Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-bjz6k Total loading time: 0.479 Render date: 2022-05-20T21:43:03.740Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

13 - Boundaries of Zn-Free Groups

Published online by Cambridge University Press:  20 July 2017

Andrei Malyutin
Affiliation:
St. Petersburg Department of V.A. Steklov Mathematical Institute, Fontanka 27, 191023, St. Petersburg, Russia
Tatiana Nagnibeda
Affiliation:
Section de Mathématiques, University of Geneva, 2-4 Rue du Lièvre, Case Postale 64, 1211 Genève 4, Suisse
Denis Serbin
Affiliation:
Department of Mathematical Sciences, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ 07030, USA
Tullio Ceccherini-Silberstein
Affiliation:
Università degli Studi del Sannio, Italy
Maura Salvatori
Affiliation:
Università degli Studi di Milano
Ecaterina Sava-Huss
Affiliation:
Cornell University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] R., Alperin and H., Bass. Length functions of group actions on trees. In Combinatorial group theory and topology, ed. S. M. Gersten and J. R. Stallings, vol. 111 of Annals of Math. Studies, pp. 265–378. Princeton University Press, 1987.
[2] H., Bass. Group actions on non-Archimedean trees. In Arboreal group theory, vol. 19 of MSRI Publications, pp. 69–131, New York: Springer- Verlag, 1991.
[3] M., Bestvina and M., Feighn Stable actions of groups on real trees. Invent. Math., 2(2):287–321, 1995.Google Scholar
[4] I., Bumagin and O., Kharlampovich. Z n-free groups are CAT(0). J. London Math. Soc., 3(3):761–78, 2013.Google Scholar
[5] D. I., Cartwright and P. M., Soardi. Convergence to ends for random walks on the automorphism group of a tree. Proc. Amer. Math. Soc., 107:817–23, 1989.Google Scholar
[6] I., Chiswell. Abstract length functions in groups. Math. Proc. Cambridge Philos. Soc., 3(3):451–63, 1976.Google Scholar
[7] I., Chiswell. Introduction to trees. Singapore: World Scientific, 2001.
[8] D. E., Cohen. Combinatorial group theory: a topological approach, vol. 14 of London Mathematical Society Student Texts. Cambridge University Press, 1989.
[9] F., Dahmani. Combination of convergence groups. Geom. Topol., 7:933–63, 2003.Google Scholar
[10] H., Furstenberg. Boundary theory and stochastic processes on homogeneous spaces. In Harmonic analysis on homogeneous spaces, vol. 26 of Proc. Sympos. Pure Math., pp. 193–229, Providence, RI: American Mathematical Society, 1973.
[11] D., Gaboriau, G., Levitt, and F., Paulin. Pseudogroups of isometries of R and Rips' Theorem on free actions on R-trees. Israel. J. Math., 87:403–28, 1994.Google Scholar
[12] V., Gerasimov. Floyd maps for relatively hyperbolic groups. GAFA, 5(5):1361–99, 2012.Google Scholar
[13] V., Gerasimov and L., Potyagailo. Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups. J. Eur. Math. Soc., 6(6):2115–37, 2013.Google Scholar
[14] V., Guirardel. Limit groups and groups acting freely on R n-trees. Geom. Topol., 8:1427–70, 2004.Google Scholar
[15] V. A., Kaimanovich. The Poisson formula for groups with hyperbolic properties. Ann. of Math., 152:659–92, 2000.Google Scholar
[16] V. A., Kaimanovich and H., Masur. The Poisson boundary of the mapping class group. Invent. Math., 2(2):221–64, 1996.Google Scholar
[17] A., Karlsson. Free subgroups of groups with non-trivial Floyd boundary. Comm. Algebra, 31:5361–76, 2003.Google Scholar
[18] A., Karlsson and G., Margulis. A Multiplicative Ergodic Theorem and Nonpositively Curved Spaces. Commun. Math. Phys., 208:107–23, 1999.Google Scholar
[19] O., Kharlampovich, A. G., Myasnikov, V. N., Remeslennikov, and D., Serbin. Groups with free regular length functions in Zn. Trans. Amer. Math. Soc., 364:2847–82, 2012.Google Scholar
[20] O., Kharlampovich, A. G., Myasnikov, and D., Serbin. Actions, length functions, and non-archemedian words. Internat. J. Algebra Comput., 2(2):325–455, 2013.Google Scholar
[21] O., Kharlampovich, A. G., Myasnikov, and D., Serbin. Infinite words and universal free actions. Groups, Complexity, Cryptology, 1(1):55–69, 2014.Google Scholar
[22] O., Kharlampovich, A. G., Myasnikov, and D., Serbin. Regular completions of Zn-free groups. Sumbitted, Available at http://arxiv.org/abs/1208.4640, 2016.
[23] R., Lyndon. Length functions in groups. Math. Scand., 12:209–34, 1963.Google Scholar
[24] A. V., Malyutin and A. M., Vershik. Boundaries of braid groups and the Markov–Ivanovsky normal form. Izv. RAN. Ser. Mat., 6(6):105–32, 2008.Google Scholar
[25] J., Morgan and P., Shalen. Valuations, trees, and degenerations of hyperbolic structures, I. Ann. of Math., 120:401–76, 1984.Google Scholar
[26] A., Nevo and M., Sageev. The Poisson boundary of CAT(0) cube complex groups. Groups, Geometry, and Dynamics, 3(3):653–95, 2013.Google Scholar
[27] J., Tits. A ‘theorem of Lie-Kolchin’ for trees. In Contributions to algebra: a collection of papers dedicated to Ellis Kolchin, pp. 377–88. New York: Academic Press: 1977.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Boundaries of Zn-Free Groups
    • By Andrei Malyutin, St. Petersburg Department of V.A. Steklov Mathematical Institute, Fontanka 27, 191023, St. Petersburg, Russia, Tatiana Nagnibeda, Section de Mathématiques, University of Geneva, 2-4 Rue du Lièvre, Case Postale 64, 1211 Genève 4, Suisse, Denis Serbin, Department of Mathematical Sciences, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ 07030, USA
  • Edited by Tullio Ceccherini-Silberstein, Università degli Studi del Sannio, Italy, Maura Salvatori, Università degli Studi di Milano, Ecaterina Sava-Huss, Cornell University, New York
  • Book: Groups, Graphs and Random Walks
  • Online publication: 20 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316576571.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Boundaries of Zn-Free Groups
    • By Andrei Malyutin, St. Petersburg Department of V.A. Steklov Mathematical Institute, Fontanka 27, 191023, St. Petersburg, Russia, Tatiana Nagnibeda, Section de Mathématiques, University of Geneva, 2-4 Rue du Lièvre, Case Postale 64, 1211 Genève 4, Suisse, Denis Serbin, Department of Mathematical Sciences, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ 07030, USA
  • Edited by Tullio Ceccherini-Silberstein, Università degli Studi del Sannio, Italy, Maura Salvatori, Università degli Studi di Milano, Ecaterina Sava-Huss, Cornell University, New York
  • Book: Groups, Graphs and Random Walks
  • Online publication: 20 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316576571.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Boundaries of Zn-Free Groups
    • By Andrei Malyutin, St. Petersburg Department of V.A. Steklov Mathematical Institute, Fontanka 27, 191023, St. Petersburg, Russia, Tatiana Nagnibeda, Section de Mathématiques, University of Geneva, 2-4 Rue du Lièvre, Case Postale 64, 1211 Genève 4, Suisse, Denis Serbin, Department of Mathematical Sciences, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ 07030, USA
  • Edited by Tullio Ceccherini-Silberstein, Università degli Studi del Sannio, Italy, Maura Salvatori, Università degli Studi di Milano, Ecaterina Sava-Huss, Cornell University, New York
  • Book: Groups, Graphs and Random Walks
  • Online publication: 20 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316576571.015
Available formats
×