. eds. Wintrobe's Clinical Hematology. Baltimore, MD: Lippincott, Williams and Wilkins; 1999: p. 1682.Google Scholar
Rogers, G. M., Greenberg, C. S. Inherited coagulation disorders. In Lee, G. R., Foerster, J., Paraskevas, F., et al. eds. Wintrobe's Clinical Hematology. Baltimore, MD: Lippincott, Williams and Wilkins; 1999: pp. 1682–732.Google Scholar
Bick, R. L. Platelet-function defects. In Bick, R. L., ed., Disorders of Thrombosis and Hemostasis: Clinical and Laboratory Practice. Philadelphia, PA: Lippincott, Williams and Wilkins; 2002: pp. 59–90.Google Scholar
Eskandari, N., Feldman, N., Greenspoon, J. S.Factor VII deficiency in pregnancy treated with recombinant factor VIIa. Obstet. Gynecol., 2002; 99: 935–7.Google ScholarPubMed
Fadel, H. E., Krauss, J. S.Factor VII deficiency and pregnancy. Obstet. Gynecol., 1989; 73: 453–4.Google Scholar
Bauer, K.Treatment of factor VIIa deficiency with recombinant factor VII. Haemostasis, 1996; 26(Suppl. 1): 155–8.Google Scholar
Jimenez-Yuste, V., Villar, A., Morado, M., et al. Continuous infusion of recombinant activated factor VII during cesarean section delivery in a patient with congenital factor VII deficiency. Haemophilia, 2000; 6: 588–90.CrossRefGoogle Scholar
Arun, B, Kessler, C. M. Clinical manifestations and therapy of the hemophilias. In Colman, R. W., Hirsh, J., Marder, V. I., et al. eds., Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia, PA: Lippincott Williams and Wilkins; 2001: pp. 815–24.Google Scholar
Hay, C. R., Negrier, C., Ludlam, C. A.The treatment of bleeding in acquired hemophilia with recombinant factor VIIa: a multicentre study. Thromb. Haemost., 1997; 78: 1463–7.Google ScholarPubMed
Green, D., Lechner, K.A survey of 215 nonhemophilic patients with inhibitors to factor VIII. Thromb. Haemost., 1981; 45: 200.Google Scholar
Michiels, J. J.Acquired hemophilia A in women postpartum: clinical manifestations, diagnosis and treatment. Clin. Appl. Thromb. Hemost., 2000; 6: 82–6.CrossRefGoogle ScholarPubMed
Dhar, P., Abramovitz, S., DiMichele, D. M., et al. Management of pregnancy in a patient with severe hemophilia A. Br. J. Anaesth., 2003; 91: 432–5.CrossRefGoogle Scholar
DiMichele, D. M., Green, D. Hemophilia-factor VIII deficiency. In Locscalzo, J., Schafer, A. I., eds., Thrombosis and Hemorrhage. Baltimore, MD: Williams and Wilkins; 1998: pp. 757–72.Google Scholar
Pejsa, V., Grgurevic, I., Kusec, R., et al. Rapid decrease in high titer of factor VIII inhibitors upon immunosuppressive treatment in severe postpartum acquired hemophilia. Croat. Med. J., 2004; 45: 213–16.Google ScholarPubMed
Bockenstedt, P. L. Laboratory methods in hemostasis. In Loscalzo, J., Schafer, A. I., eds., Thrombosis and Hemorrhage. Baltimore: Williams and Wilkins; 1998: pp. 517–80.Google Scholar
Grosset, A. B., Rodgers, G. Acquired coagulation disorders. In , J. W. P, ed., Wintrobe's Clinical Hematology. Baltimore, MD; 1999: pp. 1733–80.Google Scholar
Pineda, A. A. Indications for hemapheresis procedures in hematologic disorders. In Bick, R. L., ed., Hematology: Clinical and Laboratory Practice. St. Louis,; 1993: 1681–9.Google Scholar
Arkel, Y. S., Ku, D. W. Acquired blood coagulation inhibitors. In Bick, R. L., ed., Disorders of Thrombosis and Hemostasis: Clinical and Laboratory Practice. 3rd edn. Philadelphia, PA: Lippincott, Williams and Wilkins; 2002: pp. 213–49.Google Scholar
Greenberg, C. S., Orthner, C. Blood coagulation and fibrinolysis. In Pine, J. W., ed., Wintrobe's Clinical Hematology. Baltimore, MD: LWW; 1999: pp. 684–764.Google Scholar
Roberts, N. S., Bingham, M. D. Other coagulation factor deficiencies. In Loscalzo, J., Schafer, A. I., eds., Thrombosis and Hemorrhage. Baltimore, MD: Williams and Wilkins; 1998: 773–802.Google Scholar
Ozsoylu, S., Ozer, F. L.Acquired factor IX deficiency. Acta Haematol., 1973; 50: 305–14.CrossRefGoogle ScholarPubMed
Green, D. Factor VIII and other coagulation factor inhibitors. In Loscalzo, J., Schafer, A. I., eds., Thrombosis and Hemorrhage. Baltimore, MD: Williams and Wilkins; 1998: pp. 803–15.Google Scholar
Romagnolo, C., Burati, S., Ciaffoni, S., et al. Severe factor X deficiency in pregnancy: case report and review of the literature. Haemophilia, 2004; 10: 665–8.CrossRefGoogle ScholarPubMed
David, A. L., Paterson-Brown, S., Letsky, E. A.Factor XI deficiency presenting in pregnancy: diagnosis and management. Br. J. Obstet. Gynaecol., 2002; 109(7): 840–3.CrossRefGoogle ScholarPubMed
Loewy, A. G., McDonagh, J., Mikkola, H., et al. Structure and function of factor XIII. In Colman, R. W., Hirsh, J., Marder, V. I., et al. eds., Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia, PA: Lippincott, Williams and Wilkins; 2001: pp. 233–47.Google Scholar
Nichols, W. C., Cooney, K. A., Ginsburg, D., et al. Von Willebrand disease. In Loscalzo, J., Schafer, A. I., eds., Thrombosis and Hemorrhage. Baltimore, MD: Williams and Wilkins; 1998: pp. 729–55.Google Scholar
Lak, M., Peyvandi, F., Mannucci, P. M.Clinical manifestations and complications of childbirth and replacement therapy in 385 Iranian patients with type 3 von Willebrand disease. Br. J. Haematol., 2000; 111(4): 1236–9.CrossRefGoogle ScholarPubMed
Ramsahoye, B. H., Davies, S. V., Dasani, H.Management of pregnancy and delivery in von Willebrand's disease. Blood, 1993; 82(Suppl. 1): 150.Google Scholar
Roque, H., Funai, E., Lockwood, C. J.Von Willebrand disease and pregnancy. J. Matern. Fetal Med., 2000; 9(5): 257–66.Google Scholar
Sadler, J. E., Blinder, M. Von Willebrand disease: Diagnosis, classification and treatment. In Colman, R. W., Hirsh, J., Marder, V. I., et al. eds., Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia, PA: Lippincott, Williams and Wilkins; 2001: pp. 826–37.Google Scholar
Oshiro, B. T., Branch, W. Maternal hemostasis: coagulation problems in pregnancy. In Loscalzo, J., Schafer, A. I., eds., Thrombosis and Hemorrhage. Baltimore, MD: Williams and Wilkins; 1998: pp. 1005–26.Google Scholar
Thilaganathan, B., Cutner, A., Latimer, J., et al. Management of the third stage of labor in women at low risk of postpartum hemorrhage. Eur. J. Obstet. Gynecol. Reprod. Biol., 1993; 48: 19.CrossRefGoogle Scholar
Midwives ICo, Obstetricians IFoGa. Joint Statement: Management of the third stage of labour to prevent post-partum haemorrhage. J. Midwifery Womens Health 2004; 49: 76–7.CrossRef
Prendiville, W. J., Elbourne, D., McDonald, S.Active versus expectant management in the third stage of labour. Cochrane Database Syst. Rev., 2000; 3: CD000007.CrossRefGoogle ScholarPubMed
Nordstrom, L., Fogelstam, K., Fridman, G., et al. Routine oxytocin in the third stage of labour: a placebo controlled randomised trial. Br. J. Obstet. Gynaecol., 1997; 104: 781–6.CrossRefGoogle ScholarPubMed
Noort, W. A., Bulck, B., Vereecken, A., et al. Changes in plasma levels of PGF2 alpha and PGI2 metabolites at and after delivery at term. Obstet. Gynecol., 1989; 37: 3–12.Google ScholarPubMed
Thornton, S., Davison, J. M., Baylis, P. H.Plasma oxytocin during third stage of labour: comparison of natural and active management. BMJ, 1988; 297: 167–9.CrossRefGoogle ScholarPubMed
Jackson, K. W. Jr., Allbert, J. R., Schemmer, G. K., et al. A randomized controlled trial comparing oxytocin administration before and after placental delivery in the prevention of postpartum hemorrhage. Am. J. Obstet. Gynecol., 2001; 185(4): 873–7.CrossRefGoogle ScholarPubMed
Hendricks, C. H., Brenner, W. E.Cardiovascular effects of oxytocic drugs used post partum. Am. J. Obstet. Gynecol., 1970; 108: 751.CrossRefGoogle ScholarPubMed
Choy, C. M., Lau, W. C., Tam, W. H., et al. A randomised controlled trial of intramuscular syntometrine and intravenous oxytocin in the management of the third stage of labour. Br. J. Obstet. Gynaecol., 2002; 109(2): 173–7.CrossRefGoogle ScholarPubMed
Darney, P. D.Misoprostol: a boon to safe motherhood … or not? Lancet, 2001; 358(9283): 682–3.CrossRefGoogle Scholar
Bugalho, A., Daniel, A., Faundes, A., et al. Misoprostol for prevention of postpartum hemorrhage. Int. J. Gynaecol. Obstet., 2001; 73(1): 1–6.CrossRefGoogle ScholarPubMed
Lokugamage, A. U., Sullivan, K. R., Niculescu, I., et al. A randomized study comparing rectally administered misoprostol versus Syntometrine combined with an oxytocin infusion for the cessation of primary post partum hemorrhage. Acta Obstet. Gynecol. Scand., 2001; 80(9): 835–9.CrossRefGoogle ScholarPubMed
Gulmezoglu, A. M., Villar, J., Ngoc, N. T., et al. WHO multicentre randomised trial of misoprostol in the management of the third stage of labour. Lancet, 2001; 358(9283): 689–95.CrossRefGoogle ScholarPubMed
Goldberg, A. B., Greenberg, M. B., Darney, P. D.Misoprostol and pregnancy. N. Engl. J. Med., 2001; 344(1): 38–47.CrossRefGoogle Scholar
Dumoulin, J. G.A reappraisal of the use of ergometrine. J. Obstet. Gynaecol., 1981; 1: 178–81.CrossRefGoogle Scholar
Carey, M.Adverse cardiovascular sequelae of ergometrine. Br. J. Obstet. Gynaecol., 1981; 100: 865.CrossRefGoogle Scholar
Abdel-Aleem, H., El-Nashar, I., Abdel-Aleem, A.Management of severe postpartum hemorrhage with misoprostol. Int. J. Gynaecol. Obstet., 2001; 72(1): 75–6.CrossRefGoogle ScholarPubMed
Rolfes, D. B., Ishak, K. G.Liver disease in toxemia of pregnancy. Am. J. Gastroenterol., 1986; 81: 1138.Google ScholarPubMed
Sheikh, R. A., Yasmeen, S., Pauly, M. P., et al. Spontaneous intrahepatic hemorrhage and rupture in the HELLP syndrome: four cases and a review. J. Clin. Gastroenterol., 1999; 28: 323.CrossRefGoogle ScholarPubMed
Stain, S. C., Woodburn, D. A., Stephens, A. L., et al. Spontaneous hepatic hemorrhage associated with pregnancy. Treatment with hepatic arterial ligation. Ann. Surg., 1996; 224: 72.CrossRefGoogle Scholar
Smith, L. G., Moise, K. J. Jr, Dildy, G. A. III, et al. Spontaneous rupture of liver during pregnancy: Current therapy. Obstet. Gynecol., 1991; 77: 171.CrossRefGoogle ScholarPubMed
Davies, S.Amniotic fluid embolism: a review of the literature. Can. J. Anaesth., 2001; 48: 88–98.CrossRefGoogle ScholarPubMed
Locksmith, G. J.Amniotic flud embolism. Obstet. Gynecol. Clin. North. Am., 1999; 26: 435–44.CrossRefGoogle Scholar
Martel, M., MacKinnon, C. J., Arsenault, M., et al. Hemorrhagic shock. J. Obstet. Gynaecol. Can., 2002; 24: 504–11.Google ScholarPubMed
Smith, H. O. Shock in the gynecologic patient. In Rock, J. A., Thomson, J. D., eds., Te Linde's Operative Gynecology, 8th edn. Philadelphia, PA: Lippincott-Raven; 1997: pp. 245–61.Google Scholar
Falk, J. L., O'Brien, J. F., Kerr, R.Fluid resuscitation in traumatic hemorrhagic shock. Crit. Cre. Clin., 1992; 8: 323–40.CrossRefGoogle ScholarPubMed
Assali, N. S.Dynamics of the uteroplacental circulation in health and disease. Am. J. Perinatol., 1989; 6: 105–9.CrossRefGoogle ScholarPubMed
Marzi, I.Hemorrhagic shock: update in pathophysiology and therapy. Acta Anaesthesiol. Scand. Suppl., 1997; 111: 42–4.Google ScholarPubMed
Bick, R. L.Disseminated intravascular coagulation. Hematol. Oncol. Clin. North Am., 1992; 6(6): 1259–85.CrossRefGoogle ScholarPubMed
Davies, S.Amniotic fluid embolism and isolated disseminated intravascular coagulation. Can. J. Anaesth., 1999; 46(5 Pt 1): 456–9.CrossRefGoogle ScholarPubMed
Clark, S. L.New concepts of amniotic fluid embolism: a review. Obstet. Gynecol. Surv., 1990; 45: 360–8.CrossRefGoogle ScholarPubMed
Clark, S. L., Hankins, G. D V, Dudley, D. A., et al. Amniotic fluid embolism: analysis of the national registry. Am. J. Obstet. Gynecol., 1995; 172: 1158–69.CrossRefGoogle ScholarPubMed
Morgan, M.Amniotic fluid embolism. Anaesthesia, 1979; 34: 20–32.CrossRefGoogle ScholarPubMed
Bland, R. D., Shoemaker, W. C., Abraham, E., et al. Hemodynamic and oxygen transport patterns in surviving and nonsurviving postoperative patients. Crit. Care Med., 1985; 13: 85–95.CrossRefGoogle ScholarPubMed
Chiao, J., Minei, J. P., Shires, G. T.In vivo myocyte sodium activity and concentration during hemorrhagic shock. Am. J. Physiol., 1990; 258: R864.Google ScholarPubMed
Isbister, J. P.Physiology and pathophysiology of blood volume regulation. Transus. Sci., 1997; 18: 409–23.CrossRefGoogle ScholarPubMed
Barber, A., Shires III, G. T., Shires, G. T. Shock. In Schwartz, S. I., Shires, G. T., Spencer, F. C., et al. eds., Principles of Surgery, 7th edn. New York, NY: McGraw-Hill; 1999: p. 101.Google Scholar
Bitterman, H., Smith, B. A., Lefer, A. M.Beneficial actions of antagonism of peptide leukotrienes in hemorrhagic shock. Circ. Shock, 1988; 24: 159.Google ScholarPubMed
Hierholzer, C., Billiar, T. R.Molecular mechanisms in the early phase of hemorrhagic shock. Langenbeck's Arch. Surg., 2001; 386: 302–8.CrossRefGoogle ScholarPubMed
Afessa, B., Green, B., Delke, I., et al. Systemic inflammatory response syndrome, organ failure, and outcome in critically ill obstetric patients treated in an ICU. Chest, 2001; 120: 1271–7.CrossRefGoogle Scholar
Tamian, F., Richard, V., Bonmarchand, G., et al. Induction of hemo-oxygenase-1 prevents the systemic reponses to hemorrhagic shock. Am. J. Respir. Crit. Care Med., 2001; 164: 1933–8.CrossRefGoogle Scholar
Muckart, D. J., Bhagwanjee, S.American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference definitions of the systemic inflammatory response syndrome and allied disorders in relation to critically injured patients. Crit. Care Med., 1997; 25: 1789–95.CrossRefGoogle ScholarPubMed
Shoemaker, W. C., Peitzman, A. B., Bellamy, R., et al. Resuscitation from severe hemorrhage. Crit. Care Med., 1996; 24(2 Suppl.)(S 12–23).CrossRefGoogle ScholarPubMed
Cavanagh, D., Mardsen, D. E.Hemorrhagic shock in the gynecologic patient. Clin. Obstet. Gynecol., 1985; 28: 383.CrossRefGoogle Scholar
Shiers, G. T., Barber, A. E., Illner, H. P.Current status of resuscitation: solutions including hypertonic saline. Adv. Surg., 1995; 28: 133–70.Google Scholar
Bickell, W. H., Wall, M. J. Jr, Pepe, P. E., et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N. Engl. J. Med., 1994; 331: 1105–9.CrossRefGoogle ScholarPubMed
Schierhout, G., Roberts, I.Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomised trials. BMJ, 1998; 316: 961–4.CrossRefGoogle ScholarPubMed
Bunn, F., Lefebvre, C., Li-Wan-Po, A., et al. Human albumin solution for resuscitation and volume expansion in critically ill patients. Cochrane Database Syst. Rev., 2000; 2: CD001208.Google Scholar
Gould, S. A., Sehgal, L. R., Sehgal, H. L., et al. Hypovolemic shock. Crit. Care Clin., 1993; 9: 239–59.CrossRefGoogle ScholarPubMed
Mousa, H. A., Alfirevic, Z.Treatment for primary postpartum haemorrhage. Cochrane Database Syst. Rev., 2003; 1: CD003249.CrossRefGoogle Scholar
Lucas, C. E.Update on trauma care in Canada. 4. Resuscitation through the three phases of hemorrhagic shock after trauma. Can. J. Surg., 1990; 33: 451–6.Google ScholarPubMed
Macphail, S. F. J.Massive post-partum hemorrhage. Curr. Opin. Obstet. Gynaecol., 2001; 11: 108–14.CrossRefGoogle Scholar
Nolan, T. E., Gallup, D. G.Massive transfusion: a current review. Obstet. Gynecol. Surv., 1991; 46(5): 289–95.CrossRefGoogle ScholarPubMed
Petz, L. D.Red blood cell transfusion. Clin. Oncol., 1983; 2: 505.Google Scholar
Gynecologists ACoOa. Blood component therapy. Int. J. Gynaecol. Obstet., 1995; 48: 233–8.CrossRef
Wilson, R. F. Trauma. In Shoemaker, W. C., Thompson, W. L., Holbrook, P. R., eds., Textbook of Critical Care. Philadelphia, PA: W. B. Saunders Co.; 1984: pp. 877–914.Google Scholar
Hewitt, P. E., Machin, S. J. Massive blood transfusion. In ABC of Transfusion. London: BMJ Publishing Group; 1998: pp. 49–52.Google Scholar
Hiippala, S.Replacement of massive blood loss. Vox Sang, 1998; 74 (Suppl. 2): 399–407.CrossRefGoogle ScholarPubMed
Elder, P. T. Accidental hypothermia. In Shoemaker, W. C., Thompson, W. L., Holbrook, P. R., eds., Textbook of Critical Care. Philadelphia, PA: W. B. Saunders Co.; 1984: pp. 85–93.Google Scholar
Mahajan, W. I., Meyers, T. J., Baldini, M. G.Disseminated intravascular coagulation during rewarming following hypothermia. JAMA, 1981; 245: 2517.CrossRefGoogle ScholarPubMed
Valeri, C. R., Cassidy, G., Khuri, S., et al. Hypothermia-induced reversible platelet dysfunction. Ann. Surg., 1987; 205: 175–81.CrossRefGoogle ScholarPubMed
Luna, G. K., Maier, R. V., Pavlin, E. G., et al. Incidence and effect of hypothermia in seriously injured patietns. J. Trauma, 1987; 27: 1014–18.CrossRefGoogle Scholar
Carmichael, D., Hosty, T., Kastl, D., et al. Hypokalemia and massive transfusion. South Med. J., 1984; 77: 315–17.CrossRefGoogle ScholarPubMed
Durand, F., Duchesne-Gueguen, M., Bervet, J. Y., et al. Rheologic and cytologic study of autologous blood collected with Cell Saver 4 during cesarean. Rev. Fr. Transfus. Hemobiol., 1989; 32: 179–91.Google ScholarPubMed
Zichella, L., Gramolini, R.Autotransfusion during cesarean section. Am. J. Obstet. Gynecol., 1990; 162: 295.CrossRefGoogle ScholarPubMed
Bernstein, H. H., Rosenblatt, M. A., Gettes, M., et al. The ability of haemonetics 4 Cell Saver system to remove tissue factor from blood contaminated with amniotic fluid. Anesth. Analg., 1997; 85: 831–3.CrossRefGoogle ScholarPubMed
Rebarber, A., Lonser, R., Jackson, S., et al. The safety of intraoperative autologous blood collection and autotransfusion during cesarean section. Am. J. Obstet. Gynecol., 1998; 179 (3 Pt 1): 715–20.CrossRefGoogle ScholarPubMed
Hocker, P., Hartmann, T.Management of massive transfusion. Acta Anaesthesiol. Scand. Suppl., 1997; 111: 205–7.Google ScholarPubMed
Harigan, C., Lucas, C. E., Ledgerwood, A. M.The effect of hemorrhagic shock on the clotting cascade in injured patients. J. Trauma, 1989; 29(10): 1416–21.CrossRefGoogle Scholar
Pathologists DTFotCoA. Practice parameter for the use of fresh-frozen plasma, cryoprecipitate, and platelets: fresh frozen plasma, cryoprecipitate and platelets administraton practice guideline. JAMA, 1994; 24: 777–8.
Health NIo. Fresh frozen plasma: Indications and risks. In Consensus Development Conference; 1985: JAMA, 1985; 253: 551–3.CrossRef
Lundsgard-Hansen, P.Component therapy of surgical hemorrhage: red cell concentrates, colloids and crystalloids. Bibl. Haematol., 1980; 46: 147.Google Scholar
Brugnara, C, Churchill, H. Plasma and component therapy. In Loscalzo, J., Schafer, A. I., eds., Thrombosis and Hemorrhage. Baltimore, MD: Williams and Wilkins; 1998: pp. 1135–62.Google Scholar
Contreras, M., Ala, F. A., Greaves, M., et al. Guidelines for the use of fresh frozen plasma. British Committee for Standards in Haematology, Working Party of the Blood Transfusion Task Force. Transfus. Med., 1992; 2: 57–63.Google ScholarPubMed
Miller, R. D., Robbins, T. O., Tong, M. J., et al. Coagulation defects associated with massive blood transfusions. Ann. Surg., 1971; 174: 794–801.CrossRefGoogle ScholarPubMed
Counts, R. B., Haisch, C., Simon, T. L., et al. Hemostasis in massively transfused trauma patients. Ann. Surg., 1979; 190: 91–9.CrossRefGoogle ScholarPubMed
Ciavarella, D., Reed, R. L., Counts, R. B., et al. Clotting factor levels and the risk of diffuse microvascular bleeding in the massively transfused patient. Br. J. Haematol., 1987; 67: 365–8.CrossRefGoogle ScholarPubMed
Bick, R. L. Disseminated intravascular coagulation. In Bick, R. L., ed., Disorders of Thrombosis and Hemostasis: Clinical and Laboratory Practice, 3rd edn. Philadelphia, PA: Lippincott, Williams and Wilkins; 2002: pp. 139–64.Google Scholar
Baker, W. F. JrClinical aspects of disseminated intravascular coagulation: a clinician's point of view. Semin. Thromb. Hemost., 1988; 15: 1–57.CrossRefGoogle Scholar
Al-Mondhiry, H.Disseminated intravascular coagulation: experience in a major cancer center. Thromb. Diath. Haemorrh., 1975; 34: 181.Google Scholar
Leung, LLK. Hemorrhagic disorders. In Dale, D. C., Federman, D. D., eds., ACP Medicine. New York, NY: WebMD Inc.; 2004: 5, XIII, pp. 1–22.Google Scholar
Kushner, J. P. Normochromic normocytic anemia. In Wyngaarden, J. B., Smith, L. H., eds., Cecil Textbook of Medicine. 18th edn. Philadelphia, PA: W. B. Saunders; 1988: pp. 890–2.Google Scholar
Baker Jr, W. F. Clinical evaluation of the patient with anemia. In Bick, R. L., ed., Hematology: Clinical and Laboratory Practice. St. Louis, MD: Mosby; 1993: pp. 203–29.Google Scholar
Bunn, H. F., Federici, A. B., Serchia, G. Anemia. In Wilson, J. D., Braunwald, E., Isselbacher, K. J., et al. eds., Harrison's Principles of Internal Medicine. 12th edn. New York, NY: McGraw-Hill, Inc.; 1991: pp. 344–8.Google Scholar
Manucci, P. M., et al. Hemostasis testing during massive blood replacement. Vox Sang, 1982; 42: 113.Google Scholar
Noe, D. A., Graham, S. M., Luff, R., et al. Platelet counts during rapid massive transfusion. Transfusion, 1982; 22: 392.CrossRefGoogle ScholarPubMed
Kopec, M., Wegrzynowiczy, Z., Budzynski, A., et al. Interaction of fibrinogen degradation products with platelets. Exp. Biol. Med., 1968; 3: 73.Google Scholar
Ono, S., Mochizuki, H., Tamakuma, S.A clinical study on the significance of platelet-activating factor in the pathophysiology of septic disseminated intravascular coagulation. Am. J. Surg., 1996; 171: 409.CrossRefGoogle ScholarPubMed
Harker, L. A., Malpass, T. W., Branson, H. E., et al. Mechanism of abnormal bleeding in patients undergoing cardiopulmonary bypass: acquired transient platelet dysfunction associated with selective alpha-granule release. Blood, 1980; 56: 824.Google ScholarPubMed
Ness, P. M., Perkins, H. A.Cryoprecipitate as a reliable source of fibrinogen replacement. JAMA, 1979; 241: 1690–1.CrossRefGoogle ScholarPubMed
Bouwmeester, F. W., Jonkhoff, A. R., Verheijen, R. H., et al. Successful treatment of life-threatening postpartum hemorrhage with recombinant activated factor VII. Obstet. Gynecol., 2003; 101(6): 1174–6.Google ScholarPubMed
Boehlen, F., Morales, M. A., Fontana, P., et al. Prolonged treatment of massive postpartum haemorrhage with recombinant factor VIIa: case report and review of the literature. Br. J. Obstet. Gynaecol., 2004; 111(3): 284–7.CrossRefGoogle ScholarPubMed
Segal, S., Shemesh, I. Y., Blumenthal, R., et al. Treatment of obstetric hemorrhage with recombinant activated factor VII (rFVIIa). Arch. Gynecol. Obstet., 2003; 268(4): 266–7.CrossRefGoogle Scholar
Martinowitz, U., Luboschitz, J., Lubetsky, A., et al. New approach for the management of coagulation at the site of injury by recombinant activated factor VII (rVIIa). Blood, 2001; 98: 827–8.Google Scholar
Moscardo, F., Perez, F., Rubia, J., et al. Successful treatment of severe intra-abdominal bleeding associated with disseminated intravascular coagulation using recombinant activated factor VII. Br. J. Haematol., 2001; 114(1): 174–6.CrossRefGoogle ScholarPubMed
Daro, A. F., Gollin, H. A., Lavieri, V.Management of postpartum hemorrhage by prolonged administration of oxytocics. Am. J. Obstet. Gynecol., 1952; 64: 1163–4.CrossRefGoogle ScholarPubMed
Abdel-Aleem, H., El Nashar, I., Abdel-Aleem, A.Management of severe postpartum hemorrhage with misoprostol. Int. J. Gynaecol. Obstet., 1998; 92: 212–14.Google Scholar
Kupferminc, M. J., Gull, I., Bar-Am, A., et al. Intrauterine irrigation with prostaglandin F2-alpha for management of severe postpartum hemorrhage. Acta Obstet. Gynecol. Scand., 1998; 77: 548–50.CrossRefGoogle ScholarPubMed
Peyser, M. R., Kupferminc, M.Management of severe post partum hemorrhage by intrauterine irrigation with prostaglandin E2. Am. J. Obstet. Gynecol., 1990; 162: 694–6.CrossRefGoogle ScholarPubMed
Mousa, H. A., McKinley, C., Thong, J.Acute post-partum myocardial infarction after ergometrine administration in a woman with familial hypercholesterolemia. Br. J. Obstet. Gynaecol., 2000; 107: 939–40.CrossRefGoogle Scholar
Chen, F. G., Koh, K. F., Chong, Y. S.Cardiac arrest associated with sulprostone use during cesarean section. Anaesth. Intensive Care, 1998; 26: 298–301.Google Scholar
Feinstein, D. I., Marder, V. I., Colman, R. W. Consumptive thrombohemorrhagic disorders. In Colman, R. W., Hirsh, J., Marder, V. J., eds., Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia, PA: Lippincott, Williams and Wilkins; 2001: pp. 1197–233.Google Scholar
Hedner, U., Hirsh, J., Marder, V. J. Therapy with antifibrinolytic agents. In Colman, R. W., Hirsh, J., Marder, V. I., et al. eds., Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadeplhia, PA: Lippincott, Williams and Wilkins; 2001: pp. 797–813.Google Scholar
Scwartz, B. S., Williams, E. C., Conlan, G., et al. Epsilon-aminocaproic acid in the treatment of patients with acute promyelocytic leukemia and acquired alpha-2-plasmin inhibtior deficiency. Ann. Intern. Med., 1986; 105: 873.CrossRefGoogle Scholar
Gai, M-Y., Wu, L-F., Su, Q-F., et al. Clinical observation of blood loss reduced by tranexamic acid during and after cesarean section: a multi-center, randomized trial. Eur. J. Obstet. Gynecol. Reprod. Biol., 2000; 112: 154–7.CrossRefGoogle Scholar
Avvisati, G., ten Cate, J. W., Buller, H. R., et al. Tranexamic acid for control of hemorrhage in acute promyelocytic leukemia. Lancet, 1989; 2(8655): 122–4.CrossRefGoogle Scholar
Dunn, C. J., Goa, K. L.Tranexamic acid: a review of its use in surgery and other indications. Drugs, 1999; 57(1005).CrossRefGoogle Scholar
Peters, D. C., Noble, S.Aprotonin: an update of its pharmacology and therapeutic use in open heart surgery and coronary artery bypass surgery. Drugs, 1999; 57: 23.Google Scholar
As, A. K., Hagen, P., Webb, J. B.Tranexamic acid in the management of postpartum haemorrhage. Br. J. Obstet. Gynaecol., 1996; 103(12): 1250–1.CrossRefGoogle ScholarPubMed
Lurie, S., Appelman, Z., Katz, Z.Subendometrial vasopressin to control intractable placental bleeding. Lancet, 1997; 349: 698.CrossRefGoogle ScholarPubMed
Domsky, M. F., Wilson, R. F.Hemodynamic resuscitation. Crit. Care Clin., 1993; 10: 715–26.Google Scholar
Abboud, F. M. Shock. In Wyngaarden, J. B., Smith, L. H., eds., Cecil Textbook of Medicine. Philadelphia, PA: W. B. Saunders Co.; 1988: pp. 236–50.Google Scholar
Kale, I. T., Kuzu, M. A., Berkem, H., et al. The presence of hemorrhagic shock increases the rate of bacterial translocation in blunt abdominal trauma. J. Trauma, 1998; 44: 171–4.CrossRefGoogle ScholarPubMed
Astiz, M. E., Rackow, E. C.Assessing perfusion failure circulatory shock. Crit. Care. Clin., 1993; 9: 299–312.CrossRefGoogle ScholarPubMed
Gynecologists ACoOa. Invasive Hemodynamic Monitoring in Obstetrics and Gynecology. Washington, D.C.: ACOG; 1992.
Conference Pacc. Pulmonary artery consensus conference: consensus statement. Crit. Care. Med., 1997; 25(6): 910–25.CrossRef
Ware, L. B., Matthay, M. A.The acute respiratory distress syndrome. N. Engl. J. Med., 2000; 341: 1334.CrossRefGoogle Scholar
Staton, G. W. Pulmonary edema. In Dale, D. C., Federman, D. D., eds., ACP Medicine. New York, NY: WebMD Inc.; 2004: 14:X:1–20.Google Scholar
Duane, P. G., Colice, G. L.Impact of noninvasive studies to distinguish volume overload from ARDS in acutely ill patients with pulmonary edema: analysis of the medical literature from 1966–1998. Chest, 2000; 118: 1709.CrossRefGoogle Scholar
Hayashi, M., Mori, Y., Nogami, K., et al. A hypothesis to explain the occurrence of inner myometrial laceration causing massive postpartum hemorrhage. Acta Obstet. Gynecol. Scand., 2000; 79(2): 99–106.CrossRefGoogle Scholar
Jones III, H. W., Rock Jr, W. A. Control of pelvic hemorrhage. In Rock, J. A., Jones, H. W. III, eds., Te Linde's Operative Gynecology. Philadelphia, PA: Lippincott, Williams and Wilkins: pp. 413–46.
Rosch, C., Dotter, C. T., Brown, M. J.Selective arterial embolization. Radiology, 1972; 102: 303–6.CrossRefGoogle ScholarPubMed
Brown, B. J., Heaston, D. K., Poulson, A. M., et al. Uncontrollable postpartum bldeeding: a new approach to hemostasis through angiographic embolization. Obstet. Gynecol., 1979; 54: 361–5.Google Scholar
Mitty, H., Sterling, K., Alvarez, M., et al. Obstetric haemorrhage: prophylactic and emergency arterial catheterization and embolotherapy. Radiology, 1996; 188: 183–7.CrossRefGoogle Scholar
Merland, J. J., Houdart, E., Herbreteau, D., et al. Place of emergency arterial embolization in obstetric hemorrhage about 16 personal cases. Eur. J. Obstet. Gynecol. Reprod. Biol., 1996; 65: 141–3.CrossRefGoogle ScholarPubMed
Collins, C. D., Jackson, J. E.Pelvic arterial embolization following hysterectomy and bilateral internal iliac artery ligation for intractable post partum hemorrhage. Clin. Radiol., 1995; 50: 710–3.CrossRefGoogle Scholar
Reyal, F., Pelage, J. P., Rossignol, M., et al. Interventional radiology in managing post-partum hemorrhage. Presse Med., 2002; 31(20): 939–44.Google ScholarPubMed
Yamashita, Y., Harada, M., Yamamato, H., et al. Transcatheter arterial embolization of obstetric and gynaecological bleeding; efficacy and clinical outcome. Br. J. Radiol., 1994; 67: 530–4.CrossRefGoogle ScholarPubMed
Oei, S. G., Kho, S. N., ten Broeke, E. D., et al. Arterial balloon occlusion of the hypogastric arteries: a life-saving procedure for severe obstetric hemorrhage. Am. J. Obstet. Gynecol., 2001; 185(5): 1255–6.CrossRefGoogle ScholarPubMed
Descargues, G., Douvrin, F., Gravier, A., et al. False aneurysm of the uterine pedicle: an uncommon cause of post-partum haemorrhage after caesarean section treated with selective arterial embolization. Eur. J. Obstet. Gynecol. Reprod. Biol., 2001; 97(1): 26–9.CrossRefGoogle ScholarPubMed
Murakami, R., Ichikawa, T., Kumazaki, T., et al. Transcatheter arterial embolization for postpartum massive hemorrhage: a case report. Clin. Imaging, 2000; 24(6): 368–70.CrossRefGoogle ScholarPubMed
Pelage, J. P., Dref, O., Jacob, D., et al. Selective arterial embolization of the uterine arteries in the management of intractable post-partum hemorrhage. Acta Obstet. Gynecol. Scand., 1999; 78(8): 698–703.CrossRefGoogle ScholarPubMed
Pelage, J. P., Soyer, P., Repiquet, D., et al. Secondary postpartum hemorrhage: treatment with selective arterial embolization. Radiology, 1999; 212(2): 385–9.CrossRefGoogle ScholarPubMed
Corr, P.Arterial embolization for haemorrhage in the obstetric patient. Best Pract. Res. Clin. Obstet. Gynaecol., 2001; 15(4): 557–61.CrossRefGoogle ScholarPubMed
Badawy, S. Z., Etman, A., Singh, M., et al. Uterine artery embolization: the role in obstetrics and gynecology. Clin. Imaging, 2001; 25(4): 288–95.CrossRefGoogle ScholarPubMed
Tourne, G., Collet, F., Seffert, P., et al. Place of embolization of the uterine arteries in the management of post-partum haemorrhage: a study of 12 cases. Eur. J. Obstet. Gynecol. Reprod. Biol., 2003; 110(1): 29–34.CrossRefGoogle ScholarPubMed
Hong, T. M., Tseng, H. S., Lee, R. C., et al. Uterine artery embolization: an effective treatment for intractable obstetric haemorrhage. Clin. Radiol., 2004; 59(1): 96–101.CrossRefGoogle ScholarPubMed
Salomon, L. J., deTayrac, R., Castaigne-Meary, V., et al. Fertility and pregnancy outcome following pelvic arterial embolization for severe post-partum haemorrhage. A cohort study. Hum. Reprod., 2003; 18(4): 849–52.CrossRefGoogle ScholarPubMed
Ornan, D., White, R., Pollak, J., et al. Pelvic embolization for intractable postpartum hemorrhage: long-term follow-up and implications for fertility. Obstet. Gynecol., 2003; 102(5 Pt 1): 904–10.Google ScholarPubMed
Cordonnier, C., Ha-Vien, D. E., Depret, S., et al. Foetal growth restriction in the next pregnancy after uterine artery embolisation for post-partum haemorrhage. Eur. J. Obstet. Gynecol. Reprod. Biol., 2002; 103(2): 183–4.CrossRefGoogle ScholarPubMed
Ledee, N., Ville, Y., Musset, D., et al. Management in intractable obstetric haemorrhage: an audit study on 61 cases. Eur. J. Obstet. Gynecol. Reprod. Biol., 2001; 94(2): 189–96.CrossRefGoogle ScholarPubMed
Marcovici, I., Scoccia, B.Postpartum hemorrhage and intrauterine balloon tamponade. A report of three cases. J. Reprod. Med., 1999; 44(2): 122–6.Google ScholarPubMed
Katesmark, M., Brown, R., Raju, K. S.Successful use of a Sengstaken–Blakemore tube to control massive postpartum hemorrhage. Br. J. Obstet. Gynaecol., 1994; 101: 259–60.CrossRefGoogle Scholar
Johanson, R., Kumar, M., Obhrai, M., et al. Management of massive postpartum haemorrhage: use of a hydrostatic balloon catheter to avoid laparotomy. Br. J. Obstet. Gynaecol., 2001; 108(4): 420–2.Google ScholarPubMed
Tamizian, O., Arulkumaran, S.The surgical management of postpartum haemorrhage. Curr. Opin. Obstet. Gynecol., 2001; 13(2): 127–31.CrossRefGoogle ScholarPubMed
Pinborg, A., Bodker, B., Hogdall, C.Postpartum hematoma and vaginal packing with a blood pressure cuff. Acta Obstet. Gynecol. Scand., 2000; 79(10): 887–9.Google ScholarPubMed
Hensleigh, P. A.Anti-shock garment provides resuscitation and haemostasis for obstetric haemorrhage. Br. J. Obstet. Gynaecol., 2002; 109(12): 1377–84.CrossRefGoogle ScholarPubMed
Maier, R. C.Control of postpartum hemorrhage with uterine packing. Am. J. Obstet. Gynecol., 1993; 169(2 Pt 1): 317–21; discussion, 21–3.CrossRefGoogle ScholarPubMed
Condous, G. S., Arulkumaran, S., Symonds, I., et al. The “tamponade test” in the management of massive postpartum hemorrhage. Obstet. Gynecol., 2003; 101(4): 767–72.Google ScholarPubMed
Bakri, Y. N.Balloon device for control of obstetrical bleeding. Eur. J. Obstet. Gynecol. Reprod. Biol., 1999; 86: S84.Google Scholar
Bakri, Y. N., Amri, A., Abdul, , Jabbar, F.Tamponade-balloon for obstetrical bleeding. Int. J. Gynaecol. Obstet., 2001; 74(2): 139–42.CrossRefGoogle ScholarPubMed
Waters, E. G.Surgical management of postpartum hemorrhage with particular reference to ligation of uterine arteries. Am. J. Obstet. Gynecol., 1952; 64: 1143–8.CrossRefGoogle ScholarPubMed
O'Leary, J. A.Uterine artery ligation in the control of postcesarean hemorrhage. J. Reprod. Med., 1995; 40(3): 189–93.Google ScholarPubMed
AbdRabbo, S. A.Stepwise uterine devascularization: a novel technique for management of uncontrollable postpartum hemorrhage with preservation of the uterus. Am. J. Obstet. Gynecol., 1994; 171: 694–700.CrossRefGoogle ScholarPubMed
Burchell, R. C.Internal iliac artery ligation: Hemodynamics. Obstet. Gynecol., 1964; 24: 737–9.Google ScholarPubMed
Clark, S. L., Phelan, J. P., Yeh, S. Y., et al. Hypogastric artery ligation for obstetric hemorrhage. Obstet. Gynecol., 1985; 66: 353–6.Google ScholarPubMed
Nizard, J., Barrinque, L., Frydman, R., et al. Fertility and pregnancy outcomes following hypogastric artery ligation for severe post-partum haemorrhage. Hum. Reprod., 2003; 18(4): 844–8.CrossRefGoogle ScholarPubMed
B-Lynch, C., Coker, A., Lawal, A. H., et al. The B-Lynch surgical technique for the control of massive postpartum haemorrhage: an alternative to hysterectomy? Five cases reported. Br. J. Obstet. Gynaecol., 1997; 104(3): 372–5.CrossRefGoogle ScholarPubMed
Pal, M., Biswas, A. K., Bhattacharya, S. M.B-Lynch Brace Suturing in primary post-partum hemorrhage during cesarean section. J. Obstet. Gynaecol. Res., 2003; 29(5): 317–20.CrossRefGoogle ScholarPubMed
Dacus, J. V., Busowski, M. T., Busowski, J. D., et al. Surgical treatment of uterine atony employing the B-Lynch technique. J. Matern. Fetal Med., 2000; 9(3): 194–6.Google ScholarPubMed
Ferguson, J. E., Bourgeois, F. J., Underwood, P. B.B-Lynch suture for postpartum hemorrhage. Obstet. Gynecol., 2000; 95(6 Pt 2): 1020–2.Google ScholarPubMed
Cho, J. H., Jun, H. S., Lee, C. N.Hemostatic suturing technique for uterine bleeding during cesarean delivery. Obstet. Gynecol., 2000; 96(1): 129–31.Google ScholarPubMed
Zelop, C. M., Harlow, B. L., Frigoletto, F. D. Jr, et al. Emergency peripartum hysterectomy. Am. J. Obstet. Gynecol., 1993; 168: 1443–8.CrossRefGoogle ScholarPubMed
Okogbenin, S. A., Gharoro, E. P., Otoide, V. O., et al. Obstetric hysterectomy: fifteen years' experience in a Nigerian tertiary centre. J. Obstet. Gynaecol., 2003; 23(4): 356–9.CrossRefGoogle Scholar
Clark, S. L., Yeh, S. Y., Phelan, J. P., et al. Emergency hysterectomy for obstetric hemorrhage. Obstet. Gynecol., 1984; 64(3): 376–80.Google ScholarPubMed
Chanrachakul, B., Chaturachinda, K., Phuapradit, W., et al. Cesarean and postpartum hysterectomy. Intl. J. Gynaecol. Obstet., 1996; 54: 109–13.CrossRefGoogle ScholarPubMed
Wenham, J., Matijevic, R.Post-partum hysterectomies: revisited. J. Perinat. Med., 2001; 29(3): 260–5.CrossRefGoogle ScholarPubMed
Seckin, N. C., Inegol, I., Turhan, N. O., et al. Life-threatening second trimester disseminated intravascular coagulopathy with protein S deficiency. Clin. Appl. Thromb. Hemost., 2004; 10: 289–91.CrossRefGoogle ScholarPubMed
Cicala, C., Cirino, G.Linkage between inflammation and coagulation: An update on the molecular basis of the crosstalk. Life Sci., 1998; 62: 1817–24.CrossRefGoogle ScholarPubMed
Muller-Berghaus, G.Pathophysiological and biochemical events in disseminated intravascular coagulation: dysregulation of procoagulant and anticoagulant pathways. Semin. Thromb. Hemost., 1989; 15: 58–87.CrossRefGoogle Scholar
Verstraete, M., Vermylen, C., Vermylen, J.Excessive consumption of blood coagulation components as a cause hemorrhagic diathesis. Am. J. Med., 1965; 35: 899–905.CrossRefGoogle Scholar
Rodriguez-Erdmann, F.Bleeding due to increased intravascular blood coagulation. Hemorrhagic syndromes caused by consumption of blood-clotting factors (consumption-coagulopathies). N. Engl. J. Med., 1965; 273: 1370–8.CrossRefGoogle Scholar
Boer, K., ten Cate, J. W., Sturk, A., et al. Enhanced thrombin generation in normal and hypertensive pregnancy. Am. J. Obstet. Gynecol., 1989; 160: 95–100.CrossRefGoogle ScholarPubMed
Weiner, C. P.Preeclampsia-eclampsia syndrome and coagulation. Clin. Perinatol., 1991; 18: 713–26.CrossRefGoogle Scholar
Weiner, C. P.The obstetric patient and disseminated intravascular coagulation. Clin. Perinatol., 1986; 13: 705–17.CrossRefGoogle ScholarPubMed
Pritchard, J. A., Brekken, A. L.Clinical and laboratory studies on severe abruptio placentae. Am. J. Obstet. Gynecol., 1967; 97: 681.CrossRefGoogle ScholarPubMed
Bick, R. L.Disseminated intravascular coagulation and related syndromes: a clinical review. Semin. Thromb. Hemost., 1988; 14: 299–338.CrossRefGoogle ScholarPubMed
Martin, J. N. J., Stedman, C. M.Imitators of preeclampsia and HELLP syndrome. Obstet. Gynecol. Clin. North Am., 1991; 18: 181–98.Google ScholarPubMed
McDougall, R. J., Duke, C. J.Amniotic fluid embolism syndrome. Case report and review. Anaesthesia Intensive Care, 1995; 23: 735–40.Google ScholarPubMed
Feinstein, D. I.Treatment of disseminated intravascular coagulation. Semin. Thromb. Hemost., 1988; 14(4): 351–62.CrossRefGoogle ScholarPubMed
Lewis, B. E., Wallis, D. E., Berkowitz, S. D., et al. Argatroban anticoagulant therapy in patients with heparin-induced thrombocytopenia. Circulation, 2001; 103: 1838.CrossRefGoogle ScholarPubMed
Munoz, M. C., Montes, R., Hermida, J., et al. Effect of the administration of recombinant hirudin and/or tissue-plasminogen activator (t-PA) on endotoxin-induced disseminated intravascular coagulation model in rabbits. Br. J. Haematol., 1999; 105: 117–22.CrossRefGoogle ScholarPubMed
ten Cate, H., Nurmohamed, M. T., ten Cate, J. W.Developments in antithrombotic therapy: state of the art anno 1996. Pharmacology World Science 1996; 18: 195–203.CrossRefGoogle ScholarPubMed
Bick, R. L. Heparin and low-molecular-weight heparins. In Bick, R. L., ed., Disorders of Thrombosis and Hemostasis. Philadelphia, PA: Lippincott, Williams and Wilkins 1992: pp. 359–77.Google Scholar
Jochum, M.Influence of high-dose antithrombin concentrate therapy on the release of cellular proteases, cytokines and soluble molecules in acute inflammation. Semin. Hematol., 1995; 32: 14.Google ScholarPubMed
Fourier, F., Chopin, C., Huart, J. J., et al. Double-blind, placebo-controlled trial of antithrombin III concentrates in septic shock with disseminated intravascular coagulation. Chest, 1993; 104: 882.CrossRefGoogle Scholar
Laursen, B., Mortensen, J. Z., Frost, L., et al. DIC in hepatic failure treated with antithrombin III. Thromb. Res., 1981; 22: 701.CrossRefGoogle Scholar
Eisele, B., Lamy, M.Clinical experience with antithrombin III concentrates in critically ill patients with sepsis and multiple organ failure. Semin. Thromb. Hemost., 1998; 24: 71.CrossRefGoogle ScholarPubMed
Okajima, K., Uchida, M.The anti-inflammatory properties of antithrombin III: new therapeutic implications. Semin. Thromb. Hemost., 1998; 24: 27.CrossRefGoogle ScholarPubMed
Baluhut, B., Kramar, H., Vinazzer, H., et al. Substitution of ATIII in shock and DIC: a randomized study. Thromb. Res., 1985; 39: 81.CrossRefGoogle Scholar
Kries, R., Stannigel, H., Gobel, U.Anticoagulant therapy by continuous heparin-ATIII infusion in newborns with DIC. Eur. J. Pediatr., 1985; 144: 191.CrossRefGoogle Scholar
Bernard, G. R., Vincent, J. L., Latere, P. F., et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med., 2001; 344: 699.CrossRefGoogle ScholarPubMed
Smith, O. P.Protein-C concentrate for meningococcal purpura fulminans. Lancet, 1998; 351: 986.CrossRefGoogle Scholar
Fijinvandraat, K., Derkx, B., Peters, M., et al. Coagulation activation and tissue necrosis in meningococcal septic shock: severely reduced protein C levels predict a high mortality. Thromb. Haemost., 1995; 73: 15.Google Scholar
Shoemaker, W. C. Circulatory pathophysiology of ARDS and its fluid management. In Textbook of Critical Care. Philadelphia, PA: W. B. Saunders Company; 1995: p. 312.Google Scholar
Urden, L. D., Stacy, K. M., Lough, M. E., Shock. In Thelan's Critical Care Nursing: Diagnosis and Management. St. Louis, MO: Mosby; 2002: p. 931.Google Scholar
Abrams, J., et al. Vassopressors used in shock. In Drug: Facts and Comparisons, 1999 edn; Philadelphia, PA: Lippincott, Williams, and Wilkins; 1999: pp. 883–917.Google Scholar
Uterine Artery Ligation. 2004. (Accessed November 31, 2004, at www.utodol.com/application/ image.asp?).
B-Lynch Suture. 2000. (Accessed November 30, 2004, at www.utdol.com/application/image.asp?).