Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T14:36:59.930Z Has data issue: false hasContentIssue false

Part II - Neurobiological and Ecological Markers

Published online by Cambridge University Press:  23 November 2023

Ludo Verhoeven
Affiliation:
Radboud Universiteit Nijmegen
Sonali Nag
Affiliation:
University of Oxford
Charles Perfetti
Affiliation:
University of Pittsburgh
Kenneth Pugh
Affiliation:
Yale University, Connecticut
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Berman, R. A., & Verhoeven, L. (2002). Cross-linguistic perspectives on the development of text-production abilities: Speech and writing. Written Language and Literacy, 5(1), 143. DOI: https://doi.org/10.1075/wll.5.1.02ber.CrossRefGoogle Scholar
Bolger, D. J., Perfetti, C. A., & Schneider, W. (2005). A cross-cultural effect on the brain revisited: Universal structures plus writing system variation. Journal of Human Brain Mapping, 25(1), 92104.CrossRefGoogle ScholarPubMed
Bright, B. (2000). A matter of typology: Alphasyllabaries and abugidas. Studies in the Linguistics Sciences, 30(1), 6371.Google Scholar
Cao, F., Bitan, T., Chou, T. L., Burman, D. D., & Booth, J. R. (2006). Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. Journal of Child Psychology and Psychiatry, 47, 10411050.CrossRefGoogle ScholarPubMed
Cao, F., & Perfetti, C. A. (2017). Neural signatures of the reading-writing connection: Greater involvement of writing in Chinese reading. PlosOne 11(12), e0168414. DOI: https://doi.org/10.1371/journal.pone.0168414.CrossRefGoogle Scholar
Chang, L.-Y., Chen, Y.-C., & Perfetti, C. A. (2017). GraphCom: A multidimensional measure of graphic complexity applied to 131 written languages. Behavior Research Methods, 50, 427449.CrossRefGoogle Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204256.CrossRefGoogle ScholarPubMed
Daniels, P. T. (1990). Fundamentals of grammatology. Journal of the American Oriental Society, 119(4), 727731. DOI: https://doi.org/10.2307/602899, JSTOR 602899.CrossRefGoogle Scholar
Daniels, P. T. (1992). The syllabic origin of writing and the segmental origin of the alphabet. In Downing, P., Lima, S. D., & Noonan, M. (eds.), The Linguistics of Literacy (pp. 83110). Amsterdam: John Benjamins.CrossRefGoogle Scholar
Daniels, P. T. (1996). The invention of writing. In Daniels, P. T. & Bright, W. (eds.), The World’s Writing Systems. New York: Oxford.Google Scholar
Daniels, P. T., & Bright, W. (1996). The World’s Writing System. New York: Oxford.Google Scholar
Daniels, P. T., & Share, D. L. (2018). Writing system variation and its consequences for reading and dyslexia. Scientific Studies of Reading, 22(1), 101116. DOI: https://doi.org/10.1080/10888438.2017.1379082.CrossRefGoogle Scholar
Davis, J. B. (1930). The Life and Work of Sequoyah: Chronicles of Oklahoma, vol. 8, no. 2. https://web.archive.org/web/20171028175529/http://digital.library.okstate.edu/chronicles/v008/v008p149.html.Google Scholar
DeFrancis, J. (1989). Visible Speech: The Diverse Oneness of Writing Systems. Honolulu: University of Hawaii Press.CrossRefGoogle Scholar
Ehri, L. C. (2014). Orthographic mapping in the acquisition of sight word reading, spelling memory and vocabulary learning. Scientific Studies of Reading, 18, 521.CrossRefGoogle Scholar
Ellis, N. C., & Hooper, A. M. (2001). Why learning to read is easier in Welsh than in English: Orthographic transparency effects evinced with frequency-matched tests. Applied Linguistics, 22(4), 571599.Google Scholar
Frost, R. (2012). Towards a universal model of reading. Behavioral and Brain Sciences, 35(5), 263–79. DOI: https://doi.org/10.1017/S0140525X11001841.CrossRefGoogle ScholarPubMed
Gelb, I. J. (1952). A Study of Writing. Chicago: University of Chicago Press. (Rev. ed., 1963.)Google Scholar
Goswami, U., Gombert, J. E., & de Barrera, L. F. (1998). Children’s orthographic representations and linguistic transparency: Nonsense word reading in English, French, and Spanish. Applied Psycholinguistics, 19(10), 1952.CrossRefGoogle Scholar
Goswami, U., Porpodas, C., & Wheelwright, S. (1997). Children’s orthographic representations in English and Greek. European Journal of Psychology of Education, 12, 273.CrossRefGoogle Scholar
Halliday, M. A. K. (1977). Ideas about language. In Aims and Perspectives in Linguistics. Occasional Papers, No. 1 (pp. 3255). Applied Linguistics Association of Australia. (Reprinted in On Language and Linguistics: Collected Works of M. A. K. Halliday, vol. 3, ed. Jonathan Webster, pp. 92115. London: Bloomsbury Publishing.)Google Scholar
Kelly, P. (2019). The invention, transmission and evolution of writing: Insights from the new scripts of West Africa. In Ferrara, S. & Valerio, M. (eds.), Paths Into Script Formation in the Ancient Mediterranean (pp. 189209). New England: Studi Micenei ed Egeo-Anatolici.Google Scholar
Kim, S. Y., Qi, T., Feng, X., Ding, G., Liu, L., & Cao, F. (2016). How does language distance between L1 and L2 brain network? An fMRI study of Korean-Chinese-English trilinguals. Neuroimage, 129(1), 2539.CrossRefGoogle ScholarPubMed
Kim-Renaud, Y.-K. (2000). Sejong’s theory of literacy and writing. Studies in the Linguistic Sciences, 30(1), 1345.Google Scholar
Kintsch, W. (1988). The use of knowledge in discourse processing: A construction-integration model. Psychological Review, 95, 163182.CrossRefGoogle Scholar
Kuhl, P. K., Andruski, J. E., Chistovich, I. A. et al. (1997). Cross-language analysis of phonetic units in language addressed to infants. Science, 277, 684686.CrossRefGoogle ScholarPubMed
Liberman, I. Y. (1973). Segmentation of the spoken word and reading acquisition. Bulletin of the Orton Society 23, 6577.CrossRefGoogle Scholar
Ma, B., Wang, X., & Li, D. (2016). The processing of visual and phonological configurations of Chinese one- and two-character words in a priming task of semantic categorization. Frontiers in Psychology, 6, 1918. DOI: https://doi.org/10.3389/fpsyg.2015.01918.CrossRefGoogle Scholar
Metsala, J. L., & Walley, A. C. (1998). Spoken vocabulary growth and the segmental restructuring of lexical representations: Precursors to phonemic awareness and early reading ability. In Metsala, J. L. & Ehri, L. C. (eds.), Word Recognition in Beginning Literacy (pp. 89120). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Nag, S. (2007). Early reading in Kannada: The pace of acquisition of orthographic knowledge and phonemic awareness. Journal of Reading in Research, 30, 722.CrossRefGoogle Scholar
Nakamura, K., Kuo, W.-J., Pegado, F. et al. (2012). Universal brain systems for recognizing word shapes and handwriting gestures during reading. Proceedings of the National Academy of Sciences (PNAS), 109(50), 2076220767.CrossRefGoogle ScholarPubMed
Patel, T. K., Snowling, M. J., & de Jong, P. F. (2004). A cross-linguistic comparison of children learning to read in English and Dutch. Journal of Educational Psychology, 96(4), 785797.CrossRefGoogle Scholar
Pelli, D. G., Burns, C. W., Farell, B., & Moore-Page, D. C. (2006). Feature detection and letter identification. Vision Research, 46(28), 46464674.CrossRefGoogle ScholarPubMed
Perfetti, C. A. (1992). The representation problem in reading acquisition. In Gough, P. B., Ehri, L. C., & Treiman, R. (eds.), Reading Acquisition (pp. 145174). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Perfetti, C. A. (2003). The universal grammar of reading. Scientific Studies of Reading, 7(1), 324.CrossRefGoogle Scholar
Perfetti, C. A., Cao, F., & Booth, J. (2013). Specialization and universals in the development of reading skill: How Chinese research informs a universal science of reading. Scientific Studies of Reading, 17(1), 521.CrossRefGoogle ScholarPubMed
Perfetti, C. A., & Harris, L. N. (2013). Universal reading processes are modulated by language and writing system. Language Learning and Development, 9(4), 296316.CrossRefGoogle Scholar
Perfetti, C. A., Liu, Y., Fiez, J. et al. (2007). Reading in two writing systems: Accommodation and assimilation in the brain’s reading network. Bilingualism: Language and Cognition, 10(2), 131146. Special issue on “Neurocognitive approaches to bilingualism: Asian languages,” P. Li (Ed.).CrossRefGoogle Scholar
Perfetti, C. A., & Verhoeven, L. (2017). Epilogue: Universals and particulars in learning to read across seventeen orthographies. In Verhoeven, L. & Perfetti, C. A. (eds.), Learning to Read across Languages and Writing Systems (pp. 455480). Cambridge: Cambridge University Press.Google Scholar
Perfetti, C. A., Zhang, S., & Berent, I. (1992). Reading in English and Chinese: Evidence for a “universal” phonological principle. In Frost, R. & Katz, L. (eds.), Orthography, Phonology, Morphology, and Meaning (pp. 227248). Amsterdam: North-Holland.CrossRefGoogle Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Human Brain Mapping, 30(10), 32993308.CrossRefGoogle Scholar
Seidenberg, M. S. (2011). Reading in different writing systems: One architecture, multiple solutions. In McCardle, P., Ren, J., Tzeng, O., & Miller, B. (eds.), Dyslexia across Languages: Orthography and the Brain-Gene-Behavior Link (pp. 146168). Baltimore, MD: Brookes.Google Scholar
Seymour, P. H. K., Aro, M., & Erskine, J. M. in collaboration with COST Action A8 network (2003). Foundation literacy acquisition in European orthographies. British Journal of Psychology, 94, 143174.CrossRefGoogle ScholarPubMed
Share, D. L. (1995). Phonological recoding and self-teaching: Sine qua non of reading acquisition. Cognition, 55, 151218.CrossRefGoogle ScholarPubMed
Share, D. L. (2004). Orthographic learning at a glance: On the time course and developmental onset of reading. Journal of Experimental Child Psychology, 87, 267298.CrossRefGoogle Scholar
Share, D. L., & Daniels, P. T. (2015). Aksharas, alphasyllabaries, abugidas, alphabets, and orthographic depth: Reflections on Rimzhim, Katz, and Fowler (2014). Writing Systems Research, 8(1), 1731. DOI: https://doi.org/10.1080/17586801.2015.1016395.CrossRefGoogle Scholar
Shu, H., Chen, X., Anderson, R. C., Wu, N., & Xuan, Y. (2003). Properties of school Chinese: Implications for learning to read. Child Development, 74(1), 2747.CrossRefGoogle ScholarPubMed
Shu, H., Peng, H., & McBride-Chang, C. (2008).Phonological awareness in young Chinese children. Developmental Science, 11, 171181.CrossRefGoogle ScholarPubMed
Shuai, L., Frost, S. J., Landi, M., Mencl, W. E., & Pugh, K. R. (2019). Neurocognitive models of skilled and impaired reading from a cross-language perspective. In Verhoeven, L., Perfetti, C. A., & Pugh, K. (eds.), Developmental Dyslexia across Languages and Writing Systems. Cambridge: Cambridge University Press.Google Scholar
Smith, F. (1979). Reading without Nonsense. New York: Teachers College Press.Google Scholar
Stanovich, K. E. (2000). Progress in Understanding Reading: Scientific Foundations and New Frontiers. New York: Guilford Press.Google Scholar
Tan, L. H., Spinks, J. A., Eden, G., Perfetti, C. A., & Siok, W. T. (2005). Reading depends on writing, in Chinese. Proceedings of the National Academy of Sciences (PNAS), 102, 87818785.CrossRefGoogle ScholarPubMed
Unseth, P. (2011). Invention of scripts in West Africa for ethnic revitalization. In Fishman, J. A. & Garcia, O. (eds.), Handbook of Language and Ethnic Identity: The Success-Failure Continuum in Language and Ethnic Identity Efforts, Volume 2 (pp. 2332). New York: Oxford University Press.Google Scholar
Verhoeven, L., & Perfetti, C. A. (2017b). Operating principles in learning to read. In Verhoeven, L. & Perfetti, C. A. (eds.), Learning to Read across Languages and Writing Systems (pp. 130). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Verhoeven, L., & Perfetti, C. A. (eds.). (2017a). Learning to Read across Languages and Writing Systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Verhoeven, L., Perfetti, C. A., & Pugh, K. (eds.) (2019). Developmental Dyslexia across Languages and Writing Systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Verhoeven, L., & van Leeuwe, J. (2008). Prediction of the development of reading comprehension: A longitudinal study. Applied Cognitive Psychology, 22, 407423.CrossRefGoogle Scholar
Wiley, J., & Rayner, K. (2000). Effects of titles on the processing of text and lexically ambiguous words: Evidence from eye movements. Memory and Cognition, 28(6), 10111021.CrossRefGoogle ScholarPubMed
Wimmer, H., & Goswami, U. (1994). The influence of orthographic consistency on reading development: Word recognition in English and German children. Cognition, 51(1), 91103.CrossRefGoogle ScholarPubMed
Yaden, D., Rowe, D., & MacGillivray, L. (2000). Emergent literacy: A matter (polyphony) of perspectives. In Kamil, M. L., Mosenthal, P. B., Pearson, P. D., & Barr, R. (eds.), Handbook of Reading Research, vol. 3 (pp. 425454). Mahwah, NJ: Erlbaum.Google Scholar
Zwaan, R. A., Kaup, B., Stanfield, R. A., & Madden, C. J. (2001). Language comprehension as guided experience. http://cogprints.soton.ac.uk/documents/.Google Scholar

References

Altarelli, I., Leroy, F., Monzalvo, K. et al. (2014). Planum temporale asymmetry in developmental dyslexia: Revisiting an old question. Human Brain Mapping, 35(12), 57175735. DOI: https://doi.org/10.1002/hbm.22579.CrossRefGoogle ScholarPubMed
APA. (2014). Diagnostic and Statistical Manual of Mental Disorders, 5th Edition: DSM-5. Washington, DC: American Psychological Association.Google Scholar
Asbury, K., & Plomin, R. (2013). G Is for Genes: The Impact of Genetics on Education and Achievement. Wiley-Blackwell. DOI: https://doi.org/10.1002/9781118482766.CrossRefGoogle Scholar
Aurino, E., Wolf, S., & Tsinigo, E. (2020). Household food insecurity and early childhood development: Longitudinal evidence from Ghana. PLoS ONE, 15(4), 120. DOI: https://doi.org/10.1371/journal.pone.0230965.CrossRefGoogle ScholarPubMed
Bach, S., Richardson, U., Brandeis, D., Martin, E., & Brem, S. (2013). Print-specific multimodal brain activation in kindergarten improves prediction of reading skills in second grade. NeuroImage, 82, 605615. https://doi.org/10.1016/j.neuroimage.2013.05.062.CrossRefGoogle ScholarPubMed
Beddington, J., Cooper, C. L., Field, J. et al. (2008). The mental wealth of nations. Nature, 455(7216), 10571060. DOI: https://doi.org/10.1038/4551057a.CrossRefGoogle ScholarPubMed
Berninger, V. W., & Richards, T. L. (2002). Brain Literacy for Educators and Psychologists. Washington, DC: Academic Press.Google Scholar
Berninger, V. W., & Winn, W. D. (2006). Implications of advancements in brain research and technology for writing development, writing instruction, and educational evolution. In MacArthur, C., Graham, S., & Fitzgerald, J. (eds.), The Writing Handbook (pp. 96114). New York: The Guildford Press.Google Scholar
Bolger, D. J., Perfetti, C., & Schneider, W. (2005). Cross-cultural effect on the brain revisited: universal structures plus writing system variation. Human Brain Mapping, 25(1), 92104. DOI: https://doi.org/10.1002/hbm.20124CrossRefGoogle ScholarPubMed
Booth, J. R., Burman, D. D., van Santen, F. W. et al. (2001). The development of specialized brain systems in reading and oral language. Child Neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence, 7(3), 119141. DOI: https://doi.org/10.1080/09297049508400221.CrossRefGoogle ScholarPubMed
Bowers, J. S. (2016). The practical and principled problems with educational neuroscience. Psychological Review, 123(5), 600612. DOI: https://doi.org/https://doi.org/10.1037/rev0000025.CrossRefGoogle ScholarPubMed
Brem, S., Bach, S., Kucian, K. et al. (2010). Brain sensitivity to print emerges when children learn letter-speech sound correspondences. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 79397944. DOI: https://doi.org/10.1073/pnas.0904402107.CrossRefGoogle ScholarPubMed
Bruckert, L., Borchers, L. R., Dodson, C. K. et al. (2019). White matter plasticity in reading-related pathways differs in children born preterm and at term: A longitudinal analysis. Frontiers in Human Neuroscience, 13. DOI: https://doi.org/10.3389/fnhum.2019.00139.CrossRefGoogle ScholarPubMed
Buchweitz, A., Costa, A. C., Toazza, R. et al. (2019). Decoupling of the occipitotemporal cortex and the brain’s default-mode network in dyslexia and a role for the cingulate cortex in good readers: A brain imaging study of Brazilian children. Developmental Neuropsychology, 44(1), 146157. DOI: https://doi.org/10.1080/87565641.2017.1292516.CrossRefGoogle Scholar
Buchweitz, A., Mason, R. A., Hasegawa, M., & Just, M. A. (2009). Japanese and English sentence reading comprehension and writing systems: An fMRI study of first and second language effects on brain activation. Bilingualism, 12(2), 141151. DOI: https://doi.org/10.1017/S1366728908003970.CrossRefGoogle ScholarPubMed
Buchweitz, A., Mason, R. A., Meschyan, G., Keller, T. A., & Just, M. A. (2014). Modulation of cortical activity during comprehension of familiar and unfamiliar text topics in speed reading and speed listening. Brain and Language, 139, 4957. DOI: https://doi.org/10.1016/j.bandl.2014.09.010.CrossRefGoogle ScholarPubMed
Cao, F., Yan, X., Wang, Z. et al. (2017). Neural signatures of phonological deficits in Chinese developmental dyslexia. NeuroImage, 146(March 2016), 301311. DOI: https://doi.org/10.1016/j.neuroimage.2016.11.051.CrossRefGoogle ScholarPubMed
Cardoso-Martins, C., & Pennington, B. F. (2004). The relationship between phoneme awareness and rapid serial naming skills and literacy acquisition: the role of developmental period and reading ability. Scientific Studies of Reading, 8(1), 2752. DOI: https://doi.org/10.1207/s1532799xssr0801_3.CrossRefGoogle Scholar
Castles, A., Rastle, K., & Nation, K. (2018). Ending the reading wars: Reading acquisition from novice to expert. Psychological Science in the Public Interest, 19(1), 551. DOI: https://doi.org/10.1177/1529100618772271.CrossRefGoogle ScholarPubMed
Cattinelli, I., Borghese, N. A., Gallucci, M., & Paulesu, E. (2013). Reading the reading brain: A new meta-analysis of functional imaging data on reading. Journal of Neurolinguistics, 26(1), 214238. DOI: https://doi.org/10.1016/j.jneuroling.2012.08.001.CrossRefGoogle Scholar
Centanni, T. M., Norton, E. S., Ozernov-Palchik, O. et al. (2019). Disrupted left fusiform response to print in beginning kindergartners is associated with subsequent reading. NeuroImage: Clinical, 22, 101715. DOI: https://doi.org/10.1016/j.nicl.2019.101715.CrossRefGoogle ScholarPubMed
Chyl, K., Kossowski, B., Dębska, A. et al. (2018). Prereader to beginning reader: Changes induced by reading acquisition in print and speech brain networks. Journal of Child Psychology and Psychiatry and Allied Disciplines, 59(1), 7687. DOI: https://doi.org/10.1111/jcpp.12774.CrossRefGoogle ScholarPubMed
Cohen, L., Lehéricy, S., Chochon, F. et al. (2002). Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain, 125(Pt 5), 10541069. www.ncbi.nlm.nih.gov/pubmed/11960895.CrossRefGoogle ScholarPubMed
Costa, A. C., Toazza, R., Bassôa, A., Portuguez, M. W., & Buchweitz, A. (2016). Ambulatório de aprendizagem do projeto ACERTA (Avaliação de Crianças em Risco de Transtorno da Aprendizagem): métodos e resultados em dois anos. Neuropsicologia Do Desenvolvimento, 33, 151157.Google Scholar
Cruz, L., & Loureiro, A. (2020). Achieving world-class education in adverse socioeconomic conditions: The case of Sobral in Brazil. World Bank Group Education, June, pp. 137.Google Scholar
Dehaene, S. (2009). Reading in the Brain: The New Science of How We Read. New York: Penguin Books.Google Scholar
Dehaene, S., Pegado, F., Braga, L. W. et al. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 13591364. DOI: https://doi.org/10.1126/science.1194140.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., Monzalvo, K., & Dehaene, S. (2018). The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLoS Biology, 16(3), 134. DOI: https://doi.org/10.1371/journal.pbio.2004103/.CrossRefGoogle ScholarPubMed
del Tufo, S. N., Frost, S. J., Hoeft, F. et al. (2018). Neurochemistry predicts convergence of written and spoken language: A proton magnetic resonance spectroscopy study of cross-modal language integration. Frontiers in Psychology, 9(SEP), 117. DOI: https://doi.org/10.3389/fpsyg.2018.01507.CrossRefGoogle Scholar
Dickinson, D. K., Collins, M. F., Nesbitt, K. et al. (2019). Effects of teacher-delivered book reading and play on vocabulary learning and self-regulation among low-income preschool children. Journal of Cognition and Development, 20(2), 136164. DOI: https://doi.org/10.1080/15248372.2018.1483373.CrossRefGoogle Scholar
Dikker, S., Wan, L., Davidesco, I. et al. (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27(9), 13751380. DOI: https://doi.org/10.1016/j.cub.2017.04.002.CrossRefGoogle ScholarPubMed
Dilnot, J., Hamilton, L., Maughan, B., & Snowling, M. J. (2016). Child and environmental risk factors predicting readiness for learning in children at high risk of dyslexia. Development and Psychopathology, 110. DOI: https://doi.org/10.1017/S0954579416000134.CrossRefGoogle Scholar
Dufford, A. J., Kim, P., & Evans, G. W. (2020). The impact of childhood poverty on brain health: Emerging evidence from neuroimaging across the lifespan. International Review of Neurobiology, 150, 77105. DOI: https://doi.org/10.1016/bs.irn.2019.12.001.CrossRefGoogle Scholar
Duryea, T. K. (2019). Emergent literacy including language development. In Drutz, J. E. & Augustyn, M. (eds.), UpToDate. Website. www.uptodate.com/contents/emergent-literacy-including-language-development?search=emergentGoogle Scholar
Duursma, E., Augustyn, M., & Zuckerman, B. (2008). Reading aloud to children: the evidence. Archives of Disease in Childhood, 93(7), 554557. DOI: https://doi.org/10.1136/adc.2006.106336.CrossRefGoogle ScholarPubMed
Ece, Demir-Lira, Ö., Applebaum, L. R., Goldin-Meadow, S., & Levine, S. C. (2019). Parents’ early book reading to children: Relation to children’s later language and literacy outcomes controlling for other parent language input. Developmental Science, 22(3). DOI: https://doi.org/10.1111/desc.12764.Google Scholar
Eckert, M. (2004). Neuroanatomical markers for dyslexia: A review of dyslexia structural imaging studies. Neuroscientist, 10(4), 362371. DOI: https://doi.org/10.1177/1073858404263596.CrossRefGoogle ScholarPubMed
Eckert, M. A., Leonard, C. M., Wilke, M. et al. (2005). Anatomical signatures of dyslexia in children: Unique information from manual and voxel based morphometry brain measures. Cortex, 41(3), 304315. DOI: https://doi.org/10.1016/S0010-9452(08)70268-5.CrossRefGoogle ScholarPubMed
Ehri, L. C. (2005). Learning to read words: Theory, findings, and issues. Scientific Studies of Reading, 9(2), 167188. DOI: https://doi.org/10.1207/s1532799xssr0902.CrossRefGoogle Scholar
Ehri, L. C., Nunes, S. R., Willows, D. M. et al. (2001). Phonemic awareness instruction helps children learn to read: evidence from the national reading panel’s meta‐analysis. Reading Research Quarterly, 36(3), 250287. DOI: https://doi.org/10.1598/RRQ.36.3.2.CrossRefGoogle Scholar
Ekerdt, C. E. M., Kühn, C., Anwander, A., Brauer, J., & Friederici, A. D. (2020). Word learning reveals white matter plasticity in preschool children. Brain Structure and Function, 225(2), 607619. DOI: https://doi.org/10.1007/s00429-020-02024-7.CrossRefGoogle ScholarPubMed
Farah, R., Dudley, J., Hutton, J., & Horowitz-Kraus, T. (2020). Maternal reading and fluency abilities are associated with diffusion properties of ventral and dorsal white matter tracts in their preschool-age children. Brain and Cognition, 140(January), 105532. DOI: https://doi.org/10.1016/j.bandc.2020.105532.CrossRefGoogle ScholarPubMed
Ferstl, E. C., Neumann, J., Bogler, C., von Cramon, D. Y., & Cramon, D. Y. von. (2008). The extended language network: a meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29(5), 581593. DOI: https://doi.org/10.1002/hbm.20422.CrossRefGoogle ScholarPubMed
Franco, A. R., Mannell, M. V., Calhoun, V. D., & Mayer, A. R. (2013). Impact of analysis methods on the reproducibility and reliability of resting-state networks. Brain Connectivity, 3(4), 363374. DOI: https://doi.org/10.1089/brain.2012.0134.CrossRefGoogle ScholarPubMed
Friederici, A. D. (2012). The cortical language circuit: From auditory perception to sentence comprehension. Trends in Cognitive Sciences, 16(5), 262268. DOI: https://doi.org/10.1016/j.tics.2012.04.001.CrossRefGoogle ScholarPubMed
Frith, U. (1985). Surface dyslexia: Neurological and cognitive studies of phonological reading. In Patterson, K., Marshall, J., & Coltheart, M. (eds.), Surface Dyslexia (pp. 301330). Erlbaum.Google Scholar
Frost, S. J., Landi, N., Mencl, W. E. et al. (2009). Phonological awareness predicts activation patterns for print and speech. Annals of Dyslexia, 59(1), 7897. DOI: https://doi.org/10.1007/s11881-009-0024-y.CrossRefGoogle ScholarPubMed
Frye, R. E., Liederman, J., Malmberg, B. et al. (2010). surface area accounts for the relation of gray matter volume to reading-related skills and history of dyslexia. Cerebral Cortex, 20(11), 26252635. DOI: https://doi.org/10.1093/cercor/bhq010.CrossRefGoogle ScholarPubMed
Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325(5938), 280283. DOI: https://doi.org/10.1126/science.1171999.CrossRefGoogle ScholarPubMed
Galaburda, A., & Eidelberg, D. (1982). Symmetry and asymmetry in the human posterior thalamus: II. Thalamic lesions in a case of developmental dyslexia. Archives of Neurology, 39(6), 333336. DOI: https://doi.org/10.1001/archneur.1982.00510180011002.CrossRefGoogle Scholar
Galaburda, A., & Kemper, T. L. (1979). Cytoarchitectonic abnormalities in developmental dyslexia: a case study. Annals of Neurology, 6(2), 94100. DOI: https://doi.org/10.1002/ana.410060203.CrossRefGoogle ScholarPubMed
Galaburda, A., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18(2), 222233. DOI: https://doi.org/10.1002/ana.410180210.CrossRefGoogle ScholarPubMed
Gracco, V. L., Tremblay, P., & Pike, B. (2005). Imaging speech production using fMRI. NeuroImage, 26(1), 294301. DOI: https://doi.org/10.1016/j.neuroimage.2005.01.033.CrossRefGoogle ScholarPubMed
Greenwood, P., Hutton, J., Dudley, J., & Horowitz-Kraus, T. (2019). Maternal reading fluency is associated with functional connectivity between the child’s future reading network and regions related to executive functions and language processing in preschool-age children. Brain and Cognition, 131(November 2018), 8793. https://doi.org/10.1016/j.bandc.2018.11.010.CrossRefGoogle ScholarPubMed
Hancock, R., Pugh, K. R., & Hoeft, F. (2017). Neural noise hypothesis of developmental dyslexia. Trends in Cognitive Sciences, 21(6), 434448. DOI: https://doi.org/10.1016/j.tics.2017.03.008.CrossRefGoogle ScholarPubMed
Heckman, J. J. (2006). Skill formation and the economics of investing in disadvantaged children. Science, 312(5782), 19001902. DOI; https://doi.org/10.1126/science.1128898.CrossRefGoogle ScholarPubMed
Heckman, J. J., & Mosso, S. (2014). The economics of human development and social mobility. Annual Review of Economics, 6(1), 689733. DOI: https://doi.org/10.1146/annurev-economics-080213-040753.CrossRefGoogle ScholarPubMed
Hier, D. B., LeMay, M., Rosenberger, P. B., & Perlo, V. P. (1978). Developmental dyslexia: Evidence for a subgroup with a reversal of cerebral asymmetry. Archives of Neurology, 35(2), 9092. DOI: https://doi.org/10.1001/archneur.1978.00500260028005.CrossRefGoogle ScholarPubMed
Higuchi, H., Moriguchi, Y., Murakami, H. et al. (2015). Neural basis of hierarchical visual form processing of Japanese Kanji characters. Brain and Behavior, 5(12), e00413. DOI: https://doi.org/10.1002/brb3.413.CrossRefGoogle ScholarPubMed
Hirsch, J., Noah, J. A., Zhang, X., Dravida, S., & Ono, Y. (2018). A cross-brain neural mechanism for human-to-human verbal communication. Social Cognitive and Affective Neuroscience, 13(9), 907920. DOI: https://doi.org/10.1093/scan/nsy070.CrossRefGoogle ScholarPubMed
Hjetland, H. N., Lervåg, A., Lyster, S. A. H. et al. (2019). Pathways to reading comprehension: A longitudinal study from 4 to 9 years of age. Journal of Educational Psychology, 111(5), 751763. DOI: https://doi.org/10.1037/edu0000321.CrossRefGoogle Scholar
Hoeft, F., McCandliss, B. D., Black, J. M. et al. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 361366. DOI: https://doi.org/10.1073/pnas.1008950108.CrossRefGoogle ScholarPubMed
Hoeft, F., Meyler, A., Hernandez, A. et al. (2007). Functional and morphometric brain dissociation between dyslexia and reading ability. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 42344239. DOI: https://doi.org/10.1073/pnas.0609399104.CrossRefGoogle ScholarPubMed
Hoeft, F., Ueno, T., Reiss, A. L. et al. (2007). Prediction of children’s reading skills using behavioral, functional, and structural neuroimaging measures. Behavioral Neuroscience, 121(3), 602613. DOI: https://doi.org/10.1037/0735-7044.121.3.602.CrossRefGoogle ScholarPubMed
Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status affects early vocabulary development via maternal speech. Child Development, 74(5), 13681378. DOI: https://doi.org/10.1111/1467-8624.00612.CrossRefGoogle ScholarPubMed
Hoff, E., & Tian, C. (2005). Socioeconomic status and cultural influences on language. Journal of Communication Disorders, 38(4), 271278. DOI: https://doi.org/10.1016/j.jcomdis.2005.02.003.CrossRefGoogle ScholarPubMed
Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: an fMRI meta-analysis of 52 studies including 842 children. Developmental Science, 13(6), 876885. DOI: https://doi.org/10.1111/j.1467-7687.2009.00938.x.CrossRefGoogle Scholar
House of Commons. (2009). “House of Commons – Evidence Check 1: Early Literacy Interventions – Science and Technology Committee” (2009 HC). https://publications.parliament.uk/pa/cm200910/cmselect/cmsctech/44/4402.htm.Google Scholar
Huber, E., Donnelly, P. M., Rokem, A., & Yeatman, J. D. (2018). Rapid and widespread white matter plasticity during an intensive reading intervention. Nature Communications, 9(1), 113. https://doi.org/10.1038/s41467-018-04627-5.CrossRefGoogle ScholarPubMed
Huey, E. B. (1908). The Psychology and Pedagogy of Reading. New York: Macmillan.Google Scholar
Humphreys, P., Kaufmann, W. E., & Galaburda, A. M. (1990). Developmental dyslexia in women: Neuropathological findings in three patients. Annals of Neurology, 28(6), 727738. DOI: https://doi.org/10.1002/ana.410280602.CrossRefGoogle ScholarPubMed
INEP. (2017). Avaliação Nacional da Alfabetização. Ministério da Educacao. http://portal.mec.gov.br/docman/outubro-2017-pdf/75181-resultados-ana-2016-pdf/file.Google Scholar
Irwin, J., & Moore, D. (2015). Preparing Children for Reading Success (1st edition). New York: Rowman & Littlefield.Google Scholar
James, K. H., & Gauthier, I. (2006). Letter processing automatically recruits a sensory-motor brain network. Neuropsychologia, 44(14), 29372949. DOI: https://doi.org/10.1016/j.neuropsychologia.2006.06.026.CrossRefGoogle ScholarPubMed
Kadmon Harpaz, N., Flash, T., & Dinstein, I. (2014). Scale-invariant movement encoding in the human motor system. Neuron, 81(2), 452462. DOI: https://doi.org/10.1016/j.neuron.2013.10.058.CrossRefGoogle ScholarPubMed
Kamykowska, J., Haman, E. W. A., Latvala, J.-M., Richardson, U., & Lyytinen, H. (2013). Developmental changes of early reading skills in six-year-old Polish children and GraphoGame as a computer-based intervention to support them. L1 Educational Studies in Language and Literature, 13, 117. DOI: https://doi.org/10.17239/L1ESLL-2013.01.05.Google Scholar
Katanoda, K., Yoshikawa, K., & Sugishita, M. (2001). A functional MRI study on the neural substrates for writing. Human Brain Mapping, 13(1), 3442. DOI: https://doi.org/10.1002/hbm.1023.CrossRefGoogle Scholar
Katz, L., & Frost, R. (1992). The reading process is different for different orthographies: The orthographic depth hypothesis. Advances in Psychology, 64, 6784.CrossRefGoogle Scholar
Kautz, T., Heckman, J. J., Diris, R., Weel, B. ter, & Borghans, L. (2014). Fostering and Measuring Skills: Improving Cognitive and Non-cognitive Skills to Promote Lifetime Success. Paris: OECD. DOI: https://doi.org/10.1787/5jxsr7vr78f7-en.CrossRefGoogle Scholar
Keller, T. A., Carpenter, P. A., & Just, M. A. (2001). The neural bases of sentence comprehension: A fMRI examination of syntactic and lexical processing. Cerebral Cortex, 11(3), 223237. www.ncbi.nlm.nih.gov/pubmed/11230094.CrossRefGoogle ScholarPubMed
Krafnick, A. J., Tan, L. H., Flowers, D. L. et al. (2016). Chinese character and English word processing in children’s ventral occipitotemporal cortex: FMRI evidence for script invariance. NeuroImage, 133, 302312. DOI: https://doi.org/10.1016/j.neuroimage.2016.03.021.CrossRefGoogle ScholarPubMed
Kronbichler, M., Hutzler, F., Staffen, W. et al. (2006). Evidence for a dysfunction of left posterior reading areas in German dyslexic readers. Neuropsychologia, 44(10), 18221832. DOI: https://doi.org/10.1016/j.neuropsychologia.2006.03.010.CrossRefGoogle ScholarPubMed
Kubota, E. C., Joo, S. J., Huber, E., & Yeatman, J. D. (2019). Word selectivity in high-level visual cortex and reading skill. Developmental Cognitive Neuroscience, 36(April 2018), 100593. DOI: https://doi.org/10.1016/j.dcn.2018.09.003.CrossRefGoogle ScholarPubMed
Kuhl, U., Neef, N. E., Kraft, I. et al. (2020). The emergence of dyslexia in the developing brain. NeuroImage, 211(January). https://doi.org/10.1016/j.neuroimage.2020.116633.CrossRefGoogle ScholarPubMed
LaMarca, K., Gevirtz, R., Lincoln, A. J., & Pineda, J. A. (2018). Facilitating neurofeedback in children with autism and intellectual impairments using TAGteach. Journal of Autism and Developmental Disorders, 48(6), 20902100. DOI: https://doi.org/10.1007/s10803-018-3466-4.CrossRefGoogle ScholarPubMed
Langer, N., Peysakhovich, B., Zuk, J. et al. (2017). White matter alterations in infants at risk for developmental dyslexia. Cerebral Cortex, 27(2), 1027–36. DOI: https://doi.org/10.1093/cercor/bhv281.Google ScholarPubMed
Lillywhite, L. M., Saling, M. M., Demutska, A. et al. (2010). The neural architecture of discourse compression. Neuropsychologia, 48(4), 873879. https://doi.org/10.1016/j.neuropsychologia.2009.11.004.CrossRefGoogle ScholarPubMed
Lo, J. C. M., McBride, C., Ho, C. S., & Maurer, U. (2019). Event-related potentials during Chinese single-character and two-character word reading in children. Brain and Cognition, 136, 103589. DOI: https://doi.org/10.1016/j.bandc.2019.103589.CrossRefGoogle ScholarPubMed
Marks, R. A., Kovelman, I., Kepinska, O. et al. (2019). Spoken language proficiency predicts print-speech convergence in beginning readers. NeuroImage, 201(February), 116021. DOI: https://doi.org/10.1016/j.neuroimage.2019.116021.CrossRefGoogle ScholarPubMed
Martin, A., Schurz, M., Kronbichler, M., & Richlan, F. (2015). Reading in the brain of children and adults: A meta-analysis of 40 functional magnetic resonance imaging studies. Human Brain Mapping, 36(5), 19631981. https://doi.org/10.1002/hbm.22749.CrossRefGoogle ScholarPubMed
Mason, R. A., & Just, M. A. (2006). Neuroimaging contributions to the understanding of discourse processes. In Traxler, M. & Gernsbacher, M. A. (eds.), Handbook of {Psycholinguistics} (pp. 765799). New York: Elsevier.CrossRefGoogle Scholar
McBride, C. A. (2016). Is Chinese special? Four aspects of Chinese literacy acquisition that might distinguish learning Chinese from learning alphabetic orthographies. Educational Psychology Review, 28, 523549. DOI: https://doi.org/10.1007/s10648-015-9318-2.CrossRefGoogle Scholar
McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293299. DOI: https://doi.org/10.1016/S1364-6613(03)00134-7.CrossRefGoogle ScholarPubMed
Menon, V., & Desmond, J. E. (2001). Left superior parietal cortex involvement in writing: Integrating fMRI with lesion evidence. Cognitive Brain Research, 12(2), 337340. DOI: https://doi.org/10.1016/S0926-6410(01)00063-5.CrossRefGoogle ScholarPubMed
Merz, E. C., Maskus, E. A., Melvin, S. A., He, X., & Noble, K. G. (2020). Socioeconomic disparities in language input are associated with children’s language-related brain structure and reading skills. Child Development, 91(3), 846860. DOI: https://doi.org/10.1111/cdev.13239.CrossRefGoogle ScholarPubMed
Merz, E. C., Wiltshire, C. A., & Noble, K. G. (2019). Socioeconomic inequality and the developing brain: Spotlight on language and executive function. Child Development Perspectives, 13(1), 1520. DOI: https://doi.org/10.1111/cdep.12305.CrossRefGoogle Scholar
Meyler, A., Keller, T. A., Cherkassky, V. L., Gabrieli, J. D. E. E., & Just, M. A. (2009). Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: A longitudinal study of neuroplasticity. Neuropsychologia, 46(10), 25802592. DOI: https://doi.org/10.1016/j.neuropsychologia.2008.03.012.CrossRefGoogle Scholar
Meyler, A., Keller, T. A., Cherkassky, V. L. et al. (2007). Brain activation during sentence comprehension among good and poor readers. Cerebral Cortex, 17(12), 27802787. DOI: https://doi.org/10.1093/cercor/bhm006.CrossRefGoogle ScholarPubMed
Mitchell, K. J. (2014). The genetic architecture of neurodevelopmental disorders. Preprint. bioRxiv DOI: https://doi.org/10.1101/009449.CrossRefGoogle Scholar
Mitchell, K. J. (2018). Innate: How the Wiring of Our Brains Shapes Who We Are. Princeton, NJ: Princeton University Press. https://press.princeton.edu/titles/13255.html.Google Scholar
Morais, J. (2013). Criar leitores – para professores e educadores. Barueri, SP: Minha editora.Google Scholar
Moulton, E., Bouhali, F., Monzalvo, K. et al. (2019). Connectivity between the visual word form area and the parietal lobe improves after the first year of reading instruction: A longitudinal MRI study in children. Brain Structure and Function, 224(4), 15191536. DOI: https://doi.org/10.1007/s00429-019-01855-3.Google ScholarPubMed
Nag, S., Vagh, S. B. Dulay, K. M & Snowling, M. J. (2019). Context and Implications: Home language, school language and children’s literacy attainments: A systematic review of evidence from low- and middle-income countries. Review of Education, 7(1), 151155. DOI: https://doi.org/10.1002/rev3.3132.CrossRefGoogle Scholar
Nag, S., Snowling, M. J., & Asfaha, Y. M. (2016). Classroom literacy practices in low- and middle-income countries: An interpretative synthesis of ethnographic studies. Oxford Review of Education, 42(1), 115. DOI: https://doi.org/10.1080/03054985.2015.1135115.CrossRefGoogle Scholar
National Reading Panel. (2000). Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction. NIH Publication No. 00–4769, 7, 35. DOI: https://doi.org/10.1002/ppul.1950070418.Google Scholar
Nieto-Ruiz, A., Diéguez, E., Sepúlveda-Valbuena, N. et al. (2020). Influence of a functional nutrients-enriched infant formula on language development in healthy children at four years old. Nutrients, 12(2). DOI: https://doi.org/10.3390/nu12020535.CrossRefGoogle ScholarPubMed
Noble, K. G., Houston, S. M., Brito, N. H. et al. (2015). Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 18(5), 773778. DOI: https://doi.org/10.1038/nn.3983.CrossRefGoogle ScholarPubMed
OECD. (2019). PISA 2018 Assessment and Analytical Framework: Vol. I. Paris: OECD. DOI: https://doi.org/10.1787/b25efab8-en.Google Scholar
Olulade, O. A., Flowers, D. L., Napoliello, E. M., & Eden, G. F. (2013). Developmental differences for word processing in the ventral stream. Brain and Language, 125(2), 134145. DOI: https://doi.org/10.1016/j.bandl.2012.04.003.CrossRefGoogle ScholarPubMed
Ozernov-Palchik, O., & Gaab, N. (2016). Tackling the “dyslexia paradox”: Reading brain and behavior for early markers of developmental dyslexia. Wiley Interdisciplinary Reviews Cognitive Science, 7(2), 156176. DOI: https://doi.org/10.1002/wcs.1383.CrossRefGoogle ScholarPubMed
Palmis, S., Danna, J., Velay, J.-L., & Longcamp, M. (2017). Motor control of handwriting in the developing brain: A review. Cognitive Neuropsychology, 34(3–4), 187204. DOI: https://doi.org/10.1080/02643294.2017.1367654.CrossRefGoogle ScholarPubMed
Paulesu, E., Danelli, L., & Berlingeri, M. (2014). Reading the dyslexic brain: Multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Frontiers in Human Neuroscience, 8. DOI: https://doi.org/10.3389/fnhum.2014.00830.CrossRefGoogle ScholarPubMed
Paulesu, E., Démonet, J. F., & Fazio, F. (2001). Dyslexia: Cultural diversity and biological unity. Science, 291(5511), 21652167. DOI: https://doi.org/10.1126/science.1057179.CrossRefGoogle ScholarPubMed
Paulesu, E., McCrory, E., Fazio, F. et al. (2000). A cultural effect on brain function. Nature Neuroscience, 3(1), 9196. DOI: https://doi.org/10.1038/71163.CrossRefGoogle ScholarPubMed
Pavlakis, A. E., Noble, K., Pavlakis, S. G., Ali, N., & Frank, Y. (2015). Brain imaging and electrophysiology biomarkers: Is there a role in poverty and education outcome research? Pediatric Neurology, 52(4), 383388. DOI: https://doi.org/10.1016/j.pediatrneurol.2014.11.005.CrossRefGoogle Scholar
Pegado, F., Nakamura, K., Braga, L. W. et al. (2014). Literacy breaks mirror invariance for visual stimuli: A behavioral study with adult illiterates. Journal of Experimental Psychology General, 143(2), 887894. DOI: https://doi.org/10.1037/a0033198.CrossRefGoogle ScholarPubMed
Perfetti, C. A. (1992). The representation problem in reading acquisition. In Gough, P. B., Ehri, L. C., & Treiman, R. (eds.), Reading Acquisition (pp. 145174). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Perfetti, C. A., Liu, Y., Fiez, J. et al. (2007). Reading in two writing systems: Accommodation and assimilation of the brain’s reading network. Bilingualism, 10(2), 131146. DOI: https://doi.org/10.1017/S1366728907002891CrossRefGoogle Scholar
Perfetti, C. A., & Tan, L. H. (1998). The time course of graphic, phonological, and semantic activation in Chinese character identification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(1), 101118. DOI: https://doi.org/10.1037/0278-7393.24.1.101.Google Scholar
Piccolo, L. R., Merz, E. C., He, X., Sowell, E. R., & Noble, K. G. (2016). Age-related differences in cortical thickness vary by socioeconomic status. PLoS One, 11(9), e0162511. DOI: https://doi.org/10.1371/journal.pone.0162511.CrossRefGoogle ScholarPubMed
Planton, S., Longcamp, M., Péran, P., Démonet, J. F., & Jucla, M. (2017). How specialized are writing-specific brain regions? An fMRI study of writing, drawing and oral spelling. Cortex, 88, 6680. DOI: https://doi.org/10.1016/j.cortex.2016.11.018.CrossRefGoogle ScholarPubMed
Pleisch, G., Karipidis, I. I., Brauchli, C. et al. (2019). Emerging neural specialization of the ventral occipitotemporal cortex to characters through phonological association learning in preschool children. Neuroimage, 189, 813831. DOI: https://doi.org/10.1016/j.neuroimage.2019.01.046.CrossRefGoogle ScholarPubMed
Preston, J. L., Frost, S. J., Mencl, W. E. et al. (2010). Early and late talkers: School-age language, literacy and neurolinguistic differences. Brain, 133(8), 21852195. DOI: https://doi.org/10.1093/brain/awq163.CrossRefGoogle ScholarPubMed
Preston, J. L., Molfese, P. J., Frost, S. J. et al. (2015). Print-speech convergence predicts future reading outcomes in early readers. Psychological Science, 27(1), 7584. https://doi.org/10.1177/0956797615611921.CrossRefGoogle ScholarPubMed
Pugh, K. R., Frost, S. J., Rothman, D. L. et al. (2014). Glutamate and choline levels predict individual differences in reading ability in emergent readers. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(11), 40824089. DOI: https://doi.org/10.1523/JNEUROSCI.3907-13.2014.CrossRefGoogle ScholarPubMed
Pugh, K. R., Mencl, W. E., Jenner, A. R. et al. (2001). Neurobiological studies of reading and reading disability. Journal of Communication Disorders, 34(6), 479492. DOI: https://doi.org/10.1016/S0021-9924(01)00060-0.CrossRefGoogle ScholarPubMed
Pugh, K. R., Sandak, R., Frost, S. J., Moore, D., & Mencl, W. E. (2006). Examining reading development and reading disability in diverse languages and cultures: Potential contributions from functional neuroimaging Journal of American Indian Education, 45(3), 6076.Google Scholar
Purcell, J. J., Jiang, X., & Eden, G. F. (2017). Shared orthographic neuronal representations for spelling and reading. Neuroimage, 147, 554567. DOI: https://doi.org/10.1016/j.neuroimage.2016.12.054.CrossRefGoogle ScholarPubMed
Ramus, F., Altarelli, I., Jednoróg, K., Zhao, J., & Scotto di Covella, L. (2018). Neuroanatomy of developmental dyslexia: Pitfalls and promise. Neuroscience and Biobehavioral Reviews, 84(August 2017), 434452. DOI: https://doi.org/10.1016/j.neubiorev.2017.08.001.CrossRefGoogle ScholarPubMed
Raschle, N. M., Chang, M., & Gaab, N. (2011). Structural brain alterations associated with dyslexia predate reading onset. Neuroimage, 57(3), 742749. DOI: https://doi.org/10.1016/j.neuroimage.2010.09.055.CrossRefGoogle ScholarPubMed
Raschle, N. M., Zuk, J., & Gaab, N. (2012). Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset. Proceedings of the National Academy of Sciences of the United States of America, 109(6), 21562161. DOI: https://doi.org/10.1073/pnas.1107721109.CrossRefGoogle ScholarPubMed
Richards, T. L., Berninger, V. W., & Fayol, M. (2009). fMRI activation differences between 11-year-old good and poor spellers’ access in working memory to temporary and long-term orthographic representations. Journal of Neurolinguistics, 22(4), 327353. DOI: https://doi.org/10.1016/j.jneuroling.2008.11.002.CrossRefGoogle Scholar
Richards, T. L., Berninger, V. W., Stock, P. et al. (2011). Differences between good and poor child writers on fMRI contrasts for writing newly taught and highly practiced letter forms. Reading and Writing, 24(5), 493516. DOI: https://doi.org/10.1007/s11145-009-9217-3.CrossRefGoogle ScholarPubMed
Richlan, F. (2012). Developmental dyslexia: Dysfunction of a left hemisphere reading network. Frontiers in Human Neuroscience, 6 (May 2012), 15. DOI: https://doi.org/10.3389/fnhum.2012.00120.CrossRefGoogle ScholarPubMed
Richlan, F. (2014). Functional neuroanatomy of developmental dyslexia: The role of orthographic depth. Frontiers in Human Neuroscience, 8(MAY), 113. DOI: https://doi.org/10.3389/fnhum.2014.00347.CrossRefGoogle ScholarPubMed
Richlan, F., Kronbichler, M., & Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Human Brain Mapping, 30(10), 32993308. DOI: https://doi.org/10.1002/hbm.20752.CrossRefGoogle Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2011). Meta-analyzing brain dysfunctions in dyslexic children and adults. NeuroImage, 56(3), 17351742. DOI: https://doi.org/10.1016/j.neuroimage.2011.02.040.CrossRefGoogle ScholarPubMed
Rose, J. (2006). Independent Review of the Teaching of Early Reading: Final Report. London: Department for Education and Skills.Google Scholar
Rueckl, J. G., Paz-Alonso, P. M., Molfese, P. J. et al. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of the National Academy of Sciences of the United States of America, 112(50), 1551015515. DOI: https://doi.org/10.1073/pnas.1509321112.CrossRefGoogle ScholarPubMed
Rumsey, J. M., Dorwart, R., Vermess, M. et al. (1986). Magnetic resonance imaging of brain anatomy in severe developmental dyslexia. Archives of Neurology, 43(10), 10451046. DOI: https://doi.org/10.1001/archneur.1986.00520100053014.CrossRefGoogle ScholarPubMed
Saiegh-Haddad, E., Shahbari-kassem, A., & Schiff, R. (2020). Phonological awareness in Arabic: The role of phonological distance, phonological-unit size, and SES. Reading and Writing, 33(6), 16491674. DOI: https://doi.org/10.1007/s11145-020-10019-3.CrossRefGoogle Scholar
Sandak, R., Mencl, W. E., Frost, S. J., & Pugh, K. R. (2004). The neurobiological basis of skilled and impaired reading: Recent findings and new directions. Scientific Studies of Reading, 8(3), 273292. DOI: https://doi.org/10.1207/s1532799xssr0803.CrossRefGoogle Scholar
Saygin, Z. M., Osher, D. E., Norton, E. S. et al. (2016). Connectivity precedes function in the development of the visual word form area. Nature Neuroscience, 19(9), 12501255. DOI: https://doi.org/10.1038/nn.4354.CrossRefGoogle ScholarPubMed
Scarborough, H. S., Dobrich, W., & Hager, M. (1991). Preschool literacy experience and later reading achievement. Journal of Learning Disabilities, 24(8), 508511. DOI: https://doi.org/10.1177/002221949102400811.CrossRefGoogle ScholarPubMed
Schiff, R., & Saiegh-Haddad, E. (2018). Development and relationships between phonological awareness, morphological awareness and word reading in spoken and standard Arabic. Frontiers in Psychology, 9, 113. DOI: https://doi.org/10.3389/fpsyg.2018.00356.CrossRefGoogle ScholarPubMed
Seidenberg, M. (2017). Language at the Speed of Sight: How We Read, Why So Many Can’t, and What Can Be Done About It. New York: Basic Books.Google Scholar
Seidenberg, M., Borkenhagen, M. C., & Kearns, D. M. (2020). Lost in translation? Challenges in connecting reading science and educational practice. Preprint. PsyArxiv DOI: https://doi.org/10.31234/osf.io/sq4fr.CrossRefGoogle Scholar
Seki, A., Koeda, T., Sugihara, S. et al. (2001). A functional magnetic resonance imaging study during sentence reading in Japanese dyslexic children. Brain and Development, 23(5), 312316. DOI: https://doi.org/10.1016/S0387-7604(01)00228-5.CrossRefGoogle ScholarPubMed
Seymour, P. H. K. K., Aro, M., Erskine, J. M. et al. (2003). Foundation literacy acquisition in European orthographies. British Journal of Psychology, 94(Pt 2), 143174. DOI: https://doi.org/10.1348/000712603321661859.CrossRefGoogle ScholarPubMed
Shanahan, T., & Lonigan, C. J. (2010). The National Early Literacy Panel: A summary of the process and the report. Educational Researcher, 39(4), 279285. DOI: https://doi.org/10.3102/0013189X10369172.CrossRefGoogle Scholar
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R. et al. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Society of Biological Psychiatry, 3223(02), 101110. DOI: https://doi.org/10.1016/S0006-3223(02)01365-3.CrossRefGoogle Scholar
Shonkoff, J. P. (2000). Science, policy, and practice: Three cultures in search of a shared mission. Child Development, 71(1), 181187. DOI: https://doi.org/10.1111/1467-8624.00132.CrossRefGoogle ScholarPubMed
Snow, C. E., & Ninio, A. (1986). The contracts of literacy: What children learn from learning to read books. In Teale, W. H. & Sulzby, E. (eds.), Emergent literacy: Writing and reading (pp. 116138). Norwood, NJ: Ablex.Google Scholar
Soodla, P., Tammik, V., & Kikas, E. (2019). Is part-time special education beneficial for children at risk for reading difficulties? An example from Estonia. Dyslexia. DOI: https://doi.org/10.1002/dys.1643.CrossRefGoogle Scholar
Spann, M. N., Bansal, R., Hao, X., Rosen, T. S., & Peterson, B. S. (2020). Prenatal socioeconomic status and social support are associated with neonatal brain morphology, toddler language and psychiatric symptoms. Child Neuropsychology, 26(2), 170188. DOI: https://doi.org/10.1080/09297049.2019.1648641.CrossRefGoogle ScholarPubMed
Szwed, M., Qiao, E., Jobert, A., Dehaene, S., & Cohen, L. (2014). Effects of literacy in early visual and occipitotemporal areas of Chinese and French readers. Journal of Cognitive Neuroscience, 26(3), 459475. DOI: https://doi.org/10.1162/jocn_a_00499.CrossRefGoogle ScholarPubMed
Tan, L. H., Liu, H.-L., Perfetti, C. A. et al. (2001). The neural system underlying Chinese logograph reading. NeuroImage, 13(5), 836846. DOI: https://doi.org/10.1006/nimg.2001.0749.CrossRefGoogle ScholarPubMed
Temple, E., Deutsch, G. K., Poldrack, R. A. et al. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 28602865. DOI: https://doi.org/10.1073/pnas.0030098100.CrossRefGoogle ScholarPubMed
The World Bank Group. (2020). DataBank. The World Bank Group (web page). https://databank.worldbank.org/reports.aspx?source=2&series=SE.PRM.AGES&country=.Google Scholar
Tilanus, E. A. T., Segers, E., & Verhoeven, L. (2016). Responsiveness to intervention in children with dyslexia. Dyslexia, 22(3), 214232. DOI: https://doi.org/10.1002/dys.1533.CrossRefGoogle ScholarPubMed
Tokunaga, H., Nishikawa, T., Ikejiri, Y. et al. (1999). Different neural substrates for Kanji and Kana writing: A PET study. NeuroReport: An International Journal for the Rapid Communication of Research in Neuroscience, 10(16), 33153319. DOI: https://doi.org/10.1097/00001756-199911080-00012.CrossRefGoogle ScholarPubMed
Torgesen, J. K. (2000). Individual differences in response to early interventions in reading: The lingering problem of treatment resisters. Learning Disabilities Research & Practice, 15(1), 5564. www.tandfonline.com/doi/abs/10.1207/SLDRP1501_6#.VXH15s-jNcY.CrossRefGoogle Scholar
Torgesen, J. K. (2002). The prevention of reading difficulties. Journal of School Psychology, 40(1), 726. DOI: https://doi.org/10.1016/S0022-4405(01)00092-9.CrossRefGoogle Scholar
Torres, A. R., Mota, N. B., Adamy, N. et al. (2020). Selective inhibition of mirror invariance for letters consolidated by sleep doubles reading fluency. Current Biology, 31, 111. DOI: https://doi.org/10.1016/j.cub.2020.11.031.Google ScholarPubMed
Twomey, T., Kawabata Duncan, K. J., Hogan, J. S. et al. (2013). Dissociating visual form from lexical frequency using Japanese. Brain and Language, 125(2), 184193. DOI: https://doi.org/10.1016/j.bandl.2012.02.003.CrossRefGoogle ScholarPubMed
van den Bunt, M. R., Groen, M. A., Ito, T. et al. (2016). Increased response to altered auditory feedback in dyslexia: A weaker sensorimotor magnet implied in the phonological deficit. Journal of Speech, Language, and Hearing Research, 60(3): 654667. DOI: https://doi.org/10.1044/2016_JSLHR-L-16-0201.CrossRefGoogle Scholar
van den Bunt, M. R., Groen, M. A., van der Kleij, S. W. et al. (2018). Deficient response to altered auditory feedback in dyslexia. Developmental Neuropsychology, 43(7), 622641. DOI: https://doi.org/10.1080/87565641.2018.1495723. PMID: 28257585; PMCID: PMC5544192.CrossRefGoogle ScholarPubMed
Verhoeven, L., & van Leeuwe, J. (2012). The simple view of second language reading throughout the primary grades. Reading and Writing, 25(8), 18051818. DOI: https://doi.org/10.1007/s11145-011-9346-3.CrossRefGoogle ScholarPubMed
Wandell, B. A., & Yeatman, J. D. (2013). Biological development of reading circuits. Current Opinion in Neurobiology, 23(2), 261268. DOI: https://doi.org/10.1016/j.conb.2012.12.005.CrossRefGoogle ScholarPubMed
Wang, J., Joanisse, M. F., & Booth, J. R. (2018). Reading skill related to left ventral occipitotemporal cortex during a phonological awareness task in 5–6-year old children. Developmental Cognitive Neuroscience, 30, 116122. DOI: https://doi.org/10.1016/j.dcn.2018.01.011.CrossRefGoogle Scholar
Wang, J., Joanisse, M. F., & Booth, J. R. (2020). Neural representations of phonology in temporal cortex scaffold longitudinal reading gains in 5- to 7-year-old children. NeuroImage, 207(June 2019), 116359. DOI: https://doi.org/10.1016/j.neuroimage.2019.116359.CrossRefGoogle Scholar
Watanabe, T., Sasaki, Y., Shibata, K., & Kawato, M. (2018). Advances in fMRI real-time neurofeedback. Trends in Cognitive Sciences, 22(8), P738. DOI: https://doi.org/https://doi.org/10.1016/j.tics.2018.05.007.CrossRefGoogle ScholarPubMed
Whitehurst, G. J., & Lonigan, C. J. (1998). Child development and emergent literacy. Child Development, 69(3), 848872. DOI: https://doi.org/10.1111/j.1467-8624.1998.tb06247.x.CrossRefGoogle ScholarPubMed
Wolf, S., & McCoy, D. C. (2019). Household socioeconomic status and parental investments: Direct and indirect relations with school readiness in Ghana. Child Development, 90(1), 260278. DOI: https://doi.org/10.1111/cdev.12899.CrossRefGoogle ScholarPubMed
Yamada, Y., Stevens, C., Dow, M. et al. (2011). Emergence of the neural network for reading in five-year-old beginning readers of different levels of pre-literacy abilities: An fMRI study. NeuroImage, 57(3), 704713. DOI: https://doi.org/10.1016/j.neuroimage.2010.10.057.CrossRefGoogle ScholarPubMed
Yap, M. J., & Balota, D. A. (2015). Visual word recognition. In Pollatsek, A. & Treiman, R. (Eds.), The Oxford Handbook of Reading (pp. 2643). Oxford: Oxford University Press.Google Scholar
Yeatman, J. D., Dougherty, R. F., Ben-Shachar, M., & Wandell, B. A. (2012). Development of white matter and reading skills. Proceedings of the National Academy of Sciences of the United States of America, 109(44), E3045–53. DOI: https://doi.org/10.1073/pnas.1206792109.Google ScholarPubMed
Yu, X., Raney, T., Perdue, M. V. et al. (2018). Emergence of the neural network underlying phonological processing from the prereading to the emergent reading stage: A longitudinal study. Human Brain Mapping, 39(5), 20472063. DOI: https://doi.org/10.1002/hbm.23985.CrossRefGoogle Scholar
Ziegler, J. C., Bertrand, D., Tóth, D. et al. (2010). Orthographic depth and its impact on universal predictors of reading: A cross-language investigation. Psychological Science, 21(4), 551559. DOI: https://doi.org/10.1177/0956797610363406.CrossRefGoogle Scholar

References

Ahituv, N., Kavaslar, N., Schackwitz, W. et al. (2007). Medical sequencing at the extremes of human body mass. The American Journal of Human Genetics, 80, 779791. DOI: https://doi.org/10.1086/513471.CrossRefGoogle ScholarPubMed
Angner, E., Miller, M. J., Ray, M. N., Saag, K. G., & Allison, J. J. (2009). Health literacy and happiness: A community-based study. Social Indicators Research, 95, 325338. DOI: https://doi.org/10.1007/s11205-009-9462-5.CrossRefGoogle Scholar
Anitha, A., Nakamura, K., Yamada, K. et al. (2008). Genetic analyses of Roundabout (ROBO) axon guidance receptors in autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B, 10191027. DOI: https://doi.org/10.1002/ajmg.b.30697.CrossRefGoogle ScholarPubMed
Bakwin, H. (1973). Reading disability in twins. Developmental Medicine and Child Neurology, 15, 184187.CrossRefGoogle ScholarPubMed
Bates, T. C., Luciano, M., Medland, S. E. et al. (2011). Genetic variance in a component of the language acquisition device: ROBO1 polymorphisms associated with phonological buffer deficits. Behavior Genetics, 41, 5057. DOI: https://doi.org/10.1007/s10519-010-9402-9.CrossRefGoogle Scholar
Bates, T. C., Luciano, M., Montgomery, G. W., Wright, M. J., & Martin, N. G. (2011). Genes for a component of the language acquisition mechanism: ROBO1 polymorphisms associated with phonological buffer deficit. Behavior Genetics, 41, 5057.CrossRefGoogle Scholar
Becker, N., Vasconcelos, M., Oliveira, V. et al. (2017). Genetic and environmental risk factors for developmental dyslexia in children: Systematic review of the last decade. Developmental Neuropsychology, 42, 423445. DOI: https://doi.org/10.1080/87565641.2017.1374960.CrossRefGoogle ScholarPubMed
Brennand, K. J., Simone, A., Jou, J. et al. (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473, 221225. DOI: https://doi.org/10.1038/nature09915.CrossRefGoogle ScholarPubMed
Brkanac, Z., Chapman, N. H., Igo, R. P. Jr. et al. (2008). Genome scan of a nonword repetition phenotype in families with dyslexia: Evidence for multiple loci. Behavior Genetics, 38, 462475.CrossRefGoogle ScholarPubMed
Buonincontri, R., Bache, I., Silahtaroglu, A. et al. (2011). A cohort of balanced reciprocal translocations associated with dyslexia: identification of two putative candidate genes at DYX1. Behavior Genetics, 41, 125133.CrossRefGoogle ScholarPubMed
Byrne, B., Coventry, W. L., Olson, R. K. et al. (2009). Genetic and environmental influences on aspects of literacy and language in early childhood: Continuity and change from preschool to Grade 2. Journal of Neurolinguistics, 22, 219236. DOI: https://doi.org/10.1016/j.jneuroling.2008.09.003.CrossRefGoogle ScholarPubMed
Byrne, B., Wadsworth, S., Corley, R. et al. (2005). Longitudinal twin study of early literacy development: Preschool and kindergarten phases. Scientific Studies of Reading, 9, 219235.CrossRefGoogle Scholar
Cardon, L. R., Smith, S. D., Fulker, D. W. et al. (1994). Quantitative trait locus for reading disability on chromosome 6. Science, 226, 276279.CrossRefGoogle Scholar
Cardon, L. R., Smith, S. D., Fulker, D. W. et al. (1995). Quantitative trait locus for reading disability: correction. Science, 268, 1553.CrossRefGoogle ScholarPubMed
Cherry, G., & Vignoles, A. (2020). What is the economic value of literacy and numeracy? IZA World of Labor, 229. DOI: https://doi.org/10.15185/izawol.229.v2.Google Scholar
Cipolla, C. M. (1969). Literacy and Development in the West. Harmondsworth: Penguin Books.Google Scholar
Cohen, J. C., Kiss, R. S., Pertsemlidis, A. et al. (2004). Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science, 305, 869872.CrossRefGoogle ScholarPubMed
Cohen, J. C., Pertsemlidis, A., Fahmi, S. et al. (2006). Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proceedings of the National Academy of Sciences of the United States of America, 103, 18101815. DOI: https://doi.org/10.1073/pnas.0508483103.CrossRefGoogle ScholarPubMed
Conrad, D. F., Pinto, D., Redon, R. et al. (2009). Origins and functional impact of copy number variation in the human genome. Nature. Advance online publication.Google Scholar
Cope, N., Harold, D., Hill, G. et al. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. American Journal of Human Genetics, 76, 581591.CrossRefGoogle ScholarPubMed
Currier, T. A., Etchegaray, M. A., Haight, J. L., Galaburda, A. M., & Rosen, G. D. (2011). The effects of embryonic knockdown of the candidate dyslexia susceptibility gene homologue Dyx1c1 on the distribution of GABAergic neurons in the cerebral cortex. Neuroscience, 172, 535546. DOI: http://dx.doi.org/10.1016/j.neuroscience.2010.11.002.CrossRefGoogle ScholarPubMed
Davies, G., Lam, M., Harris, S. E. et al. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9, 2098. DOI: https://doi.org/10.1038/s41467-018-04362-x.CrossRefGoogle ScholarPubMed
de Kovel, C. G. F., Hol, F. A., Heister, J. et al. (2004). Genomewide scan identifies susceptibility locus for dyslexia on Xq27 in an extended Dutch family. Journal of Medical Genetics, 41, 652657.CrossRefGoogle Scholar
Deffenbacher, K. E., Kenyon, J. B., Hoover, D. M. et al. (2004). Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses. Human Genetics, 115, 128138.CrossRefGoogle ScholarPubMed
DeFries, J. C., Fulker, D. W., & LaBuda, M. C. (1987). Evidence for a genetic aetiology in reading disability of twins. Nature, 329, 537539.CrossRefGoogle ScholarPubMed
Dennis, M. Y., Paracchini, S., Scerri, T. S. et al. (2009). A common variant associated with dyslexia reduces expression of the KIAA0319 gene. PLoS Genetics, 5, e1000436.CrossRefGoogle ScholarPubMed
Dewannieux, M., & Heidmann, T. (2013). Endogenous retroviruses: Acquisition, amplification and taming of genome invaders. Current Opinion in Virology, 3, 646656. DOI: http://dx.doi.org/10.1016/j.coviro.2013.08.005.CrossRefGoogle ScholarPubMed
Dittwald, P., Gambin, T., Szafranski, P. et al. (2013). NAHR-mediated copy-number variants in a clinical population: Mechanistic insights into both genomic disorders and Mendelizing traits. Genome Research, 23, 13951409. DOI: https://doi.org/10.1101/gr.152454.112.CrossRefGoogle Scholar
Duranthon, V., Beaujean, N., Brunner, M. et al. (2012). On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools. Transgenic Research, 21, 699713.CrossRefGoogle ScholarPubMed
Eicher, J. D., & Gruen, J. R. (2015). Language impairment and dyslexia genes influence language skills in children with autism spectrum disorders. Autism Research, 8, 229234. DOI: https://doi.org/10.1002/aur.1436.CrossRefGoogle ScholarPubMed
Eicher, J. D., Powers, N. R., Miller, L. L., et al. for the Pediatric Imaging, Neurocognition Genetics, Study. (2013). Genome-wide association study of shared components of reading disability and language impairment. Genes, Brain and Behavior, 12, 792801. DOI: https://doi.org/10.1111/gbb.12085.CrossRefGoogle ScholarPubMed
Eicher, J. D., Stein, C. M., Deng, F. et al. (2015). The DYX2 locus and neurochemical signaling genes contribute to speech sound disorder and related neurocognitive domains. Genes, Brain and Behavior, 14(4), 377385. DOI: https://doi.org/10.1111/gbb.12214.CrossRefGoogle ScholarPubMed
Ercan-Sencicek, A. G., Davis Wright, N. R., Sanders, S. S. et al. (2012). A balanced t(10;15) translocation in a male patient with developmental language disorder. European Journal of Medical Genetics, 55, 128131.CrossRefGoogle Scholar
Fagerheim, T., Raeymaekers, P., Tonnessen, F. E. et al. (1999). A new gene (DYX3) for dyslexia is located on chromosome 2. Journal of Medical Genetics, 35, 664669.Google Scholar
Field, L. L., Shumansky, K., Ryan, J. et al. (2013). Dense-map genome scan for dyslexia supports loci at 4q13, 16p12, 17q22; suggests novel locus at 7q36. Genes, Brain and Behavior, 12, 5669. DOI: https://doi.org/10.1111/gbb.12003.CrossRefGoogle ScholarPubMed
Finucci, J. M., Guthrie, J. T., Childs, A. L., Abbey, H., & Childs, B. (1976). The genetics of specific reading disability. Annual Review of Human Genetics, 40, 123.CrossRefGoogle ScholarPubMed
Fisher, J. H. (1905). Case of congenital word-blindness (inability to learn to read). Ophthalmology Review, 24, 315318.Google Scholar
Fisher, J. H. (1910). Congenital world blindness (inability to learn to read). Transactions of the Ophthalmological Societies of the United Kingdom, 30, 216225.Google Scholar
Fisher, S. E., Francks, C., Marlow, A. J. et al. (2002). Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nature Genetics, 30, 8691.CrossRefGoogle ScholarPubMed
Francks, C., Paracchini, S., Smith, S. D. et al. (2004). A 77-kilobase region on chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetics, 75, 10461058.CrossRefGoogle ScholarPubMed
Friend, A., DeFries, J., Olson, R. et al. (2009). Heritability of high reading ability and its interaction with parental education. Behavior Genetics, 39, 427436.CrossRefGoogle ScholarPubMed
Gialluisi, A., Andlauer, T. F M, Mirza-Schreiber, N. et al. (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9, 77. DOI: https://doi.org/10.1038/s41398-019-0402-0.CrossRefGoogle ScholarPubMed
Gialluisi, A., Newbury, D. F., Wilcutt, E. G. et al. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13, 686701. DOI: https://doi.org/10.1111/gbb.12158.CrossRefGoogle ScholarPubMed
Gialluisi, A., Visconti, A., Willcutt, E. G. et al. (2016). Investigating the effects of copy number variants on reading and language performance. Journal of Neurodevelopmental Disorders, 8, 17. DOI: https://doi.org/10.1186/s11689-016-9147-8.CrossRefGoogle ScholarPubMed
Gibson, G. (2012). Rare and common variants: Twenty arguments. Nature Reviews Genetics, 13, 135145. DOI: https://doi.org/10.1038/nrg3118.CrossRefGoogle ScholarPubMed
Gilger, J. W., Borecki, I. B., DeFries, J. C., & Pennington, B. F. (1994). Commingling and segregation analysis of reading performance in families of normal reading probands. Behavior Genetics, 24, 345355.CrossRefGoogle ScholarPubMed
Girirajan, S., Brkanac, Z., Coe, B. P. et al. (2011). Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLOS GENET, 7, e1002334. DOI: https://doi.org/10.1371/journal.pgen.1002334.CrossRefGoogle ScholarPubMed
Gorlov, I. P., Gorlova, O. Y., Sunyaev, S. R., Spitz, M. R., & Amos, C. I. (2008). Shifting paradigm of association studies: Value of rare single-nucleotide polymorphisms. The American Journal of Human Genetics, 82, 100112. DOI: https://doi.org/10.1016/j.ajhg.2007.09.006.CrossRefGoogle ScholarPubMed
Grasby, K. L., Coventry, W. L., Byrne, B., & Olson, R. K. (2019). Little evidence that socioeconomic status modifies heritability of literacy and numeracy in Australia. Child Development, 90, 623637. DOI: https://doi.org/10.1111/cdev.12920.CrossRefGoogle ScholarPubMed
Grigorenko, E. L. (2004). Genetic bases of developmental dyslexia: A capsule review of heritability estimates. Enfance, 3, 273287.CrossRefGoogle Scholar
Grigorenko, E. L. (2005). A conservative meta-analysis of linkage and linkage-association studies of developmental dyslexia. Scientific Studies of Reading, 9, 285316.CrossRefGoogle Scholar
Grigorenko, E. L., & Naples, A. J. (2009). The devil is in the details: Decoding the genetics of reading. In McCardle, P. & Pugh, K. (eds.), Helping Children Learn to Read: Current Issues and New Directions in the Integration of Cognition, Neurobiology and Genetics of Reading and Dyslexia (pp. 133148). New York: Psychological Press.Google Scholar
Grigorenko, E. L., Ngorosho, D., Jukes, M., & Bundy, D. (2006). Reading in able and disabled readers from around the world: Same or different? An illustration from a study of reading-related processes in a Swahili sample of siblings. Journal of Reading Research, 29, 104123.CrossRefGoogle Scholar
Hallgren, B. (1950). Specific dyslexia (congenital word-blindness): A clinical and genetic study. Acta Psychiatrica et Neurologica Supplementum, 65, 1287.Google ScholarPubMed
Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M. et al. (2005). The axon guidance receptor gene ROBO1 is a candidate dene for developmental dyslexia. PLoS, 1, e50.CrossRefGoogle Scholar
Harlaar, N., Trzaskowski, M., Dale, P. S., & Plomin, R. (2014). Word reading fluency: Role of genome-wide single-nucleotide polymorphisms in developmental stability and correlations with print exposure. Child Development, 85(3), 11901205. DOI: https://doi.org/10.1111/cdev.12207.CrossRefGoogle ScholarPubMed
Harold, D., Paracchini, S., Scerri, T. et al. (2006). Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Molecular Psychiatry, 11, 10851091.CrossRefGoogle ScholarPubMed
Hart, S. A., Soden, B., Johnson, W., Schatschneider, C., & Taylor, J. (2013). Expanding the environment: Gene × school-level SES interaction on reading comprehension. Journal of Child Psychology and Psychiatry, 54, 10471055. DOI: https://doi.org/10.1111/jcpp.12083.CrossRefGoogle ScholarPubMed
Hart, S. A., Soden, B., Johnson, W., Schatschneider, C., & Taylor, J. (2014). Erratum. Journal of Child Psychology & Psychiatry, 55(8), 955956. DOI: https://doi.org/10.1111/jcpp.12276.Google Scholar
Hawke, J. L., Wadsworth, S. J., Olson, R. K., & DeFries, J. C. (2007). Etiology of reading difficulties as a function of gender and severity. Reading and Writing, 20, 1325.CrossRefGoogle Scholar
Hermann, K. (1956). Congenital word-blindness: Poor readers in the light of Gerstmann’s syndrome. Acta Psychiatrica et Neurologica Scandinavica, 31, 177184.CrossRefGoogle Scholar
Hinshelwood, J. (1900). Congenital word-blindness. Lancet, 155, 15061508.CrossRefGoogle Scholar
Hinshelwood, J. (1902). Congenital word-blindness, with reports of two cases. Ophthalmology Review, 21, 9199.Google Scholar
Hinshelwood, J. (1907). Four cases of congenital word-blindness occurring in the same family. British Medical Journal, 1, 608609.CrossRefGoogle Scholar
Hsu, L., Wijsman, E., Berninger, V., & Thomson, J. (2002). Familial aggregation of dyslexia phenotypes. II: Paired correlated measures. American Journal of Medical Genetics. Neuropsychiatric Genetics, 114, 471478.CrossRefGoogle ScholarPubMed
Igo, R. P. Jr., Chapman, N. H., Berninger, V. W. et al. (2006). Genomewide scan for real-word reading subphenotypes of dyslexia: Novel chromosome 13 locus and genetic complexity. American Journal of Medical Genetics (Neuropsychiatric Genetics), 141, 1527.CrossRefGoogle Scholar
Ioannidis, J. P. A., Trikalinos, T. A., & Khoury, M. J. (2006). Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases. American Journal of Epidemiology, 164, 609614. DOI: https://doi.org/10.1093/aje/kwj259.CrossRefGoogle ScholarPubMed
Iossifov, I., Ronemus, M., Levy, D. et al. (2012). De novo gene disruptions in children on the autistic spectrum. Neuron, 74, 285299. DOI: https://doi.org/10.1016/j.neuron.2012.04.009.CrossRefGoogle ScholarPubMed
Ji, W., Foo, J. N., O’Roak, B. J. et al. (2008). Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nature Genetics, 40, 592599. DOI: https://doi.org/10.1038/ng.118.CrossRefGoogle ScholarPubMed
Kaminen, N., Hannula-Jouppi, K., Kestila, M. et al. (2003). A genome scan for developmental dyslexia confirms linkage to chromosome 2p11 and suggests a new locus on 7q32. Journal of Medical Genetics, 40, 340345.CrossRefGoogle ScholarPubMed
Kerr, J. (1897). School hygiene, in its mental, moral, and physical aspects. Journal of the Royal Statistical Society, 60, 613680.CrossRefGoogle Scholar
Kim, P. M., Lam, H. Y., Urban, A. E. et al. (2008). Analysis of copy number variants and segmental duplications in the human genome: Evidence for a change in the process of formation in recent evolutionary history. Genome Res, 18(12), 18651874.CrossRefGoogle ScholarPubMed
Kovas, Y., Voronin, I., Kaydalov, A. et al. (2013). Literacy and numeracy are more heritable than intelligence in primary school. Psychological Science, 24, 20482056. DOI: https://doi.org/10.1177/0956797613486982.CrossRefGoogle ScholarPubMed
Kussmaul, A. (1877). Word deafness and word blindness. In von Ziemssen, H. & McCreery, J. A. T. (eds.), Cyclopaedia of the Practice of Medicine (pp. 770778). New York: William Wood.Google Scholar
Lander, E. S., Linton, L. M., Birren, B. et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860921. DOI: https://doi.org/10.1038/35057062.Google ScholarPubMed
Lewis, B. A., Freebairn, L., Tag, J., Benchek, et al. (2018). Heritability and longitudinal outcomes of spelling skills in individuals with histories of early speech and language disorders. Learning and Individual Differences, 65, 111. DOI: https://doi.org/10.1016/j.lindif.2018.05.001.CrossRefGoogle ScholarPubMed
Lewitter, F. I., DeFries, J. C., & Elston, R. C. (1980). Genetic models of reading disability. Behavior Genetics, 10, 930.CrossRefGoogle ScholarPubMed
Li, M., Malins, J. G., DeMille, M. M. C. et al. (2018). A molecular-genetic and imaging-genetic approach to specific comprehension difficulties in children. NPJ Science of Learning, 3, article no. 20. DOI: https://doi.org/10.1038/s41539-018-0034-9.CrossRefGoogle ScholarPubMed
Little, C. W., Haughbrook, R., & Hart, S. A. (2017). Cross-study differences in the etiology of reading comprehension: a meta-analytical review of twin studies. Behavior Genetics, 47(1), 5276. DOI: https://doi.org/10.1007/s10519-016-9810-6.CrossRefGoogle ScholarPubMed
Luciano, M., Evans, D. M., Hansell, N. K. et al. (2013). A genome-wide association study for reading and language abilities in two population cohorts. Genes, Brain and Behavior, 12, 645652. DOI: https://doi.org/10.1111/gbb.12053.CrossRefGoogle ScholarPubMed
Ludwig, K., Roeske, D., Herms, S. et al. (2010). Variation in GRIN2B contributes to weak performance in verbal short-term memory in children with dyslexia. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B, 503511.CrossRefGoogle ScholarPubMed
Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. New England Journal of Medicine, 363, 166176. DOI: https://doi.org/10.1056/NEJMra0905980.CrossRefGoogle ScholarPubMed
Manolio, T. A., Brooks, L. D., & Collins, F. S. (2008). A HapMap harvest of insights into the genetics of common disease. Journal of Clinical Investigation, 118, 15901605. DOI: https://doi.org/10.1172/jci34772.CrossRefGoogle ScholarPubMed
Marino, C., Meng, H., Mascheretti, S. et al. (2012). DCDC2 genetic variants and susceptibility to developmental dyslexia. Psychiatric Genetics, 22, 2530. DOI: https://doi.org/10.1097/YPG.0b013e32834acdb2.CrossRefGoogle ScholarPubMed
Mascheretti, S., Facoetti, A., Giorda, R. et al. (2015). GRIN2B mediates susceptibility to intelligence quotient and cognitive impairments in developmental dyslexia. Psychiatric Genetics, 25, 920. DOI: https://doi.org/10.1097/ypg.0000000000000068.CrossRefGoogle ScholarPubMed
Mascheretti, S., Trezzi, V., Giorda, R. et al. (2017). Complex effects of dyslexia risk factors account for ADHD traits: Evidence from two independent samples. Journal of Child Psychology and Psychiatry, 58, 7582. DOI: https://doi.org/10.1111/jcpp.12612.CrossRefGoogle ScholarPubMed
Meaburn, E., Harlaar, N., Craig, I., Schalkwyk, L., & Plomin, R. (2008). Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100 K SNP microarrays in a sample of 5760 children. Molecular Psychiatry, 13, 729740. DOI: https://doi.org/10.1038/sj.mp.4002063.CrossRefGoogle Scholar
Meng, H., Smith, S. D., Hager, K. et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 1705317058.CrossRefGoogle ScholarPubMed
Montoya, S. (2018). Defining Literacy. New York: UNESCO Institute for Statistics, UNESCO.Google Scholar
Munson, J., Dawson, G., Sterling, L. et al. (2008). Evidence for latent classes of IQ in young children with autism spectrum disorder. American Journal of Mental Retardation, 113, 439452.CrossRefGoogle ScholarPubMed
Naples, A. J., Chang, J. T., Katz, L., & Grigorenko, E. L. (2009). Same or different? Insights into the etiology of phonological awareness and rapid naming. Biological Psychology, 80, 226239.CrossRefGoogle ScholarPubMed
Newbury, D. F., Paracchini, S., Scerri, T. S. et al. (2011). Investigation of dyslexia and SLI risk-variants in reading- and language-impaired subjects. Behavior Genetics, 41, 90104.CrossRefGoogle ScholarPubMed
Nopola-Hemmi, J., Myllyluoma, B., Voutilainen, A. et al. (2002). Familial dyslexia: Neurocognitive and genetic correlation in a large Finnish family. Developmental Medicine and Child Neurology, 44, 580586.CrossRefGoogle Scholar
Norrie, E. (1939). Om ordblindhet. Copenhagen: Munkgaard.Google Scholar
Olson, R. K., Hulslander, J., Christopher, M. E. et al. (2013). Genetic and environmental influences on writing and their relations to language and reading. Annals of Dyslexia, 63, 2543. DOI: https://doi.org/10.1007/s11881-011-0055-z.CrossRefGoogle ScholarPubMed
Orton, S. T. (1939). A neurological explanation of the reading disability. Education Record, 12, 5868.Google Scholar
Park, H., & Kyei, P. (2011). Literacy gaps by educational attainment: A cross-national analysis. Social forces; a scientific medium of social study and interpretation, 89, 879904. DOI: https://doi.org/10.1353/sof.2011.0025.Google ScholarPubMed
Peng, B., & Kimmel, M. (2007). Simulations provide support for the common disease-common variant hypothesis. Genetics, 175, 763776. DOI: https://doi.org/10.1534/genetics.106.058164.CrossRefGoogle ScholarPubMed
Pennington, B. F., Gilger, J. W., Pauls, D. et al. (1991). Evidence for major gene transmission of developmental dyslexia. JAMA, 266, 15271534.CrossRefGoogle ScholarPubMed
Peter, B., Raskind, W., Matsushita, M. et al. (2011). Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample. Journal of Neurodevelopmental Disorders, 3, 3949. DOI: https://doi.org/10.1007/s11689-010-9065-0.CrossRefGoogle Scholar
Peters, L., & Ansari, D. (2019). Are specific learning disorders truly specific, and are they disorders? Trends in Neuroscience and Education, 17, 100115. DOI: https://doi.org/10.1016/j.tine.2019.100115.CrossRefGoogle ScholarPubMed
Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. The Lancet, 379, 19972007.CrossRefGoogle ScholarPubMed
Plomin, R., & Kovas, Y. (2005). Generalist genes and learning disabilities. Psychological Bulletin, 131, 592617.CrossRefGoogle ScholarPubMed
Price, K. M., Wigg, K. G., Feng, Y. et al. (2020). Genome-wide association study of word reading: Overlap with risk genes for neurodevelopmental disorders. Genes, Brain and Behavior (July 19, 2020)(6):e12648. DOI: https://doi.org/10.1111/gbb.12648.Epub2020Mar27.PMID:32108986.Google Scholar
Pritchard, J. K. (2001). Are rare variants responsible for susceptibility to complex diseases? The American Journal of Human Genetics, 69, 124137. DOI: https://doi.org/10.1086/321272.CrossRefGoogle ScholarPubMed
Pritchard, J. K., & Cox, N. J. (2002). The allelic architecture of human disease genes: common disease–common variant … or not? Human Molecular Genetics, 11, 24172423. DOI: https://doi.org/10.1093/hmg/11.20.2417.CrossRefGoogle ScholarPubMed
Raskind, W. H., Igo, R. P. Jr., Chapman, N. H. et al. (2005). A genome scan in multigenerational families with dyslexia: Identification of a novel locus on chromosome 2q that contributes to phonological decoding efficiency. Molecular Psychiatry, 10, 699711.CrossRefGoogle ScholarPubMed
Reich, D. E., & Lander, E. S. (2001). On the allelic spectrum of human disease. Trends in Genetics, 17, 502510. DOI: https://doi.org/10.1016/S0168-9525(01)02410-6.CrossRefGoogle ScholarPubMed
Rice, M. L., Smith, S. D., & Gayán, J. (2009). Convergent genetic linkage and association to language, speech and reading measures in families of probands with Specific Language Impairment. Journal of Neurodevelopmental Disorders, 1, 264282.CrossRefGoogle ScholarPubMed
Ring, H., Woodbury-Smith, M., Watson, P., Wheelwright, S., & Baron-Cohen, S. (2008). Clinical heterogeneity among people with high functioning autism spectrum conditions: Evidence favouring a continuous severity gradient. Behavioral & Brain Functions, 4, 11.CrossRefGoogle ScholarPubMed
Riva, V., Mozzi, A., Forni, D. et al. (2019). The influence of DCDC2 risk genetic variants on reading: Testing main and haplotypic effects. Neuropsychologia, 130, 5258. DOI: https://doi.org/10.1016/j.neuropsychologia.2018.05.021.CrossRefGoogle ScholarPubMed
Rodriguez-Murillo, L., & Greenberg, D. A. (2008). Genetic association analysis: A primer on how it works, its strengths and its weaknesses. International Journal of Andrology, 31, 546556. DOI: https://doi.org/10.1111/j.1365-2605.2008.00896.x.CrossRefGoogle ScholarPubMed
Roeske, D., Ludwig, K. U., Neuhoff, N. et al. (2011). First genome-wide association scan on neurophysiological endophenotypes points to trans-regulation effects on SLC2A3 in dyslexic children. Molecular Psychiatry, 16, 97107. www.nature.com/mp/journal/v16/n1/suppinfo/mp2009102s1.html.CrossRefGoogle ScholarPubMed
Romeo, S., Pennacchio, L. A., Fu, Y. et al. (2007). Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nature Genetics, 39, 513516. DOI: https://doi.org/10.1038/ng1984.CrossRefGoogle ScholarPubMed
Romeo, S., Wu, Y., Kozlitina, J. et al. (2009). Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. Journal of Clinical Investigation, 119, 7079. DOI: https://doi.org/10.1172/jc137118.Google ScholarPubMed
Rubenstein, K., Matsushita, M., Berninger, V. W., Raskind, W. H., & Wijsman, E. M. (2011). Genome scan for spelling deficits: Effects of verbal IQ on models of transmission and trait gene localization. Behavior Genetics, 41, 3142.CrossRefGoogle ScholarPubMed
Samuelsson, S., Olson, R. K., Wadsworth, S. et al. (2007). Genetic and environmental influences on prereaidng skills and early reading and spelling development in the United States, Australia, and Scandinavia. Reading & Writing, 20, 5175.CrossRefGoogle Scholar
Sánchez-Morán, M., Hernández, J. A., Duñabeitia, J. A. et al. (2018). Genetic association study of dyslexia and ADHD candidate genes in a Spanish cohort: Implications of comorbid samples. PLoS ONE, 13, e0206431. DOI: https://doi.org/10.1371/journal.pone.0206431.CrossRefGoogle Scholar
Scerri, T. S., Paracchini, S., Morris, A. et al. (2010). Identification of candidate genes for dyslexia susceptibility on chromosome 18. PLoS ONE, 5(10), e13712. DOI: https://doi.org/10.1371/journal.pone.0013712. Erratum in: PLoS ONE (2010) 5 (12). DOI: https://doi.org/10.1371/10.1371/annotation/2294a38b-878d-42f0-9faf-0822db4a0248. Richardson, Alex J [added]. PMID: 21060895; PMCID: PMC2965662.CrossRefGoogle ScholarPubMed
Schork, N. J., Murray, S. S., Frazer, K. A., & Topol, E. J. (2009). Common vs. rare allele hypotheses for complex diseases. Current Opinion in Genetics & Development, 19, 212219. DOI: https://doi.org/10.1016/j.gde.2009.04.010.CrossRefGoogle ScholarPubMed
Schueler, M., Braun, D. A., Chandrasekar, G. et al. (2015). DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt signaling. American Journal of Human Genetics, 96, 8192. DOI: https://doi.org/10.1016/j.ajhg.2014.12.002.CrossRefGoogle Scholar
Schumacher, J., Anthoni, H., Dahdouh, F. et al. (2006). Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. American Journal of Human Genetics, 78, 5262.CrossRefGoogle ScholarPubMed
Schumacher, J., Hoffmann, P., Schmal, C., Schulte-Korne, G., & Nothen, M. M. (2007). Genetics of dyslexia: The evolving landscape. Journal of Medical Genetics, 44, 289297.CrossRefGoogle ScholarPubMed
Simms, M. L., Kemper, T. L., Timbie, C. M., Bauman, M. L., & Blatt, G. J. (2009). The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathologica, 118, 673684.CrossRefGoogle ScholarPubMed
Skiba, T., Landi, N., Wagner, R., & Grigorenko, E. L. (2011). In search of the perfect phenotype: An analysis of linkage and association studies of reading and reading-related processes. Behavior Genetics, 41, 630.CrossRefGoogle ScholarPubMed
Skipper, K. A., Andersen, P. R., Sharma, N., & Mikkelsen, J. G. (2013). DNA transposon-based gene vehicles: Scenes from an evolutionary drive. Journal of Biomedical Science, 20, 92.CrossRefGoogle ScholarPubMed
Smith, S. D., Kimberling, W. J., Pennington, B. F., & Lubs, H. A. (1983). Specific reading disability: identification of an inherited form through linkage analyses. Science, 219, 13451347.CrossRefGoogle Scholar
Soden, B., Christopher, M. E., Hulslander, J. et al. (2015). Longitudinal stability in reading comprehension is largely heritable from grades 1 to 6. PLoS ONE, 10(1), e0113807. DOI: https://doi.org/10.1371/journal.pone.0113807.CrossRefGoogle Scholar
Soysal, Y. N., & Strang, D. (1989). Construction of the first mass education systems in nineteenth-century Europe. Source: Sociology of Education, 62, 277288.Google Scholar
Stein, C. M., & Elston, R. C. (2009). Finding genes underlying human disease. Clinical Genetics, 75, 101106. DOI: https://doi.org/10.1111/j.1399-0004.2008.01083.x.CrossRefGoogle ScholarPubMed
Stephenson, S. (1904). Congenital word blindness. Lancet, 2, 827828.CrossRefGoogle Scholar
Stephenson, S. (1907). Six cases of congenital word-blindness affecting three generations of one family. Ophthalmoscope, 5, 482484.Google Scholar
Sutcliffe, J. S. (2008). Heterogeneity and the design of genetic studies in autism. Autism Research, 1, 205206.CrossRefGoogle ScholarPubMed
Svensson, I. (2011). Reading and writing disabilities among inmates in correctional settings: A Swedish perspective. Learning and Individual Differences, 21, 1929.CrossRefGoogle Scholar
Swagerman, S. C., van Bergen, E., Dolan, C. V. et al. (2017). Genetic transmission of reading ability. Brain and Language, 172, 38. DOI: https://doi.org/10.1016/j.bandl.2015.07.008.CrossRefGoogle ScholarPubMed
Taipale, M., Kaminen, N., Nopola-Hemmi, J. et al. (2003). A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proceedings of the National Academy of Sciences of the United States of America, 100, 1155311558.CrossRefGoogle ScholarPubMed
Tarkar, A., Loges, N. T., Slagle, C. E. et al. (2013). DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nature Genetics, 45, 9951003. DOI: https://doi.org/10.1038/ng.2707.CrossRefGoogle ScholarPubMed
Taylor, J., Roehrig, A. D., Soden Hensler, B., Connor, C. M., & Schatschneider, C. (2010). Teacher quality moderates the genetic effects on early reading. Science, 328, 512514.CrossRefGoogle ScholarPubMed
Tenesa, A., Farrington, S. M., Prendergast, J. G. D. et al. (2008). Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nature Genetics, 40, 631637. DOI: https://doi.org/10.1038/ng.133.CrossRefGoogle ScholarPubMed
The Wellcome Trust Case Control Consortium. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 controls. Nature, 447, 661678.CrossRefGoogle Scholar
Thomas, C. J. (1905). Congenital ‘‘word-blindness’’ and its treatment. Ophthalmoscope, 3, 380385.Google Scholar
Tosto, M. G., Hayiou-Thomas, M. E., Harlaar, N. et al. (2017). The genetic architecture of oral language, reading fluency, and reading comprehension. Developmental Psychology, 53, 11151129. DOI: https://doi.org/10.1037/dev0000297.CrossRefGoogle ScholarPubMed
Tran, C., Wigg, K. G., Zhang, K. et al. (2014). Association of the ROBO1 gene with reading disabilities in a family-based analysis. Genes, Brain, and Behavior, 13, 430438. DOI: https://doi.org/10.1111/gbb.12126.CrossRefGoogle Scholar
Truong, D. T., Adams, A. K., Boada, R. et al. (2017). Multivariate genome-wide association study of rapid automatized naming and rapid alternating stimulus in Hispanic and African American youth. bioRxiv, 202929. DOI: https://doi.org/10.1101/202929.CrossRefGoogle Scholar
van Bergen, E., van Zuijen, T., Bishop, D., & de Jong, P. F. (2017). Why are home literacy environment and children’s reading skills associated? What parental skills reveal. Reading Research Quarterly, 52(2), 147160. DOI: https://doi.org/10.1002/rrq.160.CrossRefGoogle Scholar
van Leeuwen, M., van den Berg, S. M., Peper, J. S., Hulshoff Pol, H. E., & Boomsma, D. I. (2009). Genetic covariance structure of reading, intelligence and memory in children. Behavior Genetics, 39, 245254. DOI: https://doi.org/10.1007/s10519-009-9264-1.CrossRefGoogle ScholarPubMed
Vernes, S. C., Newbury, D. F., Abrahams, B. S. et al. (2008). A functional genetic link between distinct developmental language disorders. New England Journal of Medicine, 359, 23372345. DOI: https://doi.org/10.1056/NEJMoa0802828.CrossRefGoogle ScholarPubMed
Wadsworth, S., Corley, R., Hewitt, J., & DeFries, J. (2001). Stability of genetic and environmental influences on reading performance at 7, 12, and 16 years of age in the Colorado Adoption Project. Behavior Genetics, 31, 353359.CrossRefGoogle Scholar
Wadsworth, S., Olson, R., & DeFries, J. (2010). Differential genetic etiology of reading difficulties as a function of IQ: An update. Behavior Genetics, 40, 751758. DOI: http://dx.doi.org/10.1007/s10519-010-9349-x.CrossRefGoogle ScholarPubMed
Weinschenk, C. (1965). Die erbliche Rechtschreibschwäche und ihre sozialpsychiatrischen Auswirkungen. Bern: Haber.Google Scholar
Weiss, L. A. (2009). Autism genetics: Emerging data from genome-wide copy-number and single nucleotide polymorphism scans. Expert Review of Molecular Diagnostics, 9, 795803.CrossRefGoogle ScholarPubMed
Wijsman, E. M., Peterson, D., Leutenegger, A. L. et al. (2000). Segregation analysis of phenotypic components of learning disabilities: I. Nonword memory and digit span. American Journal of Human Genetics, 67, 631646.CrossRefGoogle ScholarPubMed
Wilcke, A., Ligges, C., Burkhardt, J. et al. (2012). Imaging genetics of FOXP2 in dyslexia. European Journal of Human Genetics, 20, 224229. DOI: https://doi.org/10.1038/ejhg.2011.160.CrossRefGoogle ScholarPubMed
Zeeuw, E. L., Beijsterveldt, C. E. M., Dolan, C. V. et al. (2018). Why do children read more? The influence of reading ability on voluntary reading practices. Journal of Child Psychology & Psychiatry, 59(11), 12051214. DOI: https://doi.org/10.1111/jcpp.12910.Google Scholar
Zerbin-Rüdin, E. (1967). Kongenitale Wortblindheit oder spezifische dyslexie (congenital word-blindness). Bulletin of Orton Society, 17, 4756.CrossRefGoogle Scholar
Zhu, X., Feng, T., Li, Y., Lu, Q., & Elston, R. C. (2010). Detecting rare variants for complex traits using family and unrelated data. Genetic Epidemiology, 34, 171187. DOI: https://doi.org/10.1002/gepi.20449.CrossRefGoogle ScholarPubMed
Ziegler, A., Konig, I. R., Deimel, W. et al. (2005). Developmental dyslexia–recurrence risk estimates from a German bi-center study using the single proband sib pair design. Human Heredity, 59, 136143.CrossRefGoogle Scholar

References

Ahmed, S. F., Grammer, J., & Morrison, F. (2021). Cognition in context: Validating group-based executive function assessments in young children. Journal of Experimental Child Psychology, 208, 105131.CrossRefGoogle ScholarPubMed
Blair, C., & Razza, R. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78, 647663.CrossRefGoogle ScholarPubMed
Brod, G., Bunge, S. A., & Shing, Y. L. (2017). Does one year of schooling improve children’s cognitive control and alter associated brain function? Psychological Science. DOI: https://doi.org/10.1177/0956797617699838.CrossRefGoogle Scholar
Bronson, M. B., Tivnan, T., & Seppanen, P. S. (1995). Relations between teacher and classroom activity variables and the classroom behaviors of preschool children in Chapter 1 funded programs. Journal of Applied Developmental Psychology, 16, 253282. DOI: https://doi.org/10.1016=0193-3973(95)90035-7.CrossRefGoogle Scholar
Burrage, M., Ponitz, C. C., Shah, P. et al. (2008). A natural experiment of schooling effects on executive functions. Child Neuropsychology, 14(6), 510524.CrossRefGoogle ScholarPubMed
Cameron, C. E., Connor, C. M., & Morrison, F .J. (2005) Effects of variation in teacher organization on classroom function. Journal of School Psychology, 43, 6185.CrossRefGoogle Scholar
Christian, K., Morrison, F. J., Frazier, J. A., & Massetti, G. (2000). Specificity in the nature and timing of cognitive growth in kindergarten and first grade. Journal of Cognition and Development, 1, 429448. DOI: https://doi.org/10.1207/S15327647JCD0104_04.CrossRefGoogle Scholar
Clements, D. H., Sarama, J., & Germeroth, C. (2016). Learning executive function and early mathematics: Directions of causal relations. Early Childhood Research Quarterly, 36, 7990.CrossRefGoogle Scholar
Connor, C. M., Ponitz, C. E. C., Phillips, B. et al. (2010). First graders’ literacy and self-regulation gains: The effect of individualizing instruction. Journal of School Psychology, 48, 433455.CrossRefGoogle Scholar
Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4–12 years old. Science, 333(6045), 959964. DOI: https://doi.org/10.1126/science.1204529.CrossRefGoogle Scholar
Duckworth, A., & Seligman, M. P. (2006). Self-discipline gives girls the edge: Gender in self-discipline, grades, and achievement test scores. Journal of Educational Psychology, 98, 198208. DOI: https://doi.org/10.1037/0022-0663.98.1.198.CrossRefGoogle Scholar
Gehring, W. J., Liu, Y., Orr, J. M., & Carp, J. (2012). The error-related negativity (ERN/Ne). In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 231291). Oxford: Oxford University Press.Google Scholar
Grammer, J. K., Carrasco, M., Gehring, W. J., & Morrison, F. J. (2014). Age-related changes in error processing in young children: A school-based investigation. Developmental Cognitive Neuroscience, 9, 93105.CrossRefGoogle ScholarPubMed
Grammer, J. K., Gehring, W. J., & Morrison, F. J. (2018). Associations between developmental changes in error‐related brain activity and executive functions in early childhood. Psychophysiology, 55(3), e13040.CrossRefGoogle ScholarPubMed
Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13(2), 6573. DOI: https://doi.org/10.1016/j.tics.2008.11.003.CrossRefGoogle ScholarPubMed
Hillman, C. H., Pontifex, M. B., Motl, R. W. et al. (2012). From ERPs to academics. Developmental Cognitive Neuroscience, 2 (Supplement 1), S90S98. DOI: https://doi.org/10.1016/j.dcn.2011.07.004.CrossRefGoogle ScholarPubMed
Hirsh, J. B., & Inzlicht, M. (2010). Error-related negativity predicts academic performance. Psychophysiology, 47, 192196.CrossRefGoogle ScholarPubMed
Imbens, G. W., & Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. Journal of Econometrics, 142, 615635. DOI: https://doi.org/10.1016/j.jeconom.2007.05.001.CrossRefGoogle Scholar
Jacob, R., Zhu, P., Somers, M., & Bloom, H. (2012). A practical guide to regression discontinuity (Working Paper). New York: MDRC.Google Scholar
Jaramillo, J. M., Rendon, M. I., Munoz, L., Weis, M., & Trommsdorff, G. (2017). Children’s self-regulation in cultural contexts: The role of parental socialization theories, goals, and practices. Frontiers in Psychology (June 6) (8), 923. DOI: https://doi.org/10.3389/fpsyg.2017.00923.PMID:28634460;PMCID:PMC5460587.CrossRefGoogle ScholarPubMed
Kim, M. H., Bousselot, T., & Ahmed, S. F. (2021). Executive functions and science achievement during the five-to-seven-year shift. Developmental Psychology, 57(12), 21192133. DOI: https://doi.org/10.1037/dev0001261.CrossRefGoogle ScholarPubMed
Kim, M. H., Grammer, J. K., Marulis, L. M. et al. (2016). Early math and reading achievement are associated with the error positivity. Developmental Cognitive Neuroscience, 22, 1826.CrossRefGoogle ScholarPubMed
Kim, M. H., Marulis, L. M., Grammer, J. K., Morrison, F. J., & Gehring, W. J. (2017). Motivational processes from expectancy-value theory are associated with variability in the error positivity in young children. Journal of Experimental Child Psychology, 155, 3247. DOI: https://doi.org/10.1016/j.jecp.2016.10.010.CrossRefGoogle ScholarPubMed
Kim, M. H., Morrison, F. J. (2018). Schooling effects on literacy skills during the transition to school. AERA Open, 4(3), 115. https://doi.org/10.1177/2332858418798793.CrossRefGoogle Scholar
Lamm, C., Zelazo, P. D., & Lewis, M. D. (2006). Neural correlates of cognitive control in childhood and adolescence: disentangling the contributions of age and executive function. Neuropsychologia, 44(11), 21392148.CrossRefGoogle ScholarPubMed
Matthews, J. S., Ponitz, C., & Morrison, F. J. (2009). Early gender differences in self-regulation and academic achievement. Journal of Educational Psychology, 101, 689704. DOI: https://doi.org/10.1037/a0014240.CrossRefGoogle Scholar
McClelland, M. M., Acock, A. C., & Morrison, F. J. (2006). The impact of kindergarten learning-related skills on academic trajectories at the end of elementary school. Early Childhood Research Quarterly, 21, 471490.CrossRefGoogle Scholar
Moffitt, T. E., Arseneault, L., Belsky, D. et al. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. PNAS Proceedings Of The National Academy Of Sciences Of The United States Of America, 108, 26932698. DOI: https://doi.org/10.1073/pnas.1010076108.CrossRefGoogle ScholarPubMed
Morrison, F. J., Bachman, H. J., & Connor, C. M. (2005). Improving Literacy in America: Guidelines from Research. New Haven, CT: Yale University Press.CrossRefGoogle Scholar
Morrison, F. J., & Grammer, J. K. (2016). Conceptual clutter and measurement mayhem: Proposals for cross disciplinary integration in conceptualizing and measuring executive function. In Griffin, J., McCardle, P., & Freund, L. (eds.), Research Directions in Preschool Executive Functions: Integrating Measurement, Neurodevelopment and Translational Research. Washington, DC: American Psychological Association.Google Scholar
Morrison, F. J., Griffith, E. M., & Frazier, J. A. (1996). Schooling and the 5 to 7 shift: A natural experiment. In Sameroff, A. J. & Haith, M. M. (eds.), The five to seven year shift: The age of reason and responsibility (pp. 161–186). Chicago: University of Chicago Press.Google Scholar
Morrison, F. J., Kim, M. H., Connor, C. M., & Grammer, J. K. (2019). The causal impact of schooling on children’s development: Lessons for developmental science. Current Directions in Psychological Science, 28(5), 441449. DOI: https://doi.org/10.1177/0963721419855661.CrossRefGoogle Scholar
Morrison, F. J., Ponitz, C. C., & McClelland, M. M. (2010). Self-regulation and academic achievement in the transition to school. In Calkins, S. and Bell, M. (eds.), Child Development at the Intersection of Emotion and Cognition (pp. 203224). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Moser, J. S., Schroder, H. S., Heeter, C., Moran, T. P., & Lee, Y-H. (2011). Mind your errors: Evidence for a neural mechanism linking growth mind-set to adaptive posterror adjustments. Psychological Science, 22(12), 14841489.CrossRefGoogle ScholarPubMed
Noble, K. G., Norman, M. F., & Farah, M. J. (2005). Neurocognitive correlates of socioeconomic status in kindergarten children. Developmental Science, 8(1), 7487. DOI: https://doi.org/10.1111/j.1467-7687.2005.00394.x.CrossRefGoogle ScholarPubMed
OECD. (2020). Early Learning and Child Well-Being: A Study of Five-year-Olds in England, Estonia, and the United States. Paris: OECD Publishing. DOI: https://doi.org/10.1787/3990407f-en.Google Scholar
Oh, S., & Lewis, C. (2008). Korean preschoolers’ advanced inhibitory control and its relation to other executive skills and mental state understanding. Child Development, 79(1), 8099. DOI: https://doi.org/10.1111/j.1467-8624.2007.01112.x.CrossRefGoogle ScholarPubMed
Overbeek, T. J. M., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005). Dissociable components of error processing: On the functional significance of the Pe vis-à-vis the ERN/Ne. Journal of Psychophysiology, 19(4), 319329. https://doi.org/10.1027/0269-8803.19.4.319.CrossRefGoogle Scholar
Peng, P., & Kievit, R. A. (2020). The development of academic achievement and cognitive abilities: A bidirectional perspective. Child Development Perspectives, 14(1), 1520. DOI: https://doi.org/10.1111/cdep.12352.CrossRefGoogle ScholarPubMed
Sabbagh, M. A., Xu, F., Carlson, S. M., Moses, L. J., & Lee, K. (2006). The development of executive functioning and theory of mind: A comparison of Chinese and US preschoolers. Psychological Science, 17(1), 7481. DOI: https://doi.org/10.1111/j.1467-9280.2005.01667.x.CrossRefGoogle ScholarPubMed
Skibbe, L. E., Connor, C. M., Morrison, F. J., & Jewkes, A. M. (2011). Schooling effects on preschoolers’ self-regulation, early literacy, and language growth. Early Childhood Research Quarterly, 26, 4249. DOI: https://doi.org/10.1016/j.ecresq.2010.05.001.CrossRefGoogle ScholarPubMed
Thistlethwaite, D. L., & Campbell, D. T. (1960). Regression-discontinuity analysis: An alternative to the ex post facto experiment. Journal of Educational Psychology, 51(6), 309317. DOI: https://doi.org/10.1037/h0044319.CrossRefGoogle Scholar
Tobin, J. J., Hsueh, Y., & Karasawa, M. (2009). Preschool in Three Cultures Revisited: China, Japan, and the United States. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Van der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P. et al. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113, 842861.CrossRefGoogle ScholarPubMed
Wanless, S. B., McClelland, M. M., Lan, X. et al. (2013). Gender differences in behavioral regulation in four societies: The US, Taiwan, South Korea, and China. Early Childhood Research Quarterly, 28, 621633. DOI: https://doi.org/10.1016/j.ecresq.2013.04.002.CrossRefGoogle Scholar
Weiland, C., & Yoshikawa, H. (2013). Impacts of a prekindergarten program on children’s mathematics, language, literacy, executive function, and emotional skills. Child Development, 84(6), 2112–30. DOI: https://doi.org/10.1111/cdev.12099.CrossRefGoogle ScholarPubMed
Weixler, L. B. (2012). The contributions of preschool attendance and kindergarten experience to executive functioning in Chinese and American children. (PhD, University of Michigan.) https://deepblue.lib.umich.edu/handle/2027.42/96108.Google Scholar
Welsh, M. C. (2001). The prefrontal cortex and the development of executive functions. In Kalverboer, A. & Gramsbergen, A. (eds.), Handbook of Brain and Behaviour Development (pp. 767789). Deventer: Kluwer.Google Scholar
Welsh, M. C., Friedman, S. L., & Spieker, S. J. (2006). Executive functions in developing children: Current conceptualizations and questions for the future. In McCartney, K., Phillips, D., McCartney, K., & Phillips, D. (eds.), Blackwell Handbook of Early Childhood Development (pp. 167187). Malden: Blackwell Publishing.CrossRefGoogle Scholar
Wong, V. C., Cook, T. D., Barnett, W. S., & Jung, K. (2008). An effectiveness-based evaluation of five state pre-kindergarten programs. Journal of Policy Analysis and Management, 27(1), 122154. DOI: https://doi.org/10.1002/pam.20310.CrossRefGoogle Scholar
Woodcock, R. W., McGrew, K. S., Mather, N. (2001). Woodcock-Johnson III Tests of Achievement. Itasca, IL:Riverside.Google Scholar
Yang, S., Yang, H., & Lust, B. (2011). Early childhood bilingualism leads to advances in executive attention: Dissociating culture and language. Bilingualism: Language and Cognition, 14(03), 412422. DOI: https://doi.org/10.1017/S1366728910000611.CrossRefGoogle Scholar
Zelazo, P., Craik, F. M., & Booth, L. (2004). Executive function across the life span. Acta Psychologica, 115, 167183.CrossRefGoogle ScholarPubMed

References

Studies marked with an asterisk are included in this review.

*Aturupane, H., Glewwe, P., & Wisniewski, S. (2013). The impact of school quality, socioeconomic factors, and child health on students’ academic performance: Evidence from Sri Lankan primary schools. Education Economics, 21(1), 237. DOI: https://doi.org/10.1080/09645292.2010.511852.CrossRefGoogle Scholar
*Azuara, P. (2009). Literacy practices in a changing cultural context: The literacy development of two emergent Mayan-Spanish bilingual children. Dissertation Abstracts International Section A: Humanities and Social Sciences, 70(6-A), 1885.Google Scholar
*Azuara, P., & Reyes, I. (2011). Negotiating worlds: A young Mayan child developing literacy at home and at school in Mexico. Compare: A Journal of Comparative and International Education, 41(2), 181194.CrossRefGoogle Scholar
Babayiğit, S., & Stainthorp, R. (2010). Component processes of early reading, spelling, and narrative writing skills in Turkish: A longitudinal study. Reading and Writing: An Interdisciplinary Journal, 23(5), 539568.CrossRefGoogle Scholar
*Bandyopadhyay, T. (2012). Gender and school participation: Evidences from Empirical Research in Madhya Pradesh and Chhattisgarh. NUEPA Occasional Paper 41. New Delhi, India: National University of Educational Planning and Administration.Google Scholar
*Bekman, S., Aksu-Koc, A., & Erguvanli-Taylan, E. (2011). Effectiveness of an intervention program for six-year-olds: A summer-school model. European Early Childhood Education Research Journal, 19(4), 409431.CrossRefGoogle Scholar
Borkum, E., He, F., & Linden, L. L. (2012). School libraries and language skills in Indian primary schools: A randomized evaluation of the Akshara Library Program. NBER Working Paper No. 18183 (pp. 0–0): National Bureau of Economic Research.MA 021385398.Google Scholar
*Burde, D. & Linden, L. L. (2013). Bringing education to Afghan girls: A randomised controlled trial of village-based schools. American Economic Journal: Applied Economics, 5(3), 2740.Google Scholar
*Carron, G., & Chau, T. N. (2009). The Quality of Primary Schools in Different Development Contexts. Paris: UNESCO.Google Scholar
*Chinyama, A., Svesve, B., Gambiza, B. et al. (June 2012). Literacy Boost Zimbabwe Baseline Report. Save the Children.Google Scholar
*Chiu, M. M., & Chow, B. W. Y. (2010). Culture, motivation, and reading achievement: High school students in 41 countries. Learning and Individual Differences, 20(6), 579592.CrossRefGoogle Scholar
Chudgar, A., & Luschei, T. F. (2009). National income, income inequality, and the importance of schools: A hierarchical cross-national comparison. American Educational Research Journal, 46(3), 626658.CrossRefGoogle Scholar
Crookston, B. T., Forste, R., McClellan, C., Georgiadis, A., & Heaton, T. B. (2014). Factors associated with cognitive achievement in late childhood and adolescence: The Young Lives cohort study of children in Ethiopia, India, Peru, and Vietnam. BMC Pediatrics, 14, 253. https://bmcpediatr.biomedcentral.com/articles/10.1186/1471-2431-14-253.CrossRefGoogle Scholar
*de la Piedra, M. T. (2006). Literacies and Quechua oral language: Connecting sociocultural worlds and linguistic resources for biliteracy development. Journal of Early Childhood Literacy, 6(3), 383406.CrossRefGoogle Scholar
*de la Piedra, M. T. (2010). Religious and self-generated Quechua literacy practices in the Peruvian Andes. International Journal of Bilingual Education and Bilingualism, 13(1), 99113.CrossRefGoogle Scholar
*Dlamini, S. M. (2009). Early language and literacy learning in a peripheral African setting: A study of children’s participation in home and school communicative and literacy practices in and around Manzini, Swaziland. (Unpublished doctoral thesis. University of Cape Town, South Africa.)Google Scholar
*Dyer, C. (2000). “Education for All” and the Rabaris of Kachchh, Western India. International Journal of Educational Research, 33(3), 241251.CrossRefGoogle Scholar
*Elbeheri, G., & Everett, J. (2007). Literacy ability and phonological processing skills amongst dyslexic and non-dyslexic Speakers of Arabic. Reading and Writing: An Interdisciplinary Journal, 20(3), 273294.CrossRefGoogle Scholar
Eng, S., Szmodis, W., Mulsow, M. (2014). Cambodian parental involvement: The role of parental beliefs, social networks, and trust. The Elementary School Journal, 114(4), 573594.CrossRefGoogle Scholar
*Farah, I. (1991). School ka sabaq: Literacy in a girls’ primary school in rural Pakistan. Working Papers in Educational Linguistics, 7(2), 5981.Google Scholar
*Fernald, L. C., Weber, A., Galasso, E., & Ratsifandrihamanana, L. (2011). Socioeconomic gradients and child development in a very low income population: Evidence from Madagascar. Developmental Science, 14(4), 832847.CrossRefGoogle Scholar
*Gauvain, M., & Munroe, R. L. (2009). Contributions of societal modernity to cognitive development: A comparison of four cultures. Child Development, 80(6), 16281642. DOI: https://doi.org/10.1111/j.1467-8624.2009.01358.x.CrossRefGoogle ScholarPubMed
Gough, D., Thomas, J., & Oliver, S. (2012). Clarifying differences between review designs and methods. Systematic Reviews, 1(28). DOI: https://doi.org/10.1186/2046-4053-1-28.CrossRefGoogle ScholarPubMed
*Griffin, P., & Thanh, M. T. (2006). Reading achievements of Vietnamese Grade 5 pupils. Assessment in Education: Principles, Policy and Practice, 13(2), 155177.Google Scholar
*Gunnarsson, V., Orazem, P. F., & Sanchez, M. A. (2006). Child labor and school achievement in Latin America. World Bank Economic Review, 20(1), 3154.CrossRefGoogle Scholar
*Huang, F. (2009). The role of socio-economic status, out- of-school time, and schools: Multi-level assessments of factors associated with academic achievement. (Phd dissertation Curry School of Education University of Virginia.)Google Scholar
*Hungi, N. (2008). Examining differences in mathematics and reading achievement among Grade 5 pupils in Vietnam. Studies in Educational Evaluation, 34(3), 155164.CrossRefGoogle Scholar
*Hungi, N., & Thuku, F. W. (2010). Variations in reading achievement across 14 Southern African school systems: Which factors matter? International Review of Education, 56(1), 63101.CrossRefGoogle Scholar
*Ikeda, M. (2010). Effective primary schools in geographically isolated areas of Vietnam. (Doctoral thesis, Columbia University, USA.) http://search.proquest.com/professional/docview/870287845?accountid=15181.Google Scholar
Jukes, M. C. H., Mgonda, N. L., Tibenda, J. L., & Sitabkhan, Y. (2023). The role of teachers’ implicit social goals in pedagogical reforms in Tanzania. Oxford Review of Education, 49(1), 1028. DOI: https://doi.org/10.1080/03054985.2022.2093178.CrossRefGoogle Scholar
* LeVine, R., LeVine, S., Schnell-Anzola, B., Rowe, M. L., & Dexter, E. (2012). Literacy and Mothering: How Women’s Schooling Changes the Lives of the World’s Children. Oxford: Oxford University Press.CrossRefGoogle Scholar
Lucas, A. M., McEwan, P. J., Ngwara, M., & Oketch, M. (2014). Improving early-grade literacy in East Africa: Experimental evidence from Kenya and Uganda. Journal of Policy Analysis and Management, 33, 950976.CrossRefGoogle Scholar
Malmberg, L., Mwaura, P., & Sylva, K. (2011). Effects of a preschool intervention on cognitive development among East-African preschool children: A flexibly time-coded growth model. Early Childhood Research Quarterly, 26, 124133.CrossRefGoogle Scholar
McCartney, K., & Dearing, E. (2002). Evaluating effect sizes in the policy arena. The Evaluation Exchange: Harvard Family Research Project, 8(1), 329.Google Scholar
*McCormac, M. (2012). Literacy and educational quality improvement in Ethiopia: A mixed method study. (Unpublished doctoral dissertation. Department of Education Leadership, Higher Education and International Education, University of Maryland, USA.)Google Scholar
*McEwan, P. J., & Jimenez, W. (2002). Indigenous Students in Bolivian Primary Schools: Patterns and Determinants of Inequities. A World Bank Study. Girls’ education working paper series. Washington, DC: World Bank Group.Google Scholar
* McEwan, P. J., & Trowbridge, M. (2007). The achievement of indigenous students in Guatemalan primary schools. International Journal of Educational Development, 27, 6176.CrossRefGoogle Scholar
*Mkhize, D. N. (2013). The nested contexts of language use and literacy learning in a South African fourth grade class: Understanding the dynamics of language and literacy practices. (Doctoral thesis, University of Illinois at Urbana-Champaign, USA.)Google Scholar
Mol, S., Bus, A., de Jong, M., & Smeets, D. (2008). Added value of dialogic parent-child book readings: A meta-analysis. Early Education and Development, 19, 726.CrossRefGoogle Scholar
*Mount-Cors, M. F. (2011). Homing in: Mothers at the heart of health and literacy in coastal Kenya. Dissertation Abstracts International Section A: Humanities and Social Sciences, 72(1–A), 137.Google Scholar
*Nag, S. (2007). Early reading in Kannada: The pace of acquisition of orthographic knowledge and phonemic awareness. Journal of Research in Reading, 30(1), 722.CrossRefGoogle Scholar
Nag, S. (2023). Teaching and learning: What matters for intervention. Oxford Review of Education, 49(1), 19. DOI: https://doi.org/10.1080/03054985.2023.2161197.CrossRefGoogle Scholar
Nag, S., Chiat, S., Torgerson, C., & Snowling, M. J. (2014). Literacy, Foundation Learning and Assessment in Developing Countries: Final Report. London: EPPI-Centre, Social Science Research Unit, University of London. www.gov.uk/government/uploads/system/uploads/attachment_data/file/305150/Literacy-foundation-learning-assessment.pdf.Google Scholar
Nag, S., & Snowling, M. J. (2011). Cognitive profiles of poor readers of Kannada. Reading and Writing: An Interdisciplinary Journal, 24(6), 657676.CrossRefGoogle Scholar
Nag, S., Snowling, M. J., & Asfaha, Y. (2016). Classroom literacy practices in low- and middle-income countries: An interpretative synthesis of ethnographic studies. Oxford Education Review, 42(1), 3654. DOI: https://doi.org/10.1080/03054985.2015.1135115.CrossRefGoogle Scholar
Nag, S., Vagh, S. B.,Dulay, K, M. & Snowling, M. J. (2019)). Home language, school language and children’s literacy attainments: A systematic review of evidence from low‐ and middle‐income countries. Review of Education, 7(1), 91150. DOI: https://doi.org/10.1002/rev3.3130.CrossRefGoogle Scholar
*Nankhuni, F. J., & Findeis, J. L. (2004). Natural resource-collection work and children’s schooling in Malawi. Agricultural Economics, 31(2–3), 123134.Google Scholar
National Reading Panel [Institute of Child Health and Human Development]. (2000). Report of the National Reading Panel. Teaching Children to Read: An Evidence-Based Assessment of the Scientific Research Literature on Reading and Its Implications for Reading Instruction (NIH Publication No. 004769). Washington, DC: US Government Printing Office.Google Scholar
*Ngwaru, J. M., & Opoku-Amankwa, K. (2010). Home and school literacy practices in Africa: Listening to inner voices. Language and Education, 24(4), 295307.CrossRefGoogle Scholar
*Nonoyama-Tarumi, Y., & Bredenberg, K. (2009). Impact of school readiness program interventions on children’s learning in Cambodia. International Journal of Educational Development, 29(1), 3945.CrossRefGoogle Scholar
Opel, A., Ameer, S. S., & Aboud, F. E. (2009). The effect of preschool dialogic reading on vocabulary among rural Bangladeshi children. International Journal of Educational Research, 48(1), 1220.CrossRefGoogle Scholar
*Park, H. (2008). Home literacy environments and children’s reading performance: A comparative study of 25 countries. Educational Research and Evaluation, 14(6), 489505.CrossRefGoogle Scholar
*Parry, K., Kirabo, E., & Nakayato, G. (2014). Working with parents to promote children’s literacy: A family literacy project in Uganda. Multilingual Education, 4(13). https://multilingual-education.springeropen.com/articles/10.1186/s13616-014-0013-2.CrossRefGoogle Scholar
*Piper, B. (2010). Ethiopia Early Grade Reading Assessment. Data Analytic Report: Language and Early Learning. Ed Data II Task Number 7 and Ed Data II Task Number. Addis Ababa: USAID Ethiopia.Google Scholar
*Piper, B., & Korda, M. (2011). EGRA Plus: Liberia. Program Evaluation Report. Research Triangle Park, NC: RTI International USA.Google Scholar
*Rochidi, A. (2009). Developing pre-literacy skills via shared book reading: The effect of linguistic distance in a diglossic context. Dissertation Abstracts International: Section B: The Sciences and Engineering, 70(8–B), 4801.Google Scholar
*Rolleston, C., & Krutikova, S. (2014). Equalising opportunity? School quality and home disadvantage in Vietnam. Oxford Review of Education, 40(1), 112131.CrossRefGoogle Scholar
*Sarker, P., & Davey, G. (2009). Exclusion of indigenous children from primary education in the Rajshahi Division of Northwestern Bangladesh. International Journal of Inclusive Education, 13(1), 111.CrossRefGoogle Scholar
*Sen, R., & Blatchford, P. (2001). Reading in a second language: Factors associated with progress in young children. Educational Psychology, 21(2), 189202.CrossRefGoogle Scholar
*Schady, N. (2011). Parents’ education, mothers’ vocabulary, and cognitive development in early childhood: Longitudinal evidence from Ecuador. American Journal of Public Health, 101(12), 22992307.CrossRefGoogle ScholarPubMed
* Shah-Wundenberg, M., Wyse, D., & Chaplain, R. (2012). Parents helping their children to read: The effectiveness of paired reading and hearing reading in a developing country context. Journal of Early Childhood Literacy, 13(4), 471500.CrossRefGoogle Scholar
*Sharma, R. (1997). Dynamics of learning three R’s in Madhya Pradesh. Economic and Political Weekly, 32 (17), 891901.Google Scholar
Shure, D., Parameshwaran, M., Nag, S. & Snowling, M. J. (2014). Economic and Social Factors related to Literacy and Foundation Learning. Technical Report No. 5: Literacy. Foundation Learning and Assessment in Developing Countries. Oxford: University of Oxford.Google Scholar
*Smith, M., & Barrett, A. M. (2011). Capabilities for learning to read: An investigation of social and economic effects for Grade 6 learners in Southern and East Africa. International Journal of Educational Development, 31(1), 2336.CrossRefGoogle Scholar
*Spratt, J. E., Seckinger, B., & Wagner, D. A. (1991). Literacy in and out of school: A study of functional literacy in Morocco. Reading Research Quarterly, 26, 178195.CrossRefGoogle Scholar
*Stevenson, H. W., Chen, C., & Booth, J. (1990). Influences of schooling and urban-rural residence on gender differences in cognitive abilities and academic achievement. Sex Roles, 23(9–10), 535551.CrossRefGoogle Scholar
Strasser, K., & Lissi, M. R. (2009). Home and instruction effects on emergent literacy in a sample of Chilean kindergarten children. Scientific Studies of Reading, 13(2), 175204. DOI: https://doi.org/10.1080/10888430902769525.CrossRefGoogle Scholar
*Vagh, S. B. (2009). The role of classroom literacy environments in supporting young children’s language and emergent literacy development: A longitudinal study in Mumbai, India. (Doctoral thesis presented to the Faculty of the Graduate School of Education of Harvard University.)Google Scholar
Votruba-Drzal, E., Miller, P., & Coley, R. L. (2016). Poverty, urbanicity, and children’s development of early academic skills. Child Development Perspectives, 10(1), 39.CrossRefGoogle Scholar
*Wagner, D. A. (1993). Literacy, Culture and Development: Becoming Literate in Morocco. Cambridge: Cambridge University Press.Google Scholar
*Willenberg, I. (2004). Getting set for reading in the Rainbow Nation: Emergent literacy skills and literacy environments of children in South Africa. (Unpublished doctoral dissertation. Harvard Graduate School of Education, Massachusetts.)Google Scholar
*Willms, J., & Somers, M. A. (2001). Family, classroom, and school effects on children’s educational outcomes in Latin America. School Effectiveness and School Improvement, 12(4), 409445.CrossRefGoogle Scholar
Winskel, H., & Widjaja,