Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-22T20:41:09.087Z Has data issue: false hasContentIssue false

3 - In Vivo Studies of miRNA Target Interactions Using Site-specific Genome Engineering

from Part I - Biology of Endonucleases (Zinc-Finger Nuclease, TALENs and CRISPRs) and Regulatory Networks

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 37 - 51
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, V, Bell, GW, Nam, JW, Bartel, DP. 2015. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4: e05005.CrossRefGoogle ScholarPubMed
Alexiou, P, Maragkakis, M, Papadopoulos, GL, Reczko, M, Hatzigeorgiou, AG. 2009. Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25: 30493055.CrossRefGoogle ScholarPubMed
Bartel, DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281297.CrossRefGoogle ScholarPubMed
Bartel, DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215233.CrossRefGoogle ScholarPubMed
Bassett, A, Liu, JL. 2014. CRISPR/Cas9 mediated genome engineering in Drosophila. Methods 69: 128136.CrossRefGoogle ScholarPubMed
Bassett, AR, Azzam, G, Wheatley, L, et al. 2014. Understanding functional miRNA-target interactions in vivo by site-specific genome engineering. Nat Commun 5: 4640.CrossRefGoogle ScholarPubMed
Bassett, AR, Tibbit, C, Ponting, CP, Liu, JL. 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4: 220228.CrossRefGoogle ScholarPubMed
Bell, CC, Magor, GW, Gillinder, KR, Perkins, AC. 2014. A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing. BMC Genomics 15: 1002.CrossRefGoogle ScholarPubMed
Bibikova, M, Golic, M, Golic, KG, Carroll, D. 2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161: 11691175.CrossRefGoogle ScholarPubMed
Brinkman, EK, Chen, T, Amendola, M, van Steensel, B. 2014. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42: e168.CrossRefGoogle ScholarPubMed
Bushati, N, Cohen, SM. 2007. microRNA functions. Annu Rev Cell Dev Biol 23: 175205.CrossRefGoogle ScholarPubMed
Cacchiarelli, D, Incitti, T, Martone, J, et al. 2011. miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep 12: 136141.CrossRefGoogle ScholarPubMed
Carrington, B, Varshney, GK, Burgess, SM, Sood, R. 2015. CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic Acids Res 43: e157.CrossRefGoogle ScholarPubMed
Choi, WY, Giraldez, AJ, Schier, AF. 2007. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318: 271274.CrossRefGoogle ScholarPubMed
Cloonan, N. 2015. Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. Bioessays 37: 379388.CrossRefGoogle ScholarPubMed
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819823.CrossRefGoogle ScholarPubMed
Croce, CM, Calin, GA. 2005. miRNAs, cancer, and stem cell division. Cell 122: 67.CrossRefGoogle ScholarPubMed
Esteller, M. 2011. Non-coding RNAs in human disease. Nat Rev Genet 12: 861874.CrossRefGoogle ScholarPubMed
Farh, KK, Grimson, A, Jan, C, et al. 2005. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310: 18171821.CrossRefGoogle ScholarPubMed
Gehrke, S, Imai, Y, Sokol, N, Lu, B. 2010. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466: 637641.CrossRefGoogle ScholarPubMed
Hafner, M, Landthaler, M, Burger, L, et al. 2010. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141: 129141.CrossRefGoogle ScholarPubMed
Helwak, A, Kudla, G, Dudnakova, T, Tollervey, D. 2013. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153: 654665.CrossRefGoogle ScholarPubMed
Hwang, WY, Fu, Y, Reyon, D, et al. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31: 227229.CrossRefGoogle ScholarPubMed
Jin, Y, Chen, Z, Liu, X, Zhou, X. 2013. Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol Biol 936: 117127.CrossRefGoogle ScholarPubMed
Jinek, M, Chylinski, K, Fonfara, I, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816821.CrossRefGoogle ScholarPubMed
Jinek, M, Doudna, JA. 2009. A three-dimensional view of the molecular machinery of RNA interference. Nature 457: 405412.CrossRefGoogle ScholarPubMed
John, B, Enright, AJ, Aravin, A, et al. 2005. Human microRNA targets. PLoS Biol 3: e264.CrossRefGoogle Scholar
Kim, JM, Kim, D, Kim, S, Kim, JS. 2014a. Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat Commun 5: 3157.CrossRefGoogle ScholarPubMed
Kim, S, Kim, D, Cho, SW, Kim, J, Kim, JS. 2014b. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24: 10121019.CrossRefGoogle ScholarPubMed
Krutzfeldt, J, Rajewsky, N, Braich, R, et al. 2005. Silencing of microRNAs in vivo with “antagomirs”. Nature 438: 685689.CrossRefGoogle ScholarPubMed
Lewis, BP, Burge, CB, Bartel, DP. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 1520.CrossRefGoogle ScholarPubMed
Lewis, BP, Shih, IH, Jones-Rhoades, MW, et al. 2003. Prediction of mammalian microRNA targets. Cell 115: 787798.CrossRefGoogle ScholarPubMed
Lim, LP, Lau, NC, Garrett-Engele, P, et al. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769773.CrossRefGoogle ScholarPubMed
Liu, CG, Calin, GA, Volinia, S, Croce, CM. 2008. MicroRNA expression profiling using microarrays. Nat Protoc 3: 563578.CrossRefGoogle ScholarPubMed
Mali, P, Yang, L, Esvelt, KM, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339: 823826.CrossRefGoogle ScholarPubMed
Mendell, JT. 2005. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4: 11791184.CrossRefGoogle ScholarPubMed
Michaels, YS, Wu, Q, Fulga, TA. 2017. Interrogation of functional miRNA-target interactions by CRISPR/Cas9 genome engineering. Meth Mol Biol 1580: 7997.CrossRefGoogle ScholarPubMed
Park, CY, Choi, YS, McManus, MT. 2010. Analysis of microRNA knockouts in mice. Hum Mol Genet 19: R169R175.CrossRefGoogle ScholarPubMed
Pillai, RS, Artus, CG, Filipowicz, W. 2004. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10: 15181525.CrossRefGoogle ScholarPubMed
Port, F, Muschalik, N, Bullock, SL. 2015. Systematic evaluation of Drosophila CRISPR tools reveals safe and robust alternatives to autonomous gene drives in basic research. G3 (Bethesda) 5: 14931502.CrossRefGoogle ScholarPubMed
Rajewsky, N. 2006. microRNA target predictions in animals. Nat Genet 38(Suppl.): S8S13.CrossRefGoogle ScholarPubMed
Ran, FA, Hsu, PD, Wright, J, et al. 2013. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8: 22812308.CrossRefGoogle ScholarPubMed
Staton, AA, Giraldez, AJ. 2011. Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo. Nat Protoc 6: 20352049.CrossRefGoogle ScholarPubMed
Sun, K, Lai, EC. 2013. Adult-specific functions of animal microRNAs. Nat Rev Genet 14: 535548.CrossRefGoogle ScholarPubMed
Thomas, M, Lieberman, J, Lal, A. 2010. Desperately seeking microRNA targets. Nat Struct Mol Biol 17: 11691174.CrossRefGoogle ScholarPubMed
Thomson, DW, Bracken, CP, Goodall, GJ. 2011. Experimental strategies for microRNA target identification. Nucleic Acids Res 39: 68456853.CrossRefGoogle ScholarPubMed
Wang, Z. 2011. The guideline of the design and validation of MiRNA mimics. Methods Mol Biol 676: 211223.CrossRefGoogle ScholarPubMed
Wu, Q, Ferry, QRV, Michaels, YS, et al. 2017. In situ functional dissection of RNA cis-regulatory elements by multiplex CRISPR-Cas9 genome engineering. Nat Comms 8: 2109.CrossRefGoogle ScholarPubMed
Zhang, Y, Ge, X, Yang, F, et al. 2014. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep 4: 5405.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×