Skip to main content Accessibility help
Hostname: page-component-7d684dbfc8-mqbnt Total loading time: 0 Render date: 2023-09-29T21:16:24.325Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

13 - Monte Carlo simulations at the periphery of physics and beyond

Published online by Cambridge University Press:  24 November 2021

David Landau
University of Georgia
Kurt Binder
Johannes Gutenberg Universität Mainz, Germany
Get access


In the preceding chapters we described the application of Monte Carlo methods in numerous areas that can be clearly identified as belonging to physics. Although the exposition was far from complete, it should have sufficed to give the reader an appreciation of the broad impact that Monte Carlo studies has already had in statistical physics. A more recent occurrence is the application of these methods in non-traditional areas of physics related research. More explicitly, we mean subject areas that are not normally considered to be physics at all but which make use of physics principles at their core. In some cases physicists have entered these arenas by introducing quite simplified models that represent a ‘physicist’s view’ of a particular problem. Often such descriptions are oversimplified, but the hope is that some essential insight can be gained as is the case in many traditional physics studies. (A provocative perspective of the role of statistical physics outside physics has been presented by Stauffer (2004).) In other cases, however, Monte Carlo methods are being applied by non-physicists (or ‘recent physicists’) to problems that, at best, have a tenuous relationship to physics. This chapter is to serve as a brief glimpse of applications of Monte Carlo methods ‘outside’ physics. The number of such studies will surely grow rapidly; and even now, we wish to emphasize that we will make no attempt to be complete in our treatment.

Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adams, C. D., Srolovitz, D. J., and Atzmon, M. (1993), J. Appl. Phys. 74, 1707.CrossRefGoogle Scholar
Agrawal, H. (2002), Phys. Rev. Lett. 89, 268702.CrossRefGoogle Scholar
Agrawal, H. and Domany, E. (2003), Phys. Rev. Lett. 90, 158102.CrossRefGoogle Scholar
Assié, K., Breton, V., Buvat, I., Comtat, C., Jan, S., Krieguer, M., Lazaro, D., Morel, C., Rey, M., Santin, G., Simon, L., Staelens, S., Strul, D., Vieira, J.-M., and van der Walle, R. (2004), Nucl. Instr. and Methods in Phys. Res. A 527, 180.CrossRefGoogle Scholar
Bachmann, M. and Janke, W. (2004), J. Chem. Phys. 120, 6779.CrossRefGoogle Scholar
Battogtokh, D., Asch, D. K., Case, M. E., Arnold, J., and Schüttler, H.-B. (2002), Proc. Natl Acad. Sci. (USA) 99, 16904.CrossRefGoogle Scholar
Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (2011), Handbook of Markov Chain Monte Carlo (Chapman and Hall, Boca Raton, FL).CrossRefGoogle Scholar
Cassola, V. F. and Hoff, G (2009), IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium. DOI: 10.1109/NSSMIC.2009.5402097.CrossRefGoogle Scholar
Chaumont, P., Gnanou, Y., Hild, G., and Rempp, P. (1985), Macromol. Chem. 186, 2321.CrossRefGoogle Scholar
Chen, N., Glazier, J. A., Izaguirre, J. A., and Alber, M. S. (2007), Comput. Phys. Commun. 176, 670.CrossRefGoogle Scholar
Chowdhury, D., Santen, L., and Schadschneider, A. (2000), Phys. Rep, 329, 199.CrossRefGoogle Scholar
Cont, R. and Bouchaud, J. P (2000), Macroeconomic Dynamics 4, 170.CrossRefGoogle Scholar
Cuticchia, A. J., Arnold, J., and Timberlake, W. E. (1992), Genetics 132, 591.CrossRefGoogle Scholar
Czirók, A. and Vicsek, T. (2000), Physica A 322, 17.CrossRefGoogle Scholar
de Oliveira, S. M., de Oliveira, P. M. C., and Stauffer, D. (2003), Physica A 322, 521.CrossRefGoogle Scholar
Derrida, B., Manrubia, S. C., and Zanette, D. H. (2000), Physica A 281, 1.CrossRefGoogle Scholar
Deutsch, H.-P. (2002), Derivatives and Internal Models, 2nd edn. (Palgrave, New York).CrossRefGoogle Scholar
Dill, K. A. (1985), Biochemistry 24, 1501.CrossRefGoogle Scholar
Ding, Z., Dong, Y., Kou, G., Palomares, I., and Yu, S. (2018), Int. J. Mod. Phys. C 29 , 1850046.CrossRefGoogle Scholar
Elliott, J. and Hancock, B., eds. (2006), MRS Bulletin 31.CrossRefGoogle Scholar
Ertl, G. (1990), Adv. Catalysis 37, 213.Google Scholar
Farris, A. C. K., Shi, G., Wüst, T., and Landau, D. P. (2018) J. Chem. Phys. 149, 125101.CrossRefGoogle Scholar
Fasolino, A., Los, J. H., and Katsnelson, M. I. (2007), Nature Mater. 6, 858.CrossRefGoogle Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., et al., (2009), J. Phys.: Condens. Matter 21, 395502.Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., et al., (2017), J. Phys.: Condens. Matter 29, 465901.Google Scholar
Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (eds.) (1996), Markov Chain Monte Carlo in Practice (Chapman and Hall, London).Google Scholar
Graner, F. and Glazier, J. A. (1992), Phys. Rev. Lett. 69, 2013.CrossRefGoogle Scholar
Guclu, H., Korniss, G., Novotny, M. A., Toroczkai, Z., and Rácz, Z. (2006), Phys. Rev. E 73, 066115.CrossRefGoogle Scholar
Hammel, C. and Paul, W. B. (2002), Physica A 313, 640.CrossRefGoogle Scholar
Hastings, W. (1970), Biometrika 57, 97.CrossRefGoogle Scholar
Hitchcock, D. H. (2003), Amer. Stat. 57, 254.CrossRefGoogle Scholar
Hoff, G., de Assis, J. T., Brunetti, A., Fanti, V., and Golosio, B. (2017) Euro. J. Med. Phys. 42, Suppl. 1, 14.Google Scholar
Hsu, H.-P., Mehra, V., Nadler, W., and Grassberger, P. (2003a), Phys. Rev. E 68, 021113.CrossRefGoogle Scholar
Hsu, H.-P., Mehra, V., Nadler, W., and Grassberger, P. (2003b), J. Chem. Phys. 118, 444.CrossRefGoogle Scholar
Imbiehl, R. (1993), Progr. Surf. Sci. 44, 185.CrossRefGoogle Scholar
Ishisaki, Y., Maeda, Y., Fujimoto, R., Ozaki, M., Ebisawa, K., Takahashi, T., Ueda, Y., Ogasaka, Y., Ptak, A., Mukai, K., Hamaguchi, K., Hirayama, M., Kotani, T., Kubo, H., Shibata, R., Ebara, M., Furuzawa, A., Izuka, R., Inoue, H., Mori, H., Okada, S., Yokoyama, Y., Matsumoto, H., Nakajima, H., Yamaguchi, H., Anabuki, N., Tawa, N., Nagai, M., Katsuda, S., Hayashida, K., Bamba, A., Miller, E. D., Sato, K., and Yamasaki, N. Y. (2007), Publ. Astron. Soc. Japan 59, S113.CrossRefGoogle Scholar
Jäckel, P. (2002), Monte Carlo Methods in Finance (Wiley, Chichester).Google Scholar
John, A. and Sommer, J.-U. (2008), Macromol. Theory Simul. 17, 274.CrossRefGoogle Scholar
Johnson, A. F. and O’Driscoll, K. F. (1984), Eur. Polym. J. 20, 979CrossRefGoogle Scholar
Johnson, J. K. (1999), in Monte Carlo Methods in Chemical Physics, eds. Ferguson, D. M., Siepmann, J. I., and Truhlar, D. G. (J. Wiley & Sons, New York), p. 461.Google Scholar
Jorgensen, W. L. and Tirado-Rives, J. (1996), J. Phys. Chem. 100, 14508.CrossRefGoogle Scholar
Kopelman, R. (1989), in The Fractal Approach to Heterogeneous Chemistry, ed. Avnir, D. (J. Wiley & Sons, New York), p. 295.Google Scholar
Kou, S. C., Oh, J., and Wong, W. H. (2006), J. Chem. Phys. 124, 244903.CrossRefGoogle Scholar
Kulakowski, K., Stojkow, M., Zuchowska-Skiba, D., and Gawroński, P. (2018), Int. J. Mod. Phys. C 29 , 1850053.CrossRefGoogle Scholar
Kumpula, J. M., Onnela, J.-P., Saramäki, J., Kaski, K., and Kertész, J. (2007), Phys. Rev. Lett. 99, 228 701.CrossRefGoogle Scholar
Lattmann, E. E., Fiebig, K. M., and Dill, K. A. (1994), Biochemistry 33, 6158.CrossRefGoogle Scholar
Lau, K. F., and Dill, K. A. (1989), Macromolecules 22, 3986.CrossRefGoogle Scholar
Leal, A., Sánchez-Doblado, F., Perucha, M., Carrasco, E., and Rincón, M. (2004), Comput. in Sci. and Eng. 6, 60.CrossRefGoogle Scholar
Lesh, N., Mitzenmacher, M., and Whitesides, S. (2003), in Proceedings of the 7th Annual International Conference on Research in Computational Molecular Biology, eds. Vingron, M., Istrail, S., and Pevzner, P. (ACM Press, New York), p. 188.Google Scholar
Li, Y. W., Pitike, K. C., Eisenbach, M., and Cooper, V. R. (2020a), J. Phys.: Conf Ser. (submitted).Google Scholar
Li, Y. W., Yuk, S. F., Wilson, M. S., Xu, L., Pitike, K. C., Eisenbach, M., and Cooper, V. C. (2020b), Comput. Phys. Comm. (submitted).Google Scholar
Liu, J. (2001), Monte Carlo Strategies in Scientific Computing (Springer, New York).Google Scholar
Loscar, E. and Albano, E. V. (2003), Rep. Progr. Phys. 66, 1343.CrossRefGoogle Scholar
Malec, H. A. (1971), Microelectronics and Reliability 10, 339.CrossRefGoogle Scholar
Marro, J. and Dickman, R. (1999), Nonequilibrium Phase Transitions and Critical Phenomena (Cambridge University Press, Cambridge).Google Scholar
McLeish, D. L. (2005), Monte Carlo Simulation and Finance (Wiley, Hoboken).Google Scholar
Mézard, M. and Montanari, A. (2009), Information, Physics, and Computation (Oxford University Press, Oxford).CrossRefGoogle Scholar
Mücke, A., Engel, R., Rachen, J. P., Protheroe, R. J., and Stanev, T. (2000), Comp. Phys. Commun. 124, 290.CrossRefGoogle Scholar
Mustonen, V. and Rajesh, R. (2003), J. Phys. A: Math and General 36, 6651.CrossRefGoogle Scholar
Nagase, F. and Watanabe, S. (2006), Adv. Space Res. 38, 2737.CrossRefGoogle Scholar
Nagel, K. and Schreckenberg, M. (1992), J. Physique I 2, 2221.CrossRefGoogle Scholar
Newman, M. E. J. and Girvan, M. (2004), Phys. Rev. E 69, 026113.CrossRefGoogle Scholar
Northrup, S. H. and McCammon, J. A. (1980), Biopol. 19, 1001.CrossRefGoogle Scholar
Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., and Barabási, A.-L. (2007), PNAS 104, 7332.CrossRefGoogle Scholar
Parodi, K., and Assmann, W. (2019), Physik J. 18, 35.Google Scholar
Pitfield, D. E. and Jerrard, E. A. (1999), J. Air Trans. Manag. 5, 185.CrossRefGoogle Scholar
Pitfield, D. E., Brooks, A. S., and Jerrard, E. A. (1998), J. Air Trans. Manag. 4, 3.CrossRefGoogle Scholar
Qin, N., Shen, C., Tsai, M.-Y., Pinto, M., Tian, Z., Dedes, G., et al. (2018), Int. J. Radiat. Oncol. Biol. Phys. 100, 235.CrossRefGoogle Scholar
Richardson, R. B. and Dubeau, J. (2003), Rad. Prot. Dosim. 103, 5.CrossRefGoogle Scholar
Shirinifard, A., Glazier, J. A., Swat, M., Gens, J. S., Family, F., Hiang, Y., and Grossniklaus, H. E. (2012), PLoS Comput. Biol. 8, e1002440.CrossRefGoogle Scholar
Stanley, H. E., Amaral, L. A. N., Canning, D., Gopikrishnan, P., Lee, Y., and Liu, Y. (1999), Physica A 269, 156.CrossRefGoogle Scholar
Stanley, H. E., Ausloos, M., Kertesz, J., Mantegna, R. N., Scheinkman, J. A., and Takayasu, H. (2003), The Proceedings of the International Econophysics Conference, Physica A, p. 324.Google Scholar
Stauffer, D. (2001), Adv. Complex Systems 4, 19.CrossRefGoogle Scholar
Stauffer, D. (2002), Comput. Phys. Commun. 146, 93.CrossRefGoogle Scholar
Stauffer, D. (2003), Comput. Sci. Eng. May–June, 5, 71.CrossRefGoogle Scholar
Stauffer, D. (2004), Physica A 336, 1.CrossRefGoogle Scholar
Stauffer, D., Moss de Oliveira, S., de Oliveira, P. M. C., and Martins, . (2006), Biology, Sociology, Geology by Computational Physicists (Elsevier, Amsterdam).CrossRefGoogle Scholar
Sznajd-Weron, K. and Sznajd, J. (2000), Int. J. Mod. Phys. C 11, 1239.CrossRefGoogle Scholar
Tang, S. H. and Ong, P. P. (1988), Appl. Acoustics 23, 263.CrossRefGoogle Scholar
Toma, L. and Toma, S. (1996), Protein Sci. 5, 147.CrossRefGoogle Scholar
Waldeer, K. T. (2003), Comput. Phys. Commun. 156, 1.CrossRefGoogle Scholar
Wang, Y., Stocks, G. M., Shelton, W. A., Nicholson, D. M. C., Szotek, Z., and Temmerman, W. M. (1995), Phys. Rev. Lett. 75, 2867.CrossRefGoogle Scholar
Watanabe, S., Nagase, F., Takahashi, T., Sako, M., Kahn, S. M., Ishida, M., Ishisaki, Y., Kohmura, T., and Paerels, F. (2004), 22nd Texas Symposium on Relativistic Astrophysics, SLAC-PUB-11350.Google Scholar
Watts, D. J. and Strogatz, S. H. (1998), Nature 393, 440.CrossRefGoogle Scholar
Wüst, T. and Landau, D. P. (2008), Comput. Phys. Comm. 179, 124.CrossRefGoogle Scholar
Wüst, T. and Landau, D. P. (2012), J. Chem. Phys. 137, 064903.CrossRefGoogle Scholar
Yip, M. H. and Carvalho, M. J. (2007), Comput. Phys. Commun. 177, 965.CrossRefGoogle Scholar
Yip, S. (ed.) (2005), Handbook of Materials Modeling (Springer, Berlin).CrossRefGoogle Scholar
Yu, Y., Dong, W., Altimus, C., Tang, X., Griffith, J., Morello, M., Dudek, L., Arnold, J., and Schüttler, H.-B. (2007), PNAS 104, 2809.CrossRefGoogle Scholar
Zhang, J., Kou, S. C., and Liu, J. (2007), J. Chem. Phys. 126, 225 101.CrossRefGoogle Scholar
Ziff, R., Gulari, E., and Barshad, Y. (1986) Phys. Rev. Lett. 56, 2553.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats