Skip to main content Accessibility help
×
Home
Hostname: page-component-558cb97cc8-zcgq2 Total loading time: 0.469 Render date: 2022-10-07T10:02:12.312Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

3 - Classical Finite-State Automata and Regular Languages

from Part I - Formal Background

Published online by Cambridge University Press:  29 July 2019

Stoyan Mihov
Affiliation:
Bulgarian Academy of Sciences
Klaus U. Schulz
Affiliation:
Ludwig-Maximilians-Universität Munchen
Get access

Summary

Classical finite-state automata represent the most important class of monoidal finite-state automata. Since the underlying monoid is free, this class of automaton has several interesting specific features. We show that each classical finite-state automaton can be converted to an equivalent classical finite-state automaton where the transition relation is a function. This form of ‘deterministic’ automaton offers a very efficient recognition mechanism since each input word is consumed on at most one path. The fact that each classical finite-state automaton can be converted to a deterministic automaton can be used to show that the class of languages that can be recognized by a classical finite-state automaton is closed under intersections, complements, and set differences. The characterization of regular languages and deterministic finite-state automata in terms of the ‘Myhill–Nerode equivalence relation’ to be introduced in the chapter offers an algebraic view on these notions and leads to the concept of minimal deterministic automata.

Type
Chapter
Information
Finite-State Techniques
Automata, Transducers and Bimachines
, pp. 43 - 71
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×