Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-kpmwg Total loading time: 1.08 Render date: 2021-11-29T15:32:02.638Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

9 - Does connectionism provide a new paradigm for AI?

Published online by Cambridge University Press:  03 May 2010

Derek Partridge
Affiliation:
University of Exeter
Get access

Summary

Fodor restates his language of thought hypothesis, which presents a serious challenge to the view that the architecture of cognition is network-based. Fodor claims that, whatever the representation underlying thought at the level of semantic interpretation, it must have constituent structure, i.e. a structure such that belief in the truth of (A and B) necessarily involves belief in the truth of both of the constituents, A and B, separately. Such necessity is not, in general, supported by network architecture whereas it is in Turing machine-type representations.

The rest of the papers in this section respond (directly or indirectly) to this challenge to the significance of connectionism in AI. Is connectionism just implementation detail, an essentially Turing machine-type architecture implemented with an activity-passing network? Or are sub-symbolic networks inherently more powerful than the traditional symbolic-level processing representations that have dominated much of AI? Smolensky is firmly on the side of connectionism as a fundamentally new and powerful ‘sub-symbolic’ paradigm for AI. Wilks discusses and denies the central claims of both Fodor and Smolensky, arguing that, at the moment, benificent agnosticism is the best position on connectionism, awaiting further clarification of its claims and more empirical results.

Churchland supports the connectionist movement but his support is based on the similarities between connectionist principles and the architecture of the brain. He argues for the study of neuroanatomy as a source of system-building constraints in AI.

Type
Chapter
Information
The Foundations of Artificial Intelligence
A Sourcebook
, pp. 287 - 288
Publisher: Cambridge University Press
Print publication year: 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×