Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-c97xr Total loading time: 0.646 Render date: 2022-05-28T18:02:47.325Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

4 - Imaging using electrons and ion beams

Published online by Cambridge University Press:  12 January 2010

Kaoru Ohya
Affiliation:
The University of Tokushima
Tohru Ishitani
Affiliation:
Hitachi High-technologies Corporation
Nan Yao
Affiliation:
Princeton University, New Jersey
Get access

Summary

Overview of imaging using FIB

Scanning electron microscopes (SEM), transmission electron microscopes (TEM), and scanning TEM (STEM) have been used for structural observation of microdevices, advanced materials, and biological specimens. In recent years, a gallium (Ga) focused ion beam (FIB) has been used for preparing their cross-sectional samples [1, 2, 3, and Chapter 9 in this book]. Here, FIB works both as a milling beam and as a probe for a scanning ion microscope (SIM). SIM images are used during the whole milling processes, that is, drawing the milling area, milling monitoring, confirmation of the final milling, and observation of the FIB milled sections of interest. As SIM image resolution has been improved and about 5 nm is achievable at present, SIM observation has been increasingly used in place of SEM observation when there is no especial need for high image resolution.

However, we have found that the properties of SIM images are somewhat different to SEM images. For example, SIM and SEM images of identical FIB milled cross sections are shown in Figures 4.1(a)–(d): (a) and (c) show a solder (Pb-Sn) on copper (Cu) and (b) and (d) show a Si device (static random access memory) [4]. Black-and-white contrast among materials is opposite between the SIM and SEM images. In addition, grain contrast (or channeling contrast) can be observed more clearly in the SIM image and its contrast is sometimes stronger than the material contrast. Figure 4.2 shows SIM and SEM images of FIB cross-sectioned human hair [5].

Type
Chapter
Information
Focused Ion Beam Systems
Basics and Applications
, pp. 87 - 125
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nikawa, K.. J. Vac. Sci. Technol. B, 9 (1991), 2566–77.CrossRef
Ishitani, T. and Yaguchi, T.. Microsc. Res. Tech., 35 (1996), 1320–33.3.0.CO;2-Q>CrossRef
Giannuzzi, L. A. and Stevie, F. A.. Micron., 30 (1999), 197–204.CrossRef
Ishitani, T. and Ohya, K.. Scanning, 25 (2003), 201–9.CrossRefPubMed
Ishitani, T., Hirose, H. and Tsuboi, H.. J. Electron Microsc., 44 (1995), 110–14.
M. Utlaut. Handbook of Charged Particle Optics, ed. Orloff, J. (New York: CRC Press, 1997), pp. 429–88.Google Scholar
Sakai, Y., Yamada, T., Suzuki, T.et al. Appl. Phys. Lett., 73 (1998), 611–13.CrossRef
Sakai, Y., Yamada, T., Suzuki, T. and Ichinokawa, T.. Appl. Surf. Sci., 73 (1999), 96–100.CrossRef
Ishitani, T. and Tsuboi, H.. Scanning, 19 (1997), 489–97.CrossRef
Orloff, J., Utlaut, M. and Swanson, L.. High Resolution Focused Ion beams: FIB and its Applications (New York: Kluwer Academic/Plenum Publishers, 2003).CrossRefGoogle Scholar
Goldstein, J. I., Newbury, D. E., Echlin, P., et al. Scanning Electron Microscopy and X-ray Microanalysis (New York and London: Plenum Press, 1992).CrossRefGoogle Scholar
Reimer, L.. Scanning Electron Microscopy, 2nd edn (Berlin: Springer, 1998).CrossRefGoogle Scholar
Joy, D. C.. Inst. Phys. Conf. Ser. No. 93, 1 (1988), 23–32.
Ishitani, T.. Jpn. J. Appl. Phys., 34 (1995), 3303–6.CrossRef
Reimer, L.. Image Formation in Low-Voltage Scanning Electron Microscopy (Washington, DC: SPIE Optical Engineering Press, 1993).CrossRefGoogle Scholar
Dearnaley, G., Freeman, J. H., Nelson, R. S. and Stephen, J.. Ion Implantation (Amsterdam: North-Holland Publishers, 1973).Google Scholar
Ryssel, H. and Ruge, I.. Ion Implantation (New York: John Wiley & Sons, 1986).Google Scholar
Ding, Z. J. and Shimizu, R.. Scanning, 18 (1996), 92–113.CrossRef
Hofer, W. O.. Scanning Microsc. Suppl., 4 (1987), 265–310.
Hasselkamp, D., Rothard, H., Groeneveld, K.-O.et al. Particle Induced Electron Emission II (Berlin: Springer-Verlag, 1992).CrossRefGoogle Scholar
Parilis, E. S., Kishinevsky, L. M., Yu, N.. Turaev, et al. Atomic Collisions on Solid Surfaces (Amsterdam: North-Holland, 1993), pp. 391–473.Google Scholar
Baragiola, R. A., ed. Ionization of Solids by Heavy Particles (New York: Plenum Press, 1993).CrossRefGoogle Scholar
R. A. Baragiola. Low Energy Ion-Surface Interactions, ed. Rabalais, J. W. (Chichester: John Wiley and Sons, 1994), pp. 187–262.Google Scholar
J. Schou. Physical Processes of the Interaction of Fusion Plasmas with Solids, ed. Hofer, W. O. and Roth, J. (San Diego: Academic Press, 1996), pp. 177–216.Google Scholar
Kudo, H.. Ion-Induced Electron Emission from Crystalline Solids (Berlin: Springer, 2002).Google Scholar
Hagstrum, H. D.. Phys. Rev., 96 (1954), 325–35.CrossRef
Hagstrum, H. D.. Phys. Rev., 96 (1954), 336–65.CrossRef
Baragiola, R. A., Alonso, E. V., Ferron, J. and Oliva-Florio, A.. Surf. Sci. 90, 240–55.CrossRef
Sternglass, E. J.. Phys. Rev., 108 (1957), 1–12.CrossRef
Schou, J.. Phys. Rev. B, 22 (1980), 2114–74.CrossRef
M. Rösler. Ionization of Solids by Heavy Particles, ed. Baragiola, R. A. (New York: Plenum Press, 1993), pp. 27–58.CrossRefGoogle Scholar
P. M. Echenique, F. Flores and R. H. Ritchie. Solid State Physics: Advances in Research and Applications, Vol. 43, ed. Ehrenrech, H. and Turnbull, D. (New York: Academic Press, 1990), pp. 229–308.Google Scholar
Nagy, I., Arnau, A. and Echenique, P. M.. Phys. Rev. B, 38 (1988), 9191–3.CrossRef
Ohya, K. and Ishitani, T.. J. Electron Microsc., 52 (2003), 291–8.CrossRef
Penn, D. R.. Phys. Rev. B, 35 (1987), 482–6.CrossRef
Ashley, J. C.. J. Electron Spectrosc. Relat. Phenom., 50 (1990), 323–34.CrossRef
Ohya, K. and Kawata, J.. Jpn. J. Appl. Phys., 32 (1993), 1244–7.CrossRef
Fitting, H.-J. and Reinhardt, J.. Phys. Status Solidi A, 88 (1985), 245–59.CrossRef
R. A. Baragiola. Interaction of Charged Particles with Solids and Surfaces, ed. Gras-Marti, A., Urbassek, H. M., Arista, N. R. and Flores, F. (New York: Plenum Press, 1990), pp. 443–58.Google Scholar
Lakits, G., Aumayr, F., Heim, M. and Winter, H.. Phys. Rev. A, 42 (1990), 5780–3.CrossRef
Lörincik, J., Sroubek, Z., Eder, H., Aumayr, F. and Winter, H.. Phys. Rev. B, 62 (2000), 16116–25.CrossRef
Ohya, K. and Ishitani, T.. Surf. Coat. Technol., 158–159 (2002), 8–13.CrossRef
Eckstein, W.. Computer Simulation of Ion–Solid Interactions (Berlin: Springer-Verlag, 1991), pp. 4–32.CrossRefGoogle Scholar
Ziegler, J. F., Biersack, J. P. and Littmark, U.. The Stopping and Ranges of Ions in Solids (New York: Pergamon Press, 1985), pp. 109–40.Google Scholar
Koshikawa, T. and Shimizu, R.. J. Phys. D: Appl. Phys., 7 (1974), 1303–15.CrossRef
Ganachaud, J. P. and Cailler, M.. Surf. Sci., 83 (1979), 498–518.CrossRef
Ding, Z. J., and Shimizu, R.. Surf. Sci., 197 (1988), 539–54.CrossRef
Kotera, M., Ijichi, R., Fujiwara, T., Suga, H. and Wittry, D. B.. Jpn. J. Appl. Phys., 29 (1990), 2277–82.CrossRef
Dubus, A., Dehaes, J.-C., Ganachaud, J. P., Hafni, A. and Cailler, M.. Phys. Rev. B, 47 (1993), 11056–73.CrossRef
Kuhr, J.-Ch. and Fitting, H.-J.. Phys. Stat. Sol. A, 172 (1999), 433–48.3.0.CO;2-X>CrossRef
Nishimura, K., Kawata, J. and Ohya, K.. Nucl. Instrum. and Meth. Phys. Res. B, 164–165 (2000), 903–9.CrossRef
Olson, T. K., Lee, R. G. and Morgan, J. C.. Proc. 18th Int. Symp. Testing and Failure Analysis (1992), 373–380.
Phaneuf, M. W.. Micron, 30 (1999), 277–88.CrossRef
Ishitani, T., Madokoro, Y., Nakagawa, M. and Ohya, K.. J. Electron Microsc., 51 (2002), 207–13.CrossRef
Ohya, K. and Ishitani, T.. Nucl. Instrum. Meth. Phys. Res. B, 202 (2003), 305–11.CrossRef
Ohya, K., Aumayr, F. and Winter, H.. Phys. Rev. B, 4 (1992), 3101–4.CrossRef
Ohya, K. and Kawata, J.. Scan. Microsc., 9 (1995), 331–53.
Kudo, M., Sakai, Y. and Ichinokawa, T.. Appl. Phys. Lett., 76 (2000), 3475–7.CrossRef
Ohya, K.. Proc. 3rd Int. Conf. Atomic Level Characterizations for New Materials and Devices: Nara (2001), 53–6.
Ohya, K and Ishitani, T.. J. Electron Microsc., 53 (2004), 229–35.CrossRef
Ohya, K.. J. Phys. Soc. Jpn., 61 (1992), 3013–14.CrossRef
Kawata, J. and Ohya, K.. Radiat. Eff. Def. Sol., 130–131 (1994), 131–6.CrossRef
Ohya, K. and Kawata, J.. Nucl. Instrum. Meth. Phys. Res. B, 90 (1994), 552–5.CrossRef
Prewett, P. D. and Mair, G. L. R.. Focused Ion Beams From Liquid Metal Ion Sources (Taunton, UK: Research Studies Press Ltd, 1991).Google Scholar
Brusilovsky, B. A.. Vacuum, 35 (1985), 595–615.CrossRef
Yahiro, Y., Kaneko, K., Fujita, T., Moon, W.-J. and Horita, Z.. J. Electron Microsc., 53 (2004), 571–6.CrossRef
Mashkova, E. S., Molchanov, V. A. and Odintsov, D. D.. Doklad. Akad. Nauk SSSR, 151 (1963), 1074–5; Engl. transl.: Sov. Phys. Doklad., 8 (1964), 806–7.
Lindhard, J.. Mat. Fys. Medd. Dan Vid. Selsk., 34 (1965).
Ishitani, T. and Ohnishi, T.. J. Vac. Sci. Technol. A, 9 (1991), 3084–9.CrossRef
Ishitani, T., Ohnishi, T., Madokoro, Y. and Kawanami, Y.. J. Vac. Sci. Technol. B, 9 (1991), 2633–7.CrossRef
Ohnishi, T., Koike, H., Ishitani, T.et al. Proc. 25th Int. Symp. Testing and Failure Analysis (1999), 449–53.
Yaguchi, T., Urao, R., Kamino, T.et al. Mater. Res. Soc. Symp. Proc., 636 (2001), D9.35.1–D9.35.6.
Nemoto, Y., Miwa, Y., Kikuchi, M.et al. J. Nucl. Sci. Technol., 39 (2002), 996–1001.CrossRef
Yaguchi, T., Konno, M., Kamino, T.et al. Microsc. Microanal., 9 (2003), 118–19.
Yaguchi, T., Kuroda, Y., Konno, M.et al. Hitachi Scientific Instrument News, 46 (2003), 18–20.
Giannuzzi, L. A., Kempshall, B. W., Anderseon, S. D., Prenitzer, B. I. and Moore, T. M.. Microelectronic Failure Analysis Desk Reference Supplement (2002) 29–35.
Tonomura, A., Kasai, H., Kamimura, O.et al. Phys. Rev. Lett., 88 (2002), 237001.CrossRef
Ishitani, T., Taniguchi, Y., Isakizawa, S.et al. J. Vac. Sci. Technol. B, 16 (1998), 2532–7.CrossRef
Nakagawa, M., Dunne, R., Koike, K.et al. J. Electron Microsc., 51 (2002), 53–7.CrossRef
Moore, M. V.. Scanning, 25 (2003), 159–60.
2
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×