Skip to main content Accessibility help
×
Hostname: page-component-797576ffbb-jhnrh Total loading time: 0 Render date: 2023-12-10T20:01:53.936Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

5 - More on importance sampling Monte Carlo methods for lattice systems

Published online by Cambridge University Press:  24 November 2021

David Landau
Affiliation:
University of Georgia
Kurt Binder
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Get access

Summary

Advances in simulational methods sometimes have their origin in unusual places; such is the case with an entire class of methods which attempt to beat critical slowing down in spin models on lattices by flipping correlated clusters of spins in an intelligent way instead of simply attempting single spin-flips. The first steps were taken by Fortuin and Kasteleyn (Kasteleyn and Fortuin, 1969; Fortuin and Kasteleyn, 1972), who showed that it was possible to map a ferromagnetic Potts model onto a corresponding percolation model. The reason that this observation is so important is that in the percolation problem states are produced by throwing down particles, or bonds, in an uncorrelated fashion; hence there is no critical slowing down. In contrast, as we have already mentioned, the q-state Potts model when treated using standard Monte Carlo methods suffers from slowing down. (Even for large q where the transition is first order, the time scales can become quite long.) The Fortuin–Kasteleyn transformation thus allows us to map a problem with slow critical relaxation into one where such effects are largely absent. (As we shall see, not all slowing down is eliminated, but the problem is reduced quite dramatically.)

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, D. B. (1986), in Phase Transitions and Critical Phenomena, eds. Domb, C. and Lebowitz, J. L. (Academic Press, London), vol. 10, p. 1.Google Scholar
Adam, E., Billard, L., and Lancon, F. (1999), Phys. Rev. E 59, 1212.CrossRefGoogle Scholar
Albano, E. V. and Binder, K. (2012), Phys. Rev. E 85, 061601.CrossRefGoogle Scholar
Alexandrowicz, Z. (1975), J. Stat. Phys. 13, 231.CrossRefGoogle Scholar
Almarza, N. G. and Lomba, E. (2003), Phys. Rev. E 68, 011202.CrossRefGoogle Scholar
Angles D’Auriac, J.-C., and Sourlas, N. (1997), Europhys. Lett. 39, 473.CrossRefGoogle Scholar
Angst, S., Hucht, A., and Wolf, D. E. (2012), Phys. Rev. E 85, 051120.CrossRefGoogle Scholar
Baity-Jesi, M., et al. (Janus collaboration). (2013), Phys. Rev. B 88, 224416. [Note: “et al.” stands for 23 names]CrossRefGoogle Scholar
Ballesteros, H. G., Cruz, A., Fernandez, L. A., Martin-Mayor, V., Pech, J., Ruiz-Lorenzo, J. J., Tarancon, A., Tellez, P., Ullod, E. L., and Ungil, C. (2000), Phys. Rev. B 62, 14237.CrossRefGoogle Scholar
Barash, L. and Shchur, L. N. (2006), Phys. Rev. E 73, 036701.CrossRefGoogle Scholar
Barash, L. Y. and Shchur, L. (2013), Comput. Phys. Commun. 184, 2367.CrossRefGoogle Scholar
Barash, L. Y. and Shchur, L. (2014), Comput. Phys. Commun. 185, 1343.CrossRefGoogle Scholar
Bathe, M. and Rutledge, G. C. (2003), J. Comput. Chem. 24, 876.CrossRefGoogle Scholar
Berg, B. (2004), Markov Chain Monte Carlo Simulations and Their Statistical Analysis (World Scientific, Singapore).CrossRefGoogle Scholar
Berg, B. A. and Neuhaus, T. (1991), Phys. Lett. B 267, 241.CrossRefGoogle Scholar
Berg, B. A. and Neuhaus, T. (1992), Phys. Rev. Lett. 68, 9.CrossRefGoogle Scholar
Bhatt, R. N. and Young, A. P. (1985), Phys. Rev. Lett. 54, 924.CrossRefGoogle Scholar
Binder, K. (1977), Z. Phys. B 26, 339.CrossRefGoogle Scholar
Binder, K. (1983), in Phase Transitions and Critical Phenomena, Vol. VIII, eds. Domb, C. and Lebowitz, J. L. (Academic Press, London), p. 1.Google Scholar
Binder, K. and Kob, W. (2011), Glussy Materials and Disordered Solids, 2nd edn. (World Scientific, Singapore).CrossRefGoogle Scholar
Binder, K. and Landau, D. P. (1988), Phys. Rev. B 37, 1745.CrossRefGoogle Scholar
Binder, K. and Landau, D. P. (1992), J. Chem. Phys. 96, 1444.CrossRefGoogle Scholar
Binder, K. and Schröder, K. (1976), Phys. Rev. B 14, 2142.CrossRefGoogle Scholar
Binder, K. and Virnau, P. (2016), J. Chem. Phys. 145, 211701.CrossRefGoogle Scholar
Binder, K. and Wang, J.-S. (1989), J. Stat. Phys. 55, 87.CrossRefGoogle Scholar
Binder, K. and Young, A. P. (1986), Rev. Mod. Phys. 58, 801.CrossRefGoogle Scholar
Binder, K., Evans, R., Landau, D. P., and Ferrenberg, A. M. (1996), Phys. Rev. E 53, 5023.CrossRefGoogle Scholar
Binder, K., Landau, D. P., and Wansleben, S. (1989), Phys. Rev. B 40, 6971.CrossRefGoogle Scholar
Bortz, A. B., Kalos, M. H., and Lebowitz, J. L. (1975), J. Comput. Phys. 17, 10.CrossRefGoogle Scholar
Boulter, C. J. and Parry, A. O. (1995), Phys. Rev. Lett. 74, 3403.CrossRefGoogle Scholar
Brown, F. R. and Woch, T. J. (1987), Phys. Rev. Lett. 58, 2394.CrossRefGoogle Scholar
Bryk, P., and Binder, K. (2013), Phys. Rev. E 88, 030401(R).CrossRefGoogle Scholar
Campostrini, M., Hasenbusch, M., Pelisetto, A., Rossi, P., and Vicari, E. (2002), Phys. Rev. E 65, 144520.CrossRefGoogle Scholar
Cardy, J. L. and Jacobsen, J. L. (1997), Phys. Rev. Lett. 79, 4063.CrossRefGoogle Scholar
Challa, M. S. S. and Hetherington, J. H. (1988), Phys. Rev. Lett. 60, 77.CrossRefGoogle Scholar
Chen, K., and Landau, D.P. (1992), Phys. Rev. B 46, 937.CrossRefGoogle Scholar
Chen, K., Ferrenberg, A. M., and Landau, D. P. (1993), Phys. Rev. B 48, 3249.CrossRefGoogle Scholar
Chen, S., Ferrenberg, A. M., and Landau, D. P. (1995), Phys. Rev. E 52, 1377.CrossRefGoogle Scholar
Compagner, A. (1991), J. Stat. Phys. 63, 883.CrossRefGoogle Scholar
Creutz, M. (1980), Phys. Rev. D 21, 2308.CrossRefGoogle Scholar
Creutz, M. (1987), Phys. Rev. D 36, 515.CrossRefGoogle Scholar
Crisanti, A. and Ritort, F. (2003), J. Phys. A 36, R181.CrossRefGoogle Scholar
de Miguel, E., Marguta, R. G., and del Rio, E. M. (2007), J. Chem. Phys. 127, 154512.CrossRefGoogle Scholar
De Meo, M., D’Onorio, M., Heermann, D., and Binder, K. (1990), J. Stat. Phys. 60, 585.CrossRefGoogle Scholar
Dietrich, S. (1988), in Phase Transitions and Critical Phenomena, Vol. XII, eds. Domb, C. and Lebowitz, J. L. (Academic Press, London), p. 1.Google Scholar
Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987), Phys. Lett. B 195, 216.CrossRefGoogle Scholar
Dukovski, I., Machta, J., and Chayes, L. V. (2002), Phys. Rev. E 65, 026702.CrossRefGoogle Scholar
Dünweg, B. and Landau, D. P. (1993), Phys. Rev. B 48, 14182.CrossRefGoogle Scholar
Edwards, S. F. and Anderson, P. W. (1975), J. Phys. F 5, 965.CrossRefGoogle Scholar
Eisenbach, M., Zhou, C.-G., Nicholson, D. M., Brown, G., Larkin, J., and Schulthess, T. C. (2009), in SC ’09: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, ed. ACM (Portland, Oregon), p. 1.Google Scholar
Evertz, H. G. and Landau, D. P. (1996), Phys. Rev. B 54, 12, 302.CrossRefGoogle Scholar
Fisher, M. E., and Privman, V. (1985), Phys. Rev. B 32, 447.CrossRefGoogle Scholar
Fortuin, C. M. and Kasteleyn, P. W. (1972), Physica 57, 536.CrossRefGoogle Scholar
Frenkel, D. and Ladd, A. J. C. (1984), J. Chem. Phys. 81, 3188.CrossRefGoogle Scholar
Fukui, K. and Todo, S. J. (2009), Comput. Phys. 228, 2629.CrossRefGoogle Scholar
Fytas, N. G. and Martin-Mayor, V. (2013), Phys. Rev. Lett. 110, 227201.CrossRefGoogle Scholar
Fytas, N. G., Martin-Mayor, V., Parisi, G., Picco, M., and Sourlas, N. (2019), Phys. Rev. Lett. 122, 240603.CrossRefGoogle Scholar
Fytas, N. G., Martin-Mayor, V., Picco, M., and Sourlas, N. (2016), Phys. Rev. Lett. 116, 227201.CrossRefGoogle Scholar
Gerold, V. and Kern, J. (1987), Acta. Metall. 35, 393.CrossRefGoogle Scholar
Geyer, C. (1991), in Proceedings of the 23rd Symposium on the Interface, ed. Keramidas, E. M. (Interface Foundation, Fairfax, VA), p. 156.Google Scholar
Goodman, J. and Sokal, A. (1986), Phys. Rev. Lett. 56, 1015.CrossRefGoogle Scholar
Griffiths, R. B. (1969), Phys. Rev. Lett. 23, 17.CrossRefGoogle Scholar
Hartmann, A. and Rieger, H. (2002), Optimization Algorithms in Physics (Wiley-VCH, Weinheim).Google Scholar
Hartmann, A. K., and Young, A. P. (2001), Phys. Rev. B 64, 214419.CrossRefGoogle Scholar
Hasenbusch, M. (1995), Nucl. Phys. B 42, 764.CrossRefGoogle Scholar
Hasenbusch, M. and Meyer, S. (1990), Phys. Lett. B 241, 238.CrossRefGoogle Scholar
Hasenbusch, M. and Meyer, S. (1991), Phys. Rev. Lett. 66, 530.CrossRefGoogle Scholar
Hatano, N. and Gubernatis, J. E. (1999) AIP Conf. Proc. 469, 565.CrossRefGoogle Scholar
Heermann, D. W. and Burkitt, A. N. (1990), in Computer Simulation Studies in Condensed Matter Physics II, eds. Landau, D. P., Mon, K. K., and Schüttler, H.-B. (Springer Verlag, Heidelberg), p. 16.CrossRefGoogle Scholar
Heffelfinger, G. S. (2000), Comput. Phys. Commun. 128, 219.CrossRefGoogle Scholar
Herrmann, H. J. (1990), in Computer Simulation Studies in Condensed Matter Physics II, eds. Landau, D. P., Mon, K. K., and Schüttler, H.-B. (Springer Verlag, Heidelberg), p. 56.CrossRefGoogle Scholar
Heuer, A., Dünweg, B., and Ferrenberg, A. M. (1997), Comput. Phys. Commun. 103, 1.CrossRefGoogle Scholar
Holm, C. and Janke, W. (1993), Phys. Lett. A 173, 8.CrossRefGoogle Scholar
Hornreich, R. M., Luban, M., and Shtrikman, S. (1975), Phys. Rev. Lett. 35, 1678.CrossRefGoogle Scholar
Hucht, A. (2009), Phys. Rev. E 80, 061138.CrossRefGoogle Scholar
Hui, K. and Berker, A. N. (1989), Phys. Rev. Lett. 62, 2507.CrossRefGoogle Scholar
Hukushima, K. and Kawamura, H. (2000), Phys. Rev. E 61, R1008.CrossRefGoogle Scholar
Hukushima, K. and Nemoto, K. (1996), J. Phys. Soc. Japan 65, 1604.CrossRefGoogle Scholar
Imry, Y. and Ma, S. (1975), Phys. Rev. Lett. 35, 1399.CrossRefGoogle Scholar
Kandel, D., Domany, E., and Brandt, A. (1989), Phys. Rev. B 40, 330.CrossRefGoogle Scholar
Kandel, D., Domany, E., Ron, D., Brandt, A., and Loh, E. Jr. (1988), Phys. Rev. Lett. 60, 1591.CrossRefGoogle Scholar
Kasteleyn, P. W. and Fortuin, C. M. (1969), J. Phys. Soc. Japan Suppl. 26s, 11.Google Scholar
Katzgraber, H. G., Palassini, M., and Young, A. P. (2001), Phys. Rev. B 63, 184422.CrossRefGoogle Scholar
Kawashima, N. and Young, A. P. (1996), Phys. Rev. B 53, R484.CrossRefGoogle Scholar
Keen, D. A. and Pusztai, L., eds. (2007), Proceedings of the 3rd Workshop on Reverse Monte Carlo Methods, J. Phys. Condens. Matter 19, issue 33.Google Scholar
Khoshbakht, H. and Weigel, M. (2018), Phys. Rev. B 97, 064410.CrossRefGoogle Scholar
Kim, J.-K. (1993), Phys. Rev. Lett. 70, 1735.CrossRefGoogle Scholar
Kim, J.-K., de Souza, A. J. F., and Landau, D. P. (1996), Phys. Rev. E 54, 2291.CrossRefGoogle Scholar
Kinzel, W. and Kanter, I. (2003), J. Phys. A: Math. Gen. 36, 11173.CrossRefGoogle Scholar
Kirkpatrick, S., Gelatt, S. C. Jr., and Vecchi, M. P. (1983), Science 220, 671.CrossRefGoogle Scholar
Kolesik, M., Novotny, M. A., and Rikvold, P. A. (1998), Phys. Rev. Lett. 80, 3384.CrossRefGoogle Scholar
Krech, M. (1994), The Casimir Effect in Critical Systems (World Scientific, Singapore).CrossRefGoogle Scholar
Krech, M. and Landau, D. P. (1996), Phys. Rev. E 53, 4414.CrossRefGoogle Scholar
Landau, D. P. (1992), in The Monte Carlo Method in Condensed Matter Physics, ed. Binder, K. (Springer, Berlin), p. 23.CrossRefGoogle Scholar
Landau, D. P. (1994), Physica A 205, 41.CrossRefGoogle Scholar
Landau, D. P. (1996), in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, eds. Binder, K. and Ciccotti, G. (Società Italiana de Fisica, Bologna), p. 181.Google Scholar
Landau, D. P. and Binder, K. (1981), Phys. Rev. B 24, 1391.CrossRefGoogle Scholar
Landau, D. P. and Krech, M. (1999), J. Phys. Cond. Mat. 11, 179.CrossRefGoogle Scholar
Laradji, M., Landau, D. P., and Dünweg, B. (1995), Phys. Rev. B 51, 4894.CrossRefGoogle Scholar
Lee, J. and Kosterlitz, J. M. (1990), Phys. Rev. Lett. 65, 137.CrossRefGoogle Scholar
Lee, L. W. and Young, A. P. (2003), Phys. Rev. Lett. 90, 227203.CrossRefGoogle Scholar
Lees, A. W. and Edwards, S. F. (1972), J. Phys. C 5, 1921.CrossRefGoogle Scholar
Luijten, E. and Blöte, H. W. J. (1995), Int. J. Mod. Phys. C 6, 359.CrossRefGoogle Scholar
Lüscher, M. (1994), Comput. Phys. Commun. 79, 100.CrossRefGoogle Scholar
Lyubartsev, A. P., Martsinnovski, A. A., Shevkunov, S. V., and Vorontsov-Velyaminov, P. N. (1992), J. Chem. Phys. 96, 1776.CrossRefGoogle Scholar
Machta, J., Choi, Y. S., Lucke, A., and Schweizer, T. (1995), Phys. Rev. Lett. 75, 2792.CrossRefGoogle Scholar
Machta, J., Choi, Y. S., Lucke, A., and Schweizer, T. (1996), Phys. Rev. E 54, 1332.CrossRefGoogle Scholar
Manssen, M., Weigel, M., and Hartmann, A. K. (2012), Eur. Phys. J. Special Topics 210, 53.CrossRefGoogle Scholar
Marinari, E. and Parisi, G. (1992), Europhys. Lett. 19, 451.CrossRefGoogle Scholar
Marsaglia, G. (1972), Ann. Math. Stat. 43, 645.CrossRefGoogle Scholar
Matsumoto, M. and Nishimura, T. (1998), ACM Trans. Model. Comput. Simul. 8, 3.CrossRefGoogle Scholar
McGreevy, R. L. (2001), J. Phys.: Condens. Matter 13, R877.Google Scholar
Meirovitch, H. and Alexandrowicz, Z. (1977), Mol. Phys. 34, 1027.CrossRefGoogle Scholar
Mertens, S. and Bauke, H. (2004), Phys. Rev. E 69, 055702(R).CrossRefGoogle Scholar
Mézard, M. and Montanari, A. (2009), Information, Physics and Computation (Oxford University Press, Oxford).CrossRefGoogle Scholar
Milchev, A., Müller, M., Binder, K., and Landau, D. P. (2003a), Phys. Rev. Lett. 90, 136101.CrossRefGoogle Scholar
Milchev, A., Müller, M., Binder, K., and Landau, D. P. (2003b), Phys. Rev. E 68, 031601.CrossRefGoogle Scholar
Miller, R. G. (1974), Biometrika 61, 1.Google Scholar
Mon, K. K. (1985), Phys. Rev. Lett. 54, 2671.CrossRefGoogle Scholar
Mon, K. K., Wansleben, S., Landau, D. P., and Binder, K. (1988), Phys. Rev. Lett. 60, 708.CrossRefGoogle Scholar
Mon, K. K., Landau, D. P., and Stauffer, D. (1990), Phys. Rev. B 42, 545.CrossRefGoogle Scholar
Nadler, W. and Hansmann, U. H. E. (2007a), Phys. Rev. E 75, 026109.CrossRefGoogle Scholar
Nadler, W. and Hansmann, U. H. E. (2007b), Phys. Rev. E 76, 609701.Google Scholar
Nadler, W. and Hansmann, U. H. E. (2008), J. Phys. Chem. B 112, 10386.CrossRefGoogle Scholar
Nattermann, T. (1998), In Spin Glasses and Random Fields, ed. Young, A. P., (World Scientific, Singapore), p. 277.Google Scholar
Nishimori, H. (2001), Statistical Physics of Spin Glasses and Information Processing: An Introduction (Oxford University Press, Oxford).CrossRefGoogle Scholar
Novotny, M. A. (1995a), Phys. Rev. Lett. 74, 1.CrossRefGoogle Scholar
Novotny, M. A. (1995b), Computers in Physics 9, 46.CrossRefGoogle Scholar
Ogielski, A. T. (1985), Phys. Rev. B 32, 7384.CrossRefGoogle Scholar
Ogielski, T. (1986), Phys. Rev. Lett. 57, 1251.CrossRefGoogle Scholar
Onuki, A. (1997), J. Phys.: Condens. Matter 9, 6119.Google Scholar
Pang, L., Landau, D. P., and Binder, K. (2011), Phys. Rev. Lett. 106, 236102.CrossRefGoogle Scholar
Pang, L., Landau, D. P., and Binder, K. (2019), Phys. Rev. E 100, 023303.CrossRefGoogle Scholar
Parisi, G. and Sourlas, N. (1979), Phys. Rev. Lett. 43, 744.CrossRefGoogle Scholar
Parry, A. D., Rascón, C., Bernadino, N. R., and Romero-Enrique, J. M. (2008), Phys. Rev. Lett. 100, 136105.CrossRefGoogle Scholar
Polson, J. M., Trizac, E., Pronk, S., and Frenkel, D. (2000), J. Chem. Phys. 112, 5339.CrossRefGoogle Scholar
Plascak, J.-A., Ferrenberg, A. M., and Landau, D. P. (2002), Phys. Rev. E 65, 066702.CrossRefGoogle Scholar
Rampf, F., Paul, W., and Binder, K. (2005), Europhys. Lett. 70, 628.CrossRefGoogle Scholar
Reuter, K., Stampfl, C., and Scheffler, M. (2005), Handbook of Materials Modeling, ed. Yip, S. (Springer, Berlin), vol. 1, p. 149.CrossRefGoogle Scholar
Rosta, E. and Hummer, G. (2009), J. Chem. Phys. 131, 165102.CrossRefGoogle Scholar
Rosta, E. and Hummer, G. (2010), J. Chem. Phys. 132, 034102.CrossRefGoogle Scholar
Saracco, G. P. and Gonella, G. (2009), Phys. Rev. E 80, 051126.CrossRefGoogle Scholar
Sasaki, M. (2009), Phys. Rev. E 82, 031118.CrossRefGoogle Scholar
Sasaki, M. and Matsubara, F. (2008), J. Phys. Soc. Japan 77, 024004.CrossRefGoogle Scholar
Savvidy, K. G. (2015), Comput. Phys. Commun. 196, 161.CrossRefGoogle Scholar
Schilling, T. and Schmid, F. (2009), J. Chem. Phys. 131, 231102.CrossRefGoogle Scholar
Schmid, F. and Wilding, N. B. (1995), Int. J. Mod. Phys. C 6, 781.CrossRefGoogle Scholar
Schmitz, F., Virnau, P., and Binder, K. (2013), Phys. Rev. E 87, 053302.CrossRefGoogle Scholar
Schneider, J. J. and Kirkpatrick, S. (2006), Stochastic Optimization (Springer, Berlin).Google Scholar
Schwartz, M. (1991), Europhys. Lett. 15, 777.CrossRefGoogle Scholar
Selke, W. (1988), Phys. Repts. 170, 213.CrossRefGoogle Scholar
Selke, W., Shchur, L. N., and Talapov, A. L. (1994), in Annual Reviews of Computer Science I, ed. Stauffer, D. (World Scientific, Singapore) p. 17.Google Scholar
Shchur, L. N. and Butera, P. (1998), Int. J. Mod. Phys. C 9, 607.CrossRefGoogle Scholar
Sweeny, M. (1983), Phys. Rev. B 27, 4445.CrossRefGoogle Scholar
Swendsen, R. H. and Wang, J.-S. (1986), Phys. Rev. Lett. 57, 2607.CrossRefGoogle Scholar
Swendsen, R. H. and Wang, J.-S. (1987), Phys. Rev. Lett. 58, 86.CrossRefGoogle Scholar
Tipton, W. W. and Hennig, R. G. (2013), J. Phys.: Condens. Matter 25, 495401.Google Scholar
Tomita, Y. and Okabe, Y. (2001), Phys. Rev. Lett. 86, 572.CrossRefGoogle Scholar
Trobo, M. L., Albano, E. V., and Binder, K. (2018), J. Chem. Phys. 148, 114701.CrossRefGoogle Scholar
Tröster, A. (2007), Phys. Rev. B 76, 012402.CrossRefGoogle Scholar
Tröster, A. (2008a), Phys. Rev. Lett. 100, 140602.CrossRefGoogle Scholar
Tröster, A. (2008b), Comput. Phys. Comm. 179, 30.CrossRefGoogle Scholar
Tröster, A. (2013), Phys. Rev. B 87, 104112.CrossRefGoogle Scholar
Tröster, A., Schmitz, F., Virnau, P., and Binder, K. (2018), J. Phys. Chem. B 122, 3407.CrossRefGoogle Scholar
Uhlherr, A. (2003), Comput. Phys. Commun. 155, 31.CrossRefGoogle Scholar
Urbach, C. (2018), Comput. Phys. Commun. 224, 44.CrossRefGoogle Scholar
Vink, R. L. C., Binder, K., and Löwen, H. (2006), Phys. Rev. Lett. 97, 230603.CrossRefGoogle Scholar
Vink, R. L. C., Binder, K., and Löwen, H. (2008), J. Phys.: Condens. Matter 20, 404222.Google Scholar
Vink, R. L. C., Fischer, T., and Binder, K. (2010), Phys. Rev. E 82, 051134.CrossRefGoogle Scholar
Vogel, T., and Perez, D. (2015), Phys. Rev. Lett. 115, 190602.CrossRefGoogle Scholar
Vollmayr, K., Reger, J. D., Scheucher, M., and Binder, K. (1993), Z. Physik B: Condens. Matter 91, 113.CrossRefGoogle Scholar
Wang, J.-S., Swendsen, R. H., and Kotecký, R. (1989), Phys. Rev. Lett. 63, 109.CrossRefGoogle Scholar
Wang, J.-S. (1989), Physica A 161, 249CrossRefGoogle Scholar
Wang, J.-S. (1990), Physica A 164, 240.CrossRefGoogle Scholar
Wansleben, S. (1987), Comput. Phys. Commun. 43, 315.CrossRefGoogle Scholar
Winter, D., Virnau, P., Horbach, J., and Binder, K. (2010), Europhys. Lett. 91, 60002.CrossRefGoogle Scholar
Wiseman, S. and Domany, E. (1995), Phys. Rev. E 52, 3469.CrossRefGoogle Scholar
Wiseman, S. and Domany, E. (1998), Phys. Rev. Lett. 81, 22.CrossRefGoogle Scholar
Wolff, U. (1988), Nucl. Phys. B 300, 501.CrossRefGoogle Scholar
Wolff, U. (1989a), Phys. Rev. Lett. 62, 361.CrossRefGoogle Scholar
Wolff, U. (1989b), Nucl. Phys. B 322, 759.CrossRefGoogle Scholar
Wolff, U. (1990), Nucl. Phys. B 334, 581.CrossRefGoogle Scholar
Wu, Y., and Machta, J. (2006), Phys. Rev. B 74, 064418.CrossRefGoogle Scholar
Xu, J., Tsai, S.-H., Landau, D. P., and Binder, K. (2018), Phys. Rev. E 99, 023309.CrossRefGoogle Scholar
Young, A. P. (1996), in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, eds. Binder, K. and Ciccotti, G. (Società Italiana di Fisica, Bologna), p. 285.Google Scholar
Young, A. P. (ed.) (1998), Spin Glasses and Random Fields (World Scientific, Singapore).Google Scholar
Zorn, R., Herrmann, H. J., and Rebbi, C. (1981), Comput. Phys. Commun. 23, 337.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×