Skip to main content Accessibility help
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-14T20:18:18.498Z Has data issue: false hasContentIssue false

4 - Evolution in the light of embryos: seeking the origins of novelties in ontogeny

Published online by Cambridge University Press:  28 June 2009

Manfred D. Laubichler
Arizona State University
Jane Maienschein
Arizona State University
Get access



In the later part of the nineteenth century, it became evident that there was a hereditary connection between the development of living organisms and their evolutionary ancestors (Amundson 2005). This connection was given mechanistic underpinnings by Müller (1869), and was elaborated and formalized by Ernst Haeckel in his recapitulation theory, in which he attempted to link the mechanisms of evolution of descendants to the development of their ancestors by means of addition of new terminal stages, combined with the shortening of life stages inherited from the ancestors. The result, according to Haeckel, was that living forms in their development literally recapitulate the adult forms of their ancestors in a condensed sequence. This was the most influential theory of the late nineteenth century, linking evolution causally to both Lamarkian heredity and ontogeny (Gould 1977; Richardson and Keuck 2002). Although important in inspiring studies in comparative embryology, which were used in seeking phylogenetic information on remote ancestors, the hold of this theory on biologists weakened by the mid 1890s. Following Roux's influential lead, embryologists became interested in the mechanisms of developmental processes per se and abandoned Haeckel's phylogenetic program that offered little insight into how embryos develop. Haeckelian recapitulation as a mechanism was subsequently shown to be unfeasible with the rediscovery of Mendelian inheritance, which uprooted terminal addition from its theoretical foundations.

Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Amundson, R. (2005). The Changing Role of the Embryo in Evolutionary Thought: Roots of Evo-Devo. Cambridge and New York: Cambridge University Press.CrossRefGoogle Scholar
Angerer, L. M. and Angerer, R. C. (2003). Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions. Current Topics in Developmental Biology 53, 159–98.CrossRefGoogle ScholarPubMed
Angerer, L. M., Oleksyn, D. W., Levine, A. M., Li, X., Klein, W. H., and Angerer, R. C. (2001). Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes. Development 128, 4393–404.Google ScholarPubMed
Berill, N. J. (1995). The Origin of Vertebrates. Oxford: Clarendon Press.Google Scholar
Bourlat, S. J., Nielsen, C., Lockyer, A. E., Littlewood, D. T., and Telford, M. J., (2003). Xenoturbella is a deuterostome that eats molluscs. Nature 424, 925–8.CrossRefGoogle ScholarPubMed
Bradshaw, H. D. Jr., Otto, K. G., Frewen, B. E., McKay, J. K., and Schemske, D. W. (1998). Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics 149, 367–382.Google Scholar
Bradshaw, H. D. and Schemske, D. W. (2003). Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426, 176–8.CrossRefGoogle Scholar
Budd, G. E. and Jensen, S. (2000). A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews of the Cambridge Philosophical Society 75, 253–95.CrossRefGoogle ScholarPubMed
Byrne, M. (2006). Life history diversity and the Asterinidae. Integrative and Comparative Biology 46, 243–54.CrossRefGoogle ScholarPubMed
Byrne, M., Hart, M. W., Cerra, A., and Cisternas, P. (2003). Reproduction and larval morphology of broadcasting and viviparous species in the Cryptasterina species complex. The Biological Bulletin 205, 285–94.CrossRefGoogle ScholarPubMed
Chen, C. H., Cretekos, C. J., Rasweiler 4th, J. J., and Behringer, R. R. (2005). Hoxd13 expression in the developing limbs of the short-tailed fruit bat, Carollia perspicillata. Evolution & Development 7, 130–41.CrossRefGoogle ScholarPubMed
Cohn, M. J. and Tickle, C. (1999). Developmental basis of limblessness and axial patterning in snakes. Nature 399, 474–9.CrossRefGoogle ScholarPubMed
Davidson, E. H., Peterson, K. J., and Cameron, R. A. (1995). Origin of bilaterian body plans: evolution of developmental regulatory mechanisms. Science 270, 1319–25.CrossRefGoogle ScholarPubMed
Beer, G. R. (1951). Embryos and Ancestors. Oxford: Clarendon Press.Google Scholar
Donoghue, P. C., Kouchinsky, A., Waloszek, D., Bengtson, S., Dong, X. P., Val'kov, A. K., Cunningham, J. A., and Repetski, J. E. (2006). Fossilized embryos are widespread but the record is temporally and taxonomically biased. Evolution & Development 8, 232–8.CrossRefGoogle ScholarPubMed
Duboc, V., Röttinger, E., Besnardeau, L., and Lepage, T. (2004). Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Developmental Cell 6, 397–410.CrossRefGoogle ScholarPubMed
Duboc, V., Röttinger, E., Lapraz, F., Besnardeau, L., and Lepage, T. (2005). Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. Developmental Cell 9, 147–58.CrossRefGoogle ScholarPubMed
Dunn, E. F., Moy, V. N., Angerer, L. M., Angerer, R. C., Morris, R. L., and Peterson, K. J. (2007). Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian. Evolution & Development 9, 10–24.CrossRefGoogle ScholarPubMed
Ferkowicz, M. J. and Raff, R. A. (2001). Wnt gene expression in sea urchin development: heterochronies associated with the evolution of developmental mode. Evolution & Development 3, 24–33.CrossRefGoogle ScholarPubMed
Flowers, V. L., Courteau, G. R., Poustka, A. J., Weng, W., and Venuti, J. M., (2004). Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo. Developmental Dynamics 231, 727–40.CrossRefGoogle ScholarPubMed
Garstang, W. (1922). The theory of recapitulation: a critical restatement of the biogenetic law. Journal of the Linnean Society, Zoology 35, 81–101.CrossRefGoogle Scholar
Gilbert, S. F., Loredo, G. A., Brukman, A., and Burke, A. C. (2001). Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evolution & Development 3, 47–58.CrossRefGoogle ScholarPubMed
Gould, S. J. (1977). Ontogeny and Phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
Gregory, W. K. (1951). Evolution Emerging. New York: Macmillan, 2 vols.Google Scholar
Hallgrimsson, B. and Hall, B. K. (eds.) (2005). Variation. Amsterdam: Elsevier.Google Scholar
Harada, Y., Shoguchi, E., Taguchi, S., Okai, N., Humphries, T., Tagawa, K., and Satoh, N. (2002). Conserved expression pattern of BMP-2/4 in hemichordate acorn worm and echinoderm sea cucumber embryos. Zoological Science 19, 1113–21.CrossRefGoogle ScholarPubMed
Hart, M. W., Byrne, M., and Smith, M. J. (1997). Molecular phylogenetic analysis of life-history evolution in asterinid starfish. Evolution 51, 1846–59.CrossRefGoogle ScholarPubMed
Heintz, A. and Stormer, L. (1937). Relationships of the Animal Kingdom. Oslo: Palentological Museum (wall display diagram).Google Scholar
Henry, J. J. and Raff, R. A. (1990). The dorsoventral axis is specified prior to first cleavage in the direct developing sea urchin Heliocidaris erythrogramma. Development 110, 875–84.Google ScholarPubMed
Hinman, V. F., Nguyen, A. T., Cameron, R. A., and Davidson, E. H. (2003). Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proceedings of the National Academy of Sciences USA. 100, 13356–61.CrossRefGoogle ScholarPubMed
Israelsson, O. and Budd, G. E. (2005). Eggs and embryos in Xenoturbella (phylum uncertain) are not ingested prey. Development Genes and Evolution. 215, 358–63.CrossRefGoogle Scholar
Jågersten, G. (1972). Evolution of the Metazoan Life Cycle. London: Academic Press.Google Scholar
Jeffery, C. H. and Emlet, R. B. (2003). Macroevolutionary consequences of developmental mode in temnopleurid echinoids from the Tertiary of southern Australia. Evolution 57, 1031–48.CrossRefGoogle ScholarPubMed
Jeffery, C. H., Emlet, R. B., and Littlewood, D. T. (2003). Phylogeny and evolution of developmental mode in temnopleurid echinoids. Molecular Phylogenetics and Evolution 28, 99–118.CrossRefGoogle ScholarPubMed
Jenner, R. A. (2000). Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process. Evolution & Development 2, 208–21.CrossRefGoogle ScholarPubMed
Kauffman, J. S. and Raff, R. A. (2003). Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma. Development Genes and Evolution 213, 612–24.CrossRefGoogle ScholarPubMed
Kirschner, M. and Gerhart, J. (1998). Evolvability. Proceedings of the National Academy of Sciences USA 95, 8420–27.CrossRefGoogle ScholarPubMed
Kissinger, J. C. and Raff, R. A. (1998). Evolutionary changes in sites and timing of expression of actin genes in embryos of the direct- and indirect-developing sea urchins Heliocidaris erythrogramma and H. tuberculata. Development Genes and Evolution 208, 82–93.CrossRefGoogle ScholarPubMed
Leroi, A. M. (2000). The scale independence of evolution. Evolution & Development 2, 67–77.CrossRefGoogle Scholar
Lillie, F. R. (1898). Adaptation in cleavage. Biological Lectures Delivered at the Marine Biological Laboratory of Wood's Hole. Boston, MA: Ginn & Co., pp. 43–56.Google Scholar
Love, A. C., Andrews, M. E., and Raff, R. A. (2007). Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm. Evolution & Development 9, 51–68.CrossRefGoogle Scholar
Love, A. C. and Raff, R. A. (2003). Knowing your ancestors: themes in the history of evo-devo. Evolution & Development 5, 327–30.CrossRefGoogle ScholarPubMed
Love, A. C. and Raff, R. A. (2006). Larval ectoderm, organizational homology, and the origins of evolutionary novelty. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 306, 18–34.CrossRefGoogle ScholarPubMed
Lowe, C. J. and Wray, G. A. (1997). Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389, 718–21.CrossRefGoogle ScholarPubMed
McEdward, L. and Janies, D. (1997). Relationships among development, ecology, and morphology in the evolution of echinoderm larvae and life cycles. Biological Journal of the Linnean Society 60, 381–400.CrossRefGoogle Scholar
Minsuk, S. and Raff, R. A. (2005). Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2. Evolution & Development 7, 289–300.CrossRefGoogle Scholar
Müller, F. (1869). Facts and Arguments for Darwin. Translated from German by Dallas, W. S.. London: John Murray.CrossRefGoogle Scholar
Nakajima, Y., Humphreys, T., Kaneko, H., and Tagawa, K. (2004). Development and neural organization of the tornaria larva of the Hawaiian hemichordate, Ptychodera flava. Zoological Science 21, 69–78.CrossRefGoogle ScholarPubMed
Needham, J. (1993). On the dissociability of the fundamental processes in ontogenesis. Biological Reviews of the Cambridge Philosophical Society 8, 180–223.CrossRefGoogle Scholar
Nielsen, C. (1995). Animal Evolution. Interrelationships of the Living Phyla. Oxford University Press.Google Scholar
Nielsen, C. and Nørrevang, A. (1985). The trochaea theory: an example of life cycle phylogeny. In Conway-Morris, S., George, J. D., Gibson, R., and Platt, H. M. (eds.), The Origins and Relationships of Lower Invertebrates. Oxford: Clarendon Press, pp. 297–309.Google Scholar
Nielsen, G., Wilson, K. A., Raff, E. C., and Raff, R. A. (2000). Novel gene expression patterns in hybrid embryos between species with different modes of development. Evolution & Development 2, 133–44.CrossRefGoogle ScholarPubMed
Nützel, A., Lehnert, O., and Fryda, J. (2006). Origin of planktotrophy – evidence from early molluscs. Evolution & Development 8, 325–30.CrossRefGoogle ScholarPubMed
Orr, H. A. (2005). The genetic theory of adaptation: a brief history. Nature Reviews Genetics 6, 119–27.CrossRefGoogle ScholarPubMed
Peichel, C. L. (2005). Fishing for the secrets of vertebrate evolution in threespine sticklebacks. Developmental Dynamics 234, 815–23.CrossRefGoogle ScholarPubMed
Peterson, K. J. (2005). Macroevolutionary interplay between planktonic larvae and benthic predators. Geology 33, 929–32.CrossRefGoogle Scholar
Peterson, K. J., Cameron, R. A., and Davidson, E. H. (1997). Set-aside cells in maximal indirect development: evolutionary and developmental significance. Bioessays 19, 623–31.CrossRefGoogle ScholarPubMed
Peterson, K. J., Summons, R. A., and Donoghue, P. C. J. (2007). Molecular palaeobiology. Palaeontology 50, 775–809.CrossRefGoogle Scholar
Piatigorski, J. (2003). Crystallin genes: specialization by changes in gene regulation may precede gene duplication. Journal of Structural and Functional Genomics 3, 131–7.CrossRefGoogle Scholar
Primus, A. (2005). Regional specification in the early embryo of the brittle star Ophiopholis aculeata. Developmental Biology 283, 294–309.CrossRefGoogle ScholarPubMed
Raff, E. C., Popodi, E. M., Kauffman, J. S., Sly, B. J., Turner, F. R., Morris, V. B., and Raff, R. A. (2003). Regulatory punctuated equilibrium and convergence in the evolution of developmental pathways in direct-developing sea urchins. Evolution & Development 5, 478–93.CrossRefGoogle ScholarPubMed
Raff, E. C., Popodi, E. M., Sly, B. J., Turner, F. R., Villinski, J. T., and Raff, R. A. (1999). A novel ontogenetic pathway in hybrid embryos between species with different modes of development. Development 126, 1937–45.Google ScholarPubMed
Raff, E. C., Villinski, J. T., Turner, F. R., Donoghue, P. C., and Raff, R. A. (2006). Experimental taphonomy shows the feasibility of fossil embryos. Proceedings of the National Academy of Sciences USA 103, 5846–51.CrossRefGoogle ScholarPubMed
Raff, R. A. (1996). The Shape of Life: Genes, Development and the Evolution of Animal Form. University of Chicago Press.Google Scholar
Raff, R. A. and Love, A. C. (2004). Kowalevsky, comparative evolutionary embryology, and the intellectual lineage of evo-devo. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 15, 302, 19–34.CrossRefGoogle Scholar
Reisz, R. R., Scott, D., Sues, H. D., Evans, D. C., and Raath, M. A. (2005). Embryos of an early Jurassic prosauropod dinosaur and their evolutionary significance. Science 309, 761–4.CrossRefGoogle ScholarPubMed
Richardson, M. K. and Keuck, G. (2002). Haeckel's ABC of evolution and development. Biological Reviews 77(4), 495–528.CrossRefGoogle ScholarPubMed
Rouse, G. W. (2000). The epitome of hand waving? Larval feeding and hypotheses of metazoan phylogeny. Evolution & Development 2, 222–33.CrossRefGoogle ScholarPubMed
Sander, K. and Schmidt-Ott, U. (2004). Evo-devo aspects of classical and molecular data in a historical perspective. Journal of Experimental Zoologyog B Mol Dev Evol 302, 69–91.CrossRefGoogle Scholar
Shapiro, M. D., Marks, M. E., Peichel, C. L., Blackman, B. K., Nereng, K. S., Jonsson, B., Schluter, D., and Kingsley, D. M. (2004). Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–23.CrossRefGoogle ScholarPubMed
Shubin, N. H., Draeschler, E. B., and Jenkins, F. A. Jr. (2006). The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440, 747–49.CrossRefGoogle ScholarPubMed
Slack, F. and Ruvkun, G. (1997). Temporal pattern formation by heterochronic genes. Annual Review of Genetics 31, 611–34.CrossRefGoogle ScholarPubMed
Sly, B. J., Snoke, M. S., and Raff, R. A. (2003). Who came first – larvae or adults? Origins of bilaterian metazoan larvae. International Journal of Developmental Biology 47, 623–632.Google ScholarPubMed
Smith, A. B. (1997). Echinoderm larvae and phylogeny. Annual Reviews of Ecology and Systematics 28, 219–41.CrossRefGoogle Scholar
Smith, M. S., Turner, F. R., and Raff, R. A. (2008). Nodal expression and heterochrony in the evolution of dorsal–ventral and left–right axes formation in the direct-developing sea urchinHeliocidaris erythrogramma. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution 13 Aug (epub ahead of print).Google ScholarPubMed
Valentine, J. W. and Collins, A. G. (2000). The significance of moulting in ecdysozoan evolution. Evolution & Development 2, 152–6.CrossRefGoogle ScholarPubMed
Villinski, J. T., Villinski, J. C., and Raff, R. A. (2002). Convergence in maternal provisioning strategy during developmental evolution of sea urchins. Evolution 56, 1764–75.CrossRefGoogle Scholar
Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist 36, 36–43.CrossRefGoogle Scholar
Walossek, D. (1993). The upper Cambrian Rehbachiella kinnekullensis Müller, 1983, and the phylogeny of Branchiopoda and Crustacea. Fossils and Strata 32, 1–202, 54 text figures, 34 plates.Google Scholar
Whiteley, H. R., McCarthy, B. J., and Whiteley, A. H. (1970). Conservation of base sequences in RNA for early development of echinoderms. Developmental Biology 21, 216–42.CrossRefGoogle ScholarPubMed
Wilson, K., Andrews, M. A., and Raff, R. A. (2005a). Dissociation of expression patterns of homeodomain transcription factors in the evolution of developmental mode in the sea urchins Heliocidaris tuberculata and H. erythrogramma. Evolution & Development 7, 401–15CrossRefGoogle ScholarPubMed
Wilson, K., Andrews, M. A., Turner, F. R., and Raff, R. A. (2005b). Major regulatory factors in the evolution of development: the roles of goosecoid and Msx in the evolution of the direct-developing sea urchin Heliocidaris erythrogramma. Evolution & Development 7, 416–28.CrossRefGoogle ScholarPubMed
Wolpert, L. (1999). From egg to adult to larva. Evolution & Development 1, 3–4.CrossRefGoogle Scholar
Wray, G. A. (1995). Evolution of larvae and developmental modes. In McEdward, L. (ed.), Ecology of Marine Invertebrate Larvae. Boca Raton, FL: CRC Press, pp. 413–47.Google Scholar
Wray, G. A. (1996). Parallel evolution of non-feeding larvae in echinoids. Systematic Biology 45, 308–22.CrossRefGoogle Scholar
Wray, G. A. and Raff, R. A. (1989). Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma. Developmental Biology 132, 458–70.CrossRefGoogle ScholarPubMed
Wray, G. A. and Raff, R. A. (1990). Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma. Developmental Biology 141, 41–54.CrossRefGoogle ScholarPubMed
Xiao, S., Zhang, Y., and Knoll, A. H. (1998). Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphate. Nature 391, 553–8.Google Scholar
Zigler, K. S.Raff, E. C., Popodi, E., Raff, R. A., and Lessios, H. E. (2003). Adaptive evolution of bindin in the genus Heliocidaris is correlated with the shift to direct development. Evolution 57, 2293–302.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats