Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-l84fh Total loading time: 1.459 Render date: 2021-10-28T09:44:17.466Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

14 - Designing Perception Experiments

from Part III - Perception Metrology

Published online by Cambridge University Press:  20 December 2018

Ehsan Samei
Affiliation:
Duke University Medical Center, Durham
Elizabeth A. Krupinski
Affiliation:
Emory University, Atlanta
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadi, E., Sturgeon, G.M., Agasthya, G., Harrawood, B., Kapadia, A., Segars, W.P., Samei, E. (2017). Airways, vasculature, and interstitial tissue: anatomically-informed computational modeling of human lungs for virtual clinical trials. Proc SPIE Medical Imag, 10132.Google Scholar
Bamber, D. (1975). Area above ordinal dominance graph and area below receiver operating characteristic graph. J Math Psych, 12, 387415.CrossRefGoogle Scholar
Boedeker, K.L., McNitt-Gray, M.F. (2007). Application of the noise power spectrum in modern diagnostic MDCT: part II. Noise power spectra and signal to noise Phys Med Biol, 52, 40474061.CrossRefGoogle ScholarPubMed
Burgess, A.E. (1995). Comparison of receiver operating characteristic and forced choice observer performance measurement methods. Med Phys, 22, 643655.CrossRefGoogle ScholarPubMed
Burgess, A.E. (2011). Visual perception studies and observer models in medical imaging. Semin Nucl Med, 41, 419436.CrossRefGoogle ScholarPubMed
Chawla, A.S., Samei, E. (2007). Ambient illumination revisited: a new adaptation-based approach for optimizing medical imaging reading environments. Med Phys, 34, 8190.CrossRefGoogle ScholarPubMed
Chawla, A.S., Samei, E., Saunders, R.S., Lo, J.Y., Baker, J.A. (2008). A mathematical model platform for optimizing a multiprojection breast imaging system. Med Phys, 35, 13371345.CrossRefGoogle ScholarPubMed
Christianson, O., Chen, J., Yang, Z., Saiprasad, G., Dima, A., Filliben, J., Peskin, A., Trimble, C., Siegel, E., Samei, E. (2015). An improved index of image quality for task-based performance of CT iterative reconstruction across three commercial implementations. Radiology, 275, 725734.CrossRefGoogle ScholarPubMed
Dobbins, J.T., McAdams, H.P., Song, J.W., Li, C.M., Godfrey, D.J., DeLong, D.M., Paik, S.H., Martinez-Jimenez, S. (2008). Digital tomosynthesis of the chest for lung nodule detection: interim sensitivity results from an ongoing NIH-sponsored trial. Med Phys, 35, 25542557.CrossRefGoogle Scholar
Dorfman, D.D., Berbaum, K.S., Metz, C.E. (1992 ). Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method. Invest Radiol, 27, 723731.CrossRefGoogle ScholarPubMed
Egglin, T.K., Feinstein, A.R. (1996). Context bias. A problem in diagnostic radiology. JAMA, 276, 17521755.CrossRefGoogle Scholar
Green, D.M., Swets, J.A. (1966). Signal Detection Theory and Psychophysics. New York, NY: Wiley.Google Scholar
Hanley, J.A., McNeil, B.J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 2936.CrossRefGoogle Scholar
Hillis, S., Berbaum, K.S. (2006). MRMC sample size program. http://perception.radiology.uiowa.edu (accessed January 9, 2018).
Hoe, C.L., Samei, E., Frush, D.P., Delong, D.M. (2006). Simulation of liver lesions for pediatric CT. Radiology, 238, 699705.CrossRefGoogle ScholarPubMed
Ko, J.P., Rusinek, H., Jacobs, E.L., Babb, J.S., Betke, M., McGuinness, G., Naidich, D P. (2003). Small pulmonary nodules: volume measurement at chest CT – phantom study. Radiology, 228, 864870.CrossRefGoogle ScholarPubMed
Metz, C. (2000). Fundamental ROC analysis. In: Beutel, J., Kundel, H.L., Van Metter, R.L. (eds.) Handbook of Medical Imaging. Vol. 1, Physics and Psychophysics. Bellingham, WA: SPIE Press, pp. 751769.CrossRefGoogle Scholar
Obuchowski, N.A. (2000). Sample size tables for receiver operating characteristic studies. AJR Am J Roentgenol, 175, 603608.CrossRefGoogle ScholarPubMed
Obuchowski, N.A. (2004). How many observers are needed in clinical studies of medical imaging? AJR Am J Roentgenol, 182, 867869.CrossRefGoogle ScholarPubMed
Pokrajac, D.D., Maidment, A.D.A., Bakic, P.R. (2012). Optimized generation of high resolution breast anthropomorphic software phantoms. Med Phys, 39, 22902302.CrossRefGoogle ScholarPubMed
Pollard, B.J., Chawla, A.S., Delong, D.M., Hashimoto, N., Samei, E. (2008). Object detectability at increased ambient lighting conditions. Med Phys, 35, 22042213.CrossRefGoogle ScholarPubMed
Samei, E., Flynn, M.J., Eyler, W.R. (1997). Simulation of subtle lung nodules in projection chest radiography. Radiology, 202, 117124.CrossRefGoogle ScholarPubMed
Samei, E., Ranger, N.T., Delong, D.M. (2008). A comparative contrast-detail study of five medical displays. Med Phys, 35, 13581364.CrossRefGoogle ScholarPubMed
Samei, E., Lin, Y., Choudhury, K.R., McAdams, H.P. (2014). Automated characterization of perceptual quality of clinical chest radiographs: validation and calibration to observer preference. Med Phys, 41, 111918.CrossRefGoogle ScholarPubMed
Saunders, R.S., Samei, E., Hoeschen, C. (2004). Impact of resolution and noise characteristics of digital radiographic detectors on the detectability of lung nodules. Med Phys, 31, 16031613.CrossRefGoogle ScholarPubMed
Saunders, R., Samei, E., Baker, J., Delong, D. (2006). Simulation of mammographic lesions. Acad Radiol, 13, 860870.CrossRefGoogle ScholarPubMed
Schindera, S.T., Nelson, R.C., Mukundan, S., Paulson, E.K., Jaffe, T.A., Miller, C.M., DeLong, D.M., Kawaji, K., Yoshizumi, T.T., Samei, E. (2008). Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection – phantom study. Radiology, 246, 125132.CrossRefGoogle ScholarPubMed
Segars, W.P., Mahesh, M., Beck, T.J., Frey, E.C., Tsui, B.M. (2008). Realistic CT simulation using the 4D XCAT phantom. Med Phys, 35, 38003808.CrossRefGoogle ScholarPubMed
Solomon, J., Samei, E. (2014). A generic framework to simulate realistic lung, liver and renal pathologies in CT imaging. Phys Med Biol, 59, 66376657.CrossRefGoogle ScholarPubMed
Solomon, J., Samei, E. (2016). Correlation between human detection accuracy and observer model-based image quality metrics in CT. J Med Imag, 3, 035506.Google Scholar
Swets, J.A., Pickett, R.M. (1982). Evaluation of Diagnostic Systems: Methods from Signal Detection Theory. New York, NY: Academic Press.Google Scholar
Thornbury, J.R., Fryback, D.G., Turski, P.A., Javid, M.J., McDonald, J.V., Beinlich, B.R., Gentry, L.R., Sackett, J.F., Dasbach, E.J., Martin, P.A. (1993). Disk-caused nerve compression in patients with acute low-back pain: diagnosis with MR, CT myelography, and plain CT. Radiology, 186, 731738.CrossRefGoogle ScholarPubMed
Venjakoba, A.C., Mello-Thoms, C.R. (2016). Review of prospects and challenges of eye tracking in volumetric imaging. J Med Imag, 3, 011002.CrossRefGoogle Scholar
Zhou, X.-H., Obuchowski, N.A., McClish, D.K. (2002). Statistical Methods in Diagnostic Medicine. New York, NY: Wiley-Interscience.CrossRefGoogle Scholar

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×