Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-swqlm Total loading time: 9.211 Render date: 2021-12-01T19:50:20.798Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Section 4 - Specific Conditions Associated with Fetal and Neonatal Brain Injury

Published online by Cambridge University Press:  13 December 2017

David K. Stevenson
Affiliation:
Stanford University, California
William E. Benitz
Affiliation:
Stanford University, California
Philip Sunshine
Affiliation:
Stanford University, California
Susan R. Hintz
Affiliation:
Stanford University, California
Maurice L. Druzin
Affiliation:
Stanford University, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Elwood, JM, Little, J, Elwood, JH. Epidemiology and Control of Neural Tube Defects. Oxford University Press, 1992.Google ScholarPubMed
Warkany, J, Lemire, RJ, Cohen, MM. Mental Retardation and Congenital Malformations of the Central Nervous System. Chicago: Year Book, 1981.Google Scholar
Golden, JA. Towards a greater understanding of the pathogenesis of holoprosencephaly. Brain Dev 1999; 21: 513–21.CrossRefGoogle ScholarPubMed
Matsunaga, E, Shiota, K. Holoprosencephaly in human embryos: epidemiologic studies of 150 cases. Teratology 1977; 16: 261–72.CrossRefGoogle ScholarPubMed
Cohen, MM. Perspectives on holoprosencephaly: Part III. Spectra, distinctions, continuities, and discontinuities. Am J Med Genet 1989; 34: 271–88.CrossRefGoogle ScholarPubMed
Croen, LA, Shaw, GM, Lammer, EJ. Holoprosencephaly: epidemiologic and clinical characteristics of a California population. Am J Med Genet 1996; 64: 465–72.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Rasmussen, SA, Moore, CA, Khoury, MJ, et al. Descriptive epidemiology of holoprosencephaly and arhinencephaly in metropolitan Atlanta, 1968–1992. Am J Med Genet 1996; 66: 320–33.3.0.CO;2-O>CrossRefGoogle Scholar
Bullen, PJ, Rankin, JM, Robson, SC. Investigation of the epidemiology and prenatal diagnosis of holoprosencephaly in the North of England. Am J Obstet Gynecol 2001; 184: 1256–62.CrossRefGoogle ScholarPubMed
Barkovich, AJ, Quint, DJ. Middle interhemispheric fusion: an unusual variant of holoprosencephaly. AJNR Am J Neuroradiol 1993; 14: 431–40.Google ScholarPubMed
Simon, EM, Hevner, RF, Pinter, JD, et al. The middle interhemispheric variant of holoprosencephaly. AJNR Am J Neuroradiol 2002; 23: 151–5.Google ScholarPubMed
Plawner, LL, Delgado, MR, Miller, VS, et al. Neuroanatomy of holoprosencephaly as predictor of function: beyond the face predicting the brain. Neurology 2002; 59: 1058–66.CrossRefGoogle Scholar
Barr, M, Cohen, MM. Holoprosencephaly survival and performance. Am J Med Genet 1999; 89: 116–20.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Lewis, AJ, Simon, EM, Barkovich, AJ, et al. Middle interhemispheric variant of holoprosencephaly: a distinct cliniconeuroradiologic subtype. Neurology 2002; 59: 1860–5.CrossRefGoogle ScholarPubMed
Taylor, AI. Autosomal trisomy syndromes: a detailed study of 27 cases of Edwards’ syndrome and 27 cases of Patau’s syndrome. J Med Genet 1968; 5: 227–52.CrossRefGoogle ScholarPubMed
Olsen, CL, Hughes, JP, Youngblood, LG, et al. Epidemiology of holoprosencephaly and phenotypic characteristics of affected children: New York State, 1984–1989. Am J Med Genet 1997; 73: 217–26.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Ming, JE, Muenke, M. Multiple hits during early embryonic development: digenic diseases and holoprosencephaly. Am J Hum Genet 2002; 71: 1017–32.CrossRefGoogle ScholarPubMed
Roessler, E, Belloni, E, Gaudenz, K, et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 1996; 14: 357–60.CrossRefGoogle ScholarPubMed
Ming, JE, Kaupas, ME, Roessler, E, et al. Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 2002; 110: 297301.CrossRefGoogle ScholarPubMed
Barr, M Jr., Hanson, JW, Currey, K, et al. Holoprosencephaly in infants of diabetic mothers. J Pediatr 1983; 102: 565–8.CrossRefGoogle ScholarPubMed
Malinger, G, Lev, D, Kidron, D, et al. Differential diagnosis in fetuses with absent septum pellucidum. Ultrasound Obstet Gynecol 2005; 25: 42–9.CrossRefGoogle ScholarPubMed
Carmichael, J, Woods, C. Genetic defects of human brain development. Curr Neurol Neurosci Rep 2006; 6: 437–46.CrossRefGoogle ScholarPubMed
Mirzaa, GM, Poduri, A. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. Am J Med Genet C Semin Med Genet 2014; 166C: 156–72.Google ScholarPubMed
Guerrini, R, Dobyns, WB. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol 2014; 13: 710–26.CrossRefGoogle ScholarPubMed
Barkovich, AJ, Guerrini, R, Kuzniecky, RI, et al. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135: 1348–69.CrossRefGoogle ScholarPubMed
Kerjan, G, Gleeson, JG. Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly. Trends Genet 2007; 23: 623–30.CrossRefGoogle ScholarPubMed
Prayson, RA. Classification and pathologic characteristics of the cortical dysplasias. Childs Nerv Sys 2014; 30: 1805–12.CrossRefGoogle ScholarPubMed
Lim, KC, Crido, PB. Focal malformations of cortical development: new vistas for molecular pathogenesis. Neurosciences 2013; 252: 262–76.Google ScholarPubMed
Glenn, OA, Goldstein, RB, Li, KC, et al. Fetal magnetic resonance imaging in the evaluation of fetuses referred for sonographically suspected abnormalities of the corpus callosum. J Ultrasound Med 2005; 24: 791804.CrossRefGoogle ScholarPubMed
Edwards, TJ, Sherr, EH, Barkovich, AJ, Richards, LJ. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain 2014; 217: 1579–613.Google Scholar
Aicardi, J. Aicardi syndrome. Brain Dev 2005; 27: 164–71.CrossRefGoogle ScholarPubMed
Girard, N, Chaumoitre, K, Confort-Gouny, S, et al. Magnetic resonance imaging and the detection of fetal brain anomalies, injury, and physiologic adaptations. Curr Opin Obstet Gynecol 2006; 18: 164–76.CrossRefGoogle ScholarPubMed
Haverkamp, F, Zerres, K, Ostertun, B, et al. Familial schizencephaly: further delineation of a rare disorder. J Med Genet 1995; 32: 242–4.CrossRefGoogle ScholarPubMed
Brunelli, S, Faiella, A, Capra, V, et al. Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nat Genet 1996; 12: 94–6.CrossRefGoogle ScholarPubMed
Robinson, AJ. Inferior vermian hypoplasia: preconception, misconceptions. Ultrasound Obstet Gynecol 2014; 43: 123–36.CrossRefGoogle Scholar
Grinberg, I, Northrup, H, Ardinger, H, et al. Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nat Genet 2004; 36: 1053–5.CrossRefGoogle ScholarPubMed
Ecker, JL, Shipp, TD, Bromley, B, et al. The sonographic diagnosis of Dandy-Walker and Dandy-Walker variant: associated findings and outcomes. Prenat Diagn 2000; 20: 328–32.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Romani, M, Micalizzi, A, Valente, EM. Joubert syndrome: congenital cerebellar ataxia with “molar tooth.” Lancet Neurol 2013; 12: 894905.CrossRefGoogle ScholarPubMed
Rudnik-Schöneborg, S, Barth, PG, Zerres, K. Pontocerebellar hypoplasia. Am J Med Genet C Semin Med Genet 2014; 166C: 173–83.Google Scholar
Kanemura, Y, Okamoto, N, Sakamoto, H, et al. Molecular mechanisms and neuroimaging criteria for severe L1 syndrome with X-linked hydrocephalus. J Neurosurg 2006; 105: 403–12.Google ScholarPubMed
Alvarez, H, Garcia Monaco, R, Rodesch, G, et al. Vein of Galen aneurysmal malformations. Neuroimag Clin North Am 2007; 17:189206.CrossRefGoogle ScholarPubMed
Glenn, OA, Barkovich, AJ. Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, part 1. AJNR Am J Neuroradiol 2006; 27: 1604–11.Google ScholarPubMed
Glenn, OA, Barkovich, J. Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis: part 2. AJNR Am J Neuroradiol 2006; 27: 1807–14.Google ScholarPubMed
Jones, K.L., Jones, MC, Campo, MD. Smith’s Recognizable Patterns of Human Malformation, 7th edn. Philadelphia: Elsevier Saunders, 2013: xiii.Google Scholar
Yang, Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 2014; 312(18): 1870–9.CrossRefGoogle ScholarPubMed
Lee, H, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 2014; 312(18): 1880–7.CrossRefGoogle ScholarPubMed
Iglesias, A, et al. The usefulness of whole-exome sequencing in routine clinical practice. Genet Med 2014; 16(12): 922–31.CrossRefGoogle ScholarPubMed
Yang, Y, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 2013; 369(16): 1502–11.CrossRefGoogle Scholar
Reuter, JA, Spacek, DV, Snyder, MP. High-throughput sequencing technologies. Mol Cell 2015; 58(4): 586–97.CrossRefGoogle ScholarPubMed
Driscoll, DJ, et al. Prader-Willi syndrome. GeneReviews. Seattle: University of Washington, 1998. Available from www.ncbi.nlm.nih.gov/books/NBK1330/.Google ScholarPubMed
Smith, A, et al. Birth prevalence of Prader-Willi syndrome in Australia. Arch Dis Child 2003; 88(3): 263–4.CrossRefGoogle ScholarPubMed
Vogels, A, et al. Minimum prevalence, birth incidence and cause of death for Prader-Willi syndrome in Flanders. Eur J Hum Genet 2004; 12(3): 238–40.CrossRefGoogle ScholarPubMed
Kubota, T, et al. Methylation-specific PCR simplifies imprinting analysis. Nature Genet 1997; 16(1): 1617.CrossRefGoogle ScholarPubMed
Cassidy, SB, McCandless, SE. Prader-Willi syndrome. In Management of Genetic Syndromes. Hoboken, NJ: Wiley-Liss, 2010:xvii.CrossRefGoogle Scholar
Arnold, WD, Kassar, D, Kissel, JT. Spinal muscular atrophy: diagnosis and management in a new therapeutic era. Muscle Nerve 2015; 51(2): 5767.CrossRefGoogle Scholar
Prior, TW, Russman, BS. Spinal muscular atrophy. GeneReviews. Seattle: University of Washington, 2000. Available from www.ncbi.nlm.nih.gov/books/NBK1352/.Google ScholarPubMed
Scriver, CR. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 2001: xlvii, I140.Google Scholar
Bird, TD. Myotonic dystrophy type 1. In GeneReviews, Pagon, RA, et al., eds. Seattle: University of Washington, 1993.Google ScholarPubMed
Harper, PS. Myotonic dystrophy. In Major Problems in Neurology, vol. 21, 2nd edn. London: Saunders, 1989: xi.Google Scholar
Bachmann, G, et al. The clinical and genetic correlates of MRI findings in myotonic dystrophy. Neuroradiology 1996; 38(7): 629–35.CrossRefGoogle ScholarPubMed
Wan, M, et al. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 1999; 65(6): 1520–9.CrossRefGoogle ScholarPubMed
Christodoulou, J, Ho, G. MECP2-related disorders. In GeneReviews, Pagon, RA, et al., eds. Seattle: University of Washington, 1993.Google ScholarPubMed
Leslie, N, Tinkle, BT. Glycogen storage disease type II (Pompe disease). In GeneReviews, Pagon, RA, et al., eds. Seattle: University of Washington, 1993.Google ScholarPubMed
Martiniuk, F, et al. Carrier frequency for glycogen storage disease type II in New York and estimates of affected individuals born with the disease. Am J Med Genet 1998; 79(1): 6972.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Kishnani, PS, et al. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr 2006; 148(5): 671–6.CrossRefGoogle ScholarPubMed
Kishnani, PS, et al. Pompe disease diagnosis and management guideline. Genet Med 2006; 8(5): 267–88.CrossRefGoogle ScholarPubMed
Goebel, HH. Congenital myopathies in the new millennium. J Child Neurol 2005; 20(2): 94101.CrossRefGoogle ScholarPubMed
Maggi, L, et al. Congenital myopathies–clinical features and frequency of individual subtypes diagnosed over a 5-year period in the United Kingdom. Neuromus Disord: NMD 2013; 23(3): 195205.CrossRefGoogle Scholar
North, KN, et al. Approach to the diagnosis of congenital myopathies. Neuromusc Disord NMD 2014; 24(2): 97116.CrossRefGoogle Scholar
Sparks, S, et al. Congenital muscular dystrophy overview. In GeneReviews, Pagon, RA, et al., eds. Seattle: University of Washington, 1993.Google ScholarPubMed
Mendell, JR, Boue, DR, Martin, PT. The congenital muscular dystrophies: recent advances and molecular insights. Pediatr Dev Pathol 2006; 9(6): 427–43.CrossRefGoogle ScholarPubMed
Mostacciuolo, ML, et al. Genetic epidemiology of congenital muscular dystrophy in a sample from north-east Italy. Hum Genet 1996; 97(3): 277–9.CrossRefGoogle Scholar
Peat, RA, et al. Diagnosis and etiology of congenital muscular dystrophy. Neurology 2008; 71(5): 312–21.CrossRefGoogle ScholarPubMed
Plante-Bordeneuve, V, Said, G. Dejerine-Sottas disease and hereditary demyelinating polyneuropathy of infancy. Muscle Nerve 2002; 26(5): 608–21.CrossRefGoogle ScholarPubMed
Baets, J, et al. Genetic spectrum of hereditary neuropathies with onset in the first year of life. Brain: A Journal of Neurology 2011; 134(Pt 9): 2664–76.CrossRefGoogle ScholarPubMed
Abicht, A, Muller, JS, Lochmuller, H. Congenital myasthenic syndromes. In GeneReviews, Pagon, RA, et al., eds. Seattle: University of Washington, 1993.Google ScholarPubMed
Engel, AG, et al. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet. Neurol 2015; 14(5): 461.CrossRefGoogle Scholar
Crow, YJ. Aicardi-Goutieres syndrome. In GeneReviews, Pagon, RA, et al., eds. Seattle: University of Washington, 1993.Google ScholarPubMed
Rice, G, et al. Clinical and molecular phenotype of Aicardi-Goutieres syndrome. Am J Hum Genet 2007; 81(4): 713–25.CrossRefGoogle ScholarPubMed
Cohn, RD, et al. Intracranial hemorrhage as the initial manifestation of a congenital disorder of glycosylation. Pediatrics 2006; 118(2): e514–21.CrossRefGoogle ScholarPubMed
McDonald, J, Pyeritz, RE. Hereditary hemorrhagic telangiectasia. In GeneReviews, Pagon, RA, et al., eds. Seattle: University of Washington, 1993.Google ScholarPubMed
Marchuk, DA, et al. Report on the workshop on hereditary hemorrhagic telangiectasia, July 10–11, 1997. Am J Med Genet 1998; 76(3): 269–73.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Morgan, T, et al. Intracranial hemorrhage in infants and children with hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu syndrome). Pediatrics 2002; 109(1): e12.CrossRefGoogle Scholar
Shovlin, CL, et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am J Med Genet 2000; 91(1): 66–7.3.0.CO;2-P>CrossRefGoogle Scholar
McDonald, J, et al. Molecular diagnosis in hereditary hemorrhagic telangiectasia: findings in a series tested simultaneously by sequencing and deletion/duplication analysis. Clin Genet 2011; 79(4): 335–44.CrossRefGoogle Scholar
Porteous, ME, Berg, JN. Hereditary hemorrhagic telangiectasia. In Management of Genetic Syndromes. Hoboken, NJ: Wiley-Liss, 2005: xvii.Google Scholar
Baethmann, M, et al. Hydrocephalus internus in two patients with 5,10-methylenetetrahydrofolate reductase deficiency. Neuropediatrics 2000; 31(6): 314–7.CrossRefGoogle ScholarPubMed
Longo, D, et al. MRI and 1H-MRS findings in early-onset cobalamin C/D defect. Neuropediatrics 2005; 36(6): 366–72.CrossRefGoogle Scholar
Stumpel, C, Vos, YJ., L1 syndrome. GeneReviews, Pagon, RA, et al., eds. Seattle: University of Washington, 1993.Google ScholarPubMed
Halliday, J, et al. X linked hydrocephalus: a survey of a 20 year period in Victoria, Australia. J Med Genet 1986; 23(1): 2331.CrossRefGoogle ScholarPubMed
Chow, CW, et al. Congenital absence of pyramids and its significance in genetic diseases. Acta Neuropathol 1985; 65(3–4): 313–7.CrossRefGoogle ScholarPubMed
Weese-Mayer, DE, et al. Congenital central hypoventilation syndrome. In GeneReviews, Pagon, RA, et al., eds. Seattle: University of Washington, 1993.Google ScholarPubMed
Todd, ES, et al. Facial phenotype in children and young adults with PHOX2B-determined congenital central hypoventilation syndrome: quantitative pattern of dysmorphology. Pediatr Res 2006; 59(1): 3945.CrossRefGoogle Scholar
Berry-Kravis, EM, et al. Congenital central hypoventilation syndrome: PHOX2B mutations and phenotype. Am J Respir Crit Care Med 2006; 174(10): 1139–44.CrossRefGoogle ScholarPubMed
Trochet, D, et al. PHOX2B genotype allows for prediction of tumor risk in congenital central hypoventilation syndrome. Am J Hum Genet 2005; 76(3): 421–6.CrossRefGoogle ScholarPubMed
Del Bigio, MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain 2011; 134(Pt 5): 1344–61.CrossRefGoogle ScholarPubMed
Paneth, N, Rudelli, R, Kazam, E, et al. Brain Damage in the Preterm Infant (Clinics in Developmental Medicine 131). London: MacKeith Press, 1994.Google Scholar
Parodi, A, Rossi, A, Severino, M et al. Accuracy of ultrasound in assessing cerebellar haemorrhages in very low birthweight babies. Arch Dis Child Fetal Neonatal Ed 2015; 100(4): F289–92.CrossRefGoogle ScholarPubMed
Tortora, D, Severino, M, Malova, M et al. Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH Arch Dis Child Fetal Neonatal Ed. 2017 Jun 6. pii: fetalneonatal-2017-312710. doi: 10.1136/archdischild-2017-312710. [Epub ahead of print]CrossRef
Takashima, S, Takashi, M, Ando, Y. Pathogenesis of periventricular white matter haemorrhage in preterm infants. Brain Dev 1986; 8: 2530.CrossRefGoogle ScholarPubMed
Gould, SJ, Howard, S, Hope, PL, et al. Periventricular intraparenchymal cerebral haemorrhage in preterm infants: the role of venous infarction. J Pathol 1987; 151: 197202.CrossRefGoogle ScholarPubMed
Ghazi-Birry, HS, Brown, WR, Moody, DM, et al. Human germinal matrix: venous origin of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol 1997; 18: 219–29.Google ScholarPubMed
Pape, KE, Wigglesworth, JS. Haemorrhage, Ischaemia and Perinatal Brain (Clinics in Developmental Medicine 69/70). London: SIMP/Heinemann, 1979: 133–48.Google Scholar
Ment, LR, Stewart, WB, Ardito, TA, et al. Germinal matrix microvascular maturation correlates inversely with the risk period for neonatal intraventricular hemorrhage. Brain Res Dev Brain Res 1995; 84: 142–9.CrossRefGoogle ScholarPubMed
Pinto Cardoso, G, Abily-Donval, L, Chadie, A, et al. Le réseau de périnatalité de Haute-Normandie [Epidemiological study of very preterm infants at Rouen University Hospital: changes in mortality, morbidity, and care over 11 years]. Arch Pediatr 2013; 20(2): 156–63Google Scholar
Horbar, JD, Carpenter, JH, Badger, GJ, et al. Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics 2012; 129: 1019–26CrossRefGoogle ScholarPubMed
Larroque, B, Marret, S, Ancel, PY, et al. White matter damage and intraventricular hemorrhage in very preterm infants: the EPIPAGE study. J Pediatr 2003; 143: 477–83.CrossRefGoogle ScholarPubMed
Hamrick, SE, Miller, SP, Leonard, C, et al. Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 2004; 145: 593–9.CrossRefGoogle ScholarPubMed
Thorp, JA, Jones, PG, Clark, RH, et al. Perinatal factors associated with severe intracranial hemorrhage. Am J Obstet Gynecol 2001; 185: 859–62.CrossRefGoogle ScholarPubMed
Yanowitz, TD, Jordan, JA, Gilmour, CH, et al. Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr Res 2002; 51: 310–6.CrossRefGoogle ScholarPubMed
Haque, KN, Hayes, AM, Ahmed, Z, et al. Caesarean or vaginal delivery for preterm very-low-birth weight (≤1,250 g) infant: experience from a district general hospital in UK. Arch Gynecol Obstet 2008; 277: 207–12.CrossRefGoogle Scholar
Riskin, A, Riskin-Mashiah, S, Bader, D et al. Delivery mode and severe intraventricular hemorrhage in single, very low birth weight, vertex infants. Obstet Gynecol 2008; 112: 21–8.CrossRefGoogle ScholarPubMed
Herbst, A, Källén, K. Influence of mode of delivery on neonatal mortality and morbidity in spontaneous preterm breech delivery. Eur J Obstet Gynecol Reprod Biol 2007; 133: 25–9.CrossRefGoogle ScholarPubMed
Jensen, EA, Lorch, SA. Association between Off-Peak Hour Birth and Neonatal Morbidity and Mortality among Very Low Birth Weight Infants. J Pediatr. 2017 Jul; 186: 4148.e4Google Scholar
Mercer, JS, Vohr, BR, McGrath, MM, et al. Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemorrhage and late-onset sepsis: a randomized, controlled trial. Pediatrics 2006; 117: 1235–42.CrossRefGoogle ScholarPubMed
Rabe, H, Diaz-Rossello, JL, Duley, L, Dowswell, T. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst Rev 2012; 15(8): CD003248.Google Scholar
Heuchan, AM, Evans, N, Henderson Smart, DJ. Perinatal risk factors for major intraventricular haemorrhage in the Australian and New Zealand Neonatal Network, 1995–97. Arch Dis Child Fetal Neonatal Ed 2002; 86: F8690.CrossRefGoogle ScholarPubMed
Palmer, KG, Kronsberg, SS, Barton, BA, et al. Effect of inborn versus outborn delivery on clinical outcomes in ventilated preterm neonates: secondary results from the NEOPAIN trial. J Perinatol 2005; 25: 270–5.CrossRefGoogle ScholarPubMed
Mohamed, MA, Aly, H. Transport of premature infants is associated with increased risk for intraventricular haemorrhage. Arch Dis Child Fetal Neonatal Ed 2010; 95: F403–7.CrossRefGoogle ScholarPubMed
Limperopoulos, C, Gauvreau, KK, O’Leary, H, et al. Cerebral hemodynamic changes during intensive care of preterm infants. Pediatrics 2008; 122(5): e1006–13.CrossRefGoogle ScholarPubMed
Vela-Huerta, MM, Amador-Licona, M, Medina-Ovando, N, Aldana-Valenzuela, C. Factors associated with early severe intraventricular haemorrhage in very low birth weight infants. Neuropediatrics 2009; 40(5): 224–7.CrossRefGoogle ScholarPubMed
Osborn, DA, Evans, N, Kluckow, M. Hemodynamic and antecedent risk factors of early and late periventricular/intraventricular hemorrhage in premature infants. Pediatrics 2003; 112: 33–9.CrossRefGoogle ScholarPubMed
Tsuji, M, Saul, P, du Plessis, A, et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 2000; 106: 625–32.CrossRefGoogle ScholarPubMed
Soul, JS, Hammer, PE, Tsuji, M, et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res 2007; 61: 467–73.CrossRefGoogle ScholarPubMed
Alderliesten, T, Lemmers, PM, Smarius, JJ, et al. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J Pediatr 2013; 162(4): 698704.CrossRefGoogle ScholarPubMed
Noori, S, McCoy, M, Anderson, MP, et al. Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J Pediatr 2014; 164(2): 264–70.CrossRefGoogle ScholarPubMed
Ikeda, T, Amizuka, T, Ito, Y, et al. Changes in the perfusion waveform of the internal cerebral vein and intraventricular hemorrhage in the acute management of extremely low-birth-weight infants. Eur J Pediatr 2015; 174(3): 331–8CrossRefGoogle ScholarPubMed
Fabres, J, Carlo, WA, Phillips, V, et al. Both extremes of arterial carbon dioxide pressure and the magnitude of fluctuations in arterial carbon dioxide pressure are associated with severe intraventricular hemorrhage in preterm infants. Pediatrics 2007; 119: 299305.CrossRefGoogle ScholarPubMed
Dalton, J, Dechert, RE, Sarkar, S. Assessment of association between rapid fluctuations in serum sodium and intraventricular hemorrhage in hypernatremic preterm infants. Am J Perinatol 2015; 32(8): 795802.CrossRefGoogle ScholarPubMed
Barnette, AR, Myers, BJ, Berg, CS, Inder, TE. Sodium intake and intraventricular hemorrhage in the preterm infant. Ann Neurol 2010; 67(6): 817–23Google ScholarPubMed
Ryckman, KK, Dagle, JM, Kelsey, K, et al. Replication of genetic associations in the inflammation, complement, and coagulation pathways with intraventricular hemorrhage in LBW preterm neonates. Pediatr Res 2011; 70: 90–5.CrossRefGoogle ScholarPubMed
Ment, LR, Adén, U, Lin, A et al. Gene Targets for IVH Study Group. Gene-environment interactions in severe intraventricular hemorrhage of preterm neonates. Pediatr Res 2014; 75(1–2): 241–50.CrossRefGoogle Scholar
Harteman, JC, Groenendaal, F, van Haastert, IC, et al. Atypical timing and presentation of periventricular haemorrhagic infarction in preterm infants: the role of thrombophilia. Dev Med Child Neurol 2012; 54(2): 140–7CrossRefGoogle ScholarPubMed
Harding, DR, Dhamrait, S, Whitelaw, A, et al. Does interleukin-6 genotype influence cerebral injury or developmental progress after preterm birth? Pediatrics 2004; 114(4): 941–7Google Scholar
Göpel, W, Härtel, C, Ahrens, P, et al. Interleukin-6–174-genotype, sepsis and cerebral injury in very low birth weight infants. Genes Immun 2006; 7: 65–8.CrossRefGoogle ScholarPubMed
Kallankari, H, Kaukola, T, Ojaniemi, M, et al. Chemokine CCL18 predicts intraventricular hemorrhage in very preterm infants. Ann Med 2010; 42: 416–25.CrossRefGoogle ScholarPubMed
de Vries, LS, Koopman, C, Groenendaal, F, et al. COL4A1 mutation in two preterm siblings with antenatal onset of parenchymal haemorrhage. Ann Neurol 2009; 65: 12–8.CrossRefGoogle Scholar
Meuwissen, ME, Halley, DJ, Smit, LS, et al. The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet Med 2015; 7(11): 843–53.Google Scholar
Shankaran, S, Bauer, CR, Bain, R, et al. Prenatal and perinatal risk and protective factors for neonatal intracranial hemorrhage. Arch Pediatr Adolesc Med 1996; 150: 491–7.CrossRefGoogle ScholarPubMed
Gagliardi, L, Rusconi, F, Da Frè, M, et al. Pregnancy disorders leading to very preterm birth influence neonatal outcomes: results of the population-based ACTION cohort study. Pediatr Res 2013; 73: 794801.CrossRefGoogle ScholarPubMed
Andre, P, Thebaud, B, Delavaucoupet, J, et al. Late-onset cystic periventricular leukomalacia in premature infants: a threat until term. Am J Perinatol 2001; 18: 7986.CrossRefGoogle ScholarPubMed
de Vries, LS, Rademaker, KJ, Roelantsvan-Rijn, AM, et al. Unilateral haemorrhagic parenchymal infarction in the preterm infant. Eur J Pediatr Neurol 2001; 5: 139–49.CrossRefGoogle ScholarPubMed
Volpe, JJ. Neonatal Neurology, 4th edn. Philadelphia: Saunders, 2001.Google ScholarPubMed
Correa, F, Enríquez, G, Rosselló, J, et al. Posterior fontanelle sonography: an acoustic window into the neonatal brain. AJNR Am J Neuroradiol 2004; 25: 1274–82.Google ScholarPubMed
Maalouf, EF, Duggan, PJ, Counsell, SJ, et al. Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001; 107: 719–27.CrossRefGoogle ScholarPubMed
Parodi, A, Morana, G, Severino, MS, et al. Low-grade intraventricular hemorrhage: is ultrasound good enough? J Matern Fetal Neonatal Med 2015; Suppl 1:2261–4.CrossRefGoogle ScholarPubMed
Dudink, J, Lequin, M, Weisglas-Kuperus, N, et al. Venous subtypes of preterm periventricular haemorrhagic infarction. Arch Dis Child Fetal Neonatal Ed 2007; 93: F201–6.Google ScholarPubMed
Bassan, H, Benson, CB, Limperopoulos, C, et al. Ultrasonographic features and severity scoring of periventricular hemorrhagic infarction in relation to risk factors and outcome. Pediatrics 2006; 117: 2111–18.CrossRefGoogle ScholarPubMed
Bassan, H, Limperopoulos, C, Visconti, K, et al. Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. Pediatrics 2007; 120: 785–92.CrossRefGoogle ScholarPubMed
Limperopoulos, C, Benson, CB, Bassan, H, et al. Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 2005; 116: 717–24.CrossRefGoogle ScholarPubMed
Steggerda, SJ, Leijser, LM, Wiggers-de Bruïne, FT, et al. Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology 2009; 252: 190–9.CrossRefGoogle ScholarPubMed
Ecury-Goossen, GM, Dudink, J, Lequin, M, et al. The clinical presentation of preterm cerebellar haemorrhage. Eur J Pediatr 2010; 169(10): 1249–53.CrossRefGoogle ScholarPubMed
Tam, EW, Miller, SP, Studholme, C, et al. Differential effects of intraven- tricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr 2011; 158(3): 366–71.CrossRefGoogle Scholar
Steggerda, SJ, De Bruïne, FT, van den Berg-Huysmans, AA, et al. Small cerebellar hemorrhage in preterm infants: perinatal and postnatal factors and outcome. Cerebellum 2013; 12(6): 794801CrossRefGoogle ScholarPubMed
Limperopoulos, C, Bassan, H, Gauvreau, K, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 2007; 120: 584–93.CrossRefGoogle ScholarPubMed
Srinivasan, L, Allsop, J, Counsell, SJ, et al. Smaller cerebellar volumes in very preterm infants at term-equivalent age are associated with the presence of supratentorial lesions. AJNR Am J Neuroradiol 2006; 27: 573–9.Google ScholarPubMed
Morita, T, Morimoto, M, Yamada, K, et al. Low-grade intraventricular hemorrhage disrupts cerebellar white matter in preterm infants: evidence from diffusion tensor imaging. Neuroradiology 2015; 57(5): 507–14CrossRefGoogle ScholarPubMed
McLendon, D, Check, J, Carteaux, P, et al. Implementation of potentially better practices for the prevention of brain hemorrhage and ischemic brain injury in very low birth weight infants. Pediatrics 2003; 111: e497503.Google ScholarPubMed
Olischar, M, Klebermass, K, Waldhoer, T, et al. Background patterns and sleep-wake cycles on amplitude-integrated electroencephalography in preterms younger than 30 weeks gestational age with peri-/intraventricular haemorrhage. Acta Paediatr 2007; 96: 1743–50.CrossRefGoogle Scholar
Murphy, BP, Inder, TE, Rooks, V, et al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed 2002; 87: F3741.CrossRefGoogle ScholarPubMed
Ingram, MC, Huguenard, AL, Miller, BA, Chern, JJ. Poor correlation between head circumference and cranial ultrasound findings in premature infants with intraventricular hemorrhage. J Neurosurg Pediatr 2014; 14: 184–9.CrossRefGoogle ScholarPubMed
Levene, MI, Starte, DR. A longitudinal study of posthaemorrhagic ventricular dilatation in the newborn. Arch Dis Child 1981; 56: 905–10.CrossRefGoogle Scholar
Davies, MW, Swaminathan, M, Chuang, SI, et al. Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child Fetal Neonatol Ed 2000; 82:F219–23.CrossRefGoogle ScholarPubMed
Brouwer, MJ, de Vries, LS, Groenendaal, F, et al. New reference values for the neonatal cerebral ventricles. Radiology 2012; 262(1): 224–33.CrossRefGoogle ScholarPubMed
Kaiser, A, Whitelaw, A. Cerebrospinal fluid pressure during posthaemorrhagic ventricular dilatation in newborn. Arch Dis Child 1985; 60: 920–4.CrossRefGoogle Scholar
Soul, JS, Eichenwald, E, Walter, G, et al. CSF removal in infantile posthemorrhagic hydrocephalus results in significant improvement in cerebral hemodynamics. Pediatr Res 2004; 55: 872–6.CrossRefGoogle ScholarPubMed
Klebermass-Schrehof, K, Rona, Z, Waldhör, T, et al. Can neurophysiological assessment improve timing of intervention in posthaemorrhagic ventricular dilatation? Arch Dis Child Fetal Neonatal Ed 2013; 98(4): F291–7.CrossRefGoogle ScholarPubMed
Sävman, K, Blennow, M, Hagberg, H, et al. Cytokine response in cerebrospinal fluid from preterm infants with posthaemorrhagic ventricular dilatation. Acta Paediatr 2002; 91: 1357–63.Google ScholarPubMed
Felderhoff-Mueser, U, Buhrer, C, Groneck, P, et al. Soluble Fas (CD95/Apo-1), soluble Fas ligand and activated caspase 3 in the cerebrospinal fluid of infants with posthemorrhagic and nonhemorrhagic hydrocephalus. Pediatr Res 2003; 54: 5964.CrossRefGoogle Scholar
Heep, A, Stoffel-Wagner, B, Bartmann, P, et al. Vascular endothelial growth factor and transforming growth factor-β1 are highly expressed in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus. Pediatr Res 2004; 56: 768–74.Google ScholarPubMed
Schmitz, T, Heep, A, Groenendaal, F, et al. Interleukin-1β, interleukin-18, and interferon-γ expression in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus–markers of white matter damage? Pediatr Res 2007; 61: 722–6.CrossRefGoogle ScholarPubMed
Whitelaw, A, Lee-Kelland, R. Repeated lumbar or ventricular punctures in newborns with intraventricular haemorrhage. Cochrane Database Syst Rev. 2017 Apr 6; 4: CD000216.Google Scholar
Ventriculomegaly Trial Group. Randomized trial of early tapping in neonatal posthaemorrhagic ventricular dilatation: results at 30 months. Arch Dis Child Fetal Neonatal Ed 1994; 70: F129–36.PubMed
Whitelaw, A, Evans, D, Carter, M, et al. Randomized clinical trial of prevention of hydrocephalus after intraventricular hemorrhage in preterm infants: brainwashing versus tapping fluid. Pediatrics 2007; 119: e1071–8.CrossRefGoogle Scholar
Brouwer, AJ, Groenendaal, F, van Haastert, IC, et al. Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for post-hemorrhagic ventricular dilatation. J Pediatr 2008; 152: 648–54.CrossRefGoogle ScholarPubMed
Bassan, H, Eshel, R, Golan, I, et al. External Ventricular Drainage Study Investigators. Timing of external ventricular drainage and neurodevelopmental outcome in preterm infants with posthemorrhagic hydrocephalus. Eur J Paediatr Neurol 2012; 16(6): 662–70.CrossRefGoogle ScholarPubMed
Vasileiadis, GT, Gelman, N, Han, VK, et al. Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age. Pediatrics 2004; 114: e367–72.CrossRefGoogle ScholarPubMed
Patra, K, Wilson-Costello, D, Taylor, HG, et al. Grades I–II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. J Pediatr 2006; 149: 169–73.CrossRefGoogle ScholarPubMed
Bolisetty, S, Dhawan, A, Abdel-Latif, M, et al. New South Wales and Australian Capital Territory Neonatal Intensive Care Units’ Data Collection. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics 2014; 133(1): 5562.CrossRefGoogle ScholarPubMed
Payne, AH, Hintz, SR, Hibbs, AM, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental outcomes of extremely low-gestational-age neonates with low-grade periventricular-intraventricular hemorrhage. JAMA Pediatr 2013; 167(5): 451–9.CrossRefGoogle ScholarPubMed
Radic, JAE, Vincer, M, McNeely, PD. Outcomes of intraventricular hemorrhage and posthemorrhagic hydrocephalus in a population-based cohort of very preterm infants born to residents of Nova Scotia from 1993 to 2010. J Neurosurg Pediatr 2015; 15: 580–8.CrossRefGoogle Scholar
Reubsaet, P, Brouwer, AJ, van Haastert, IC, et al The Impact of Low-Grade Germinal Matrix-Intraventricular Hemorrhage on Neurodevelopmental Outcome of Very Preterm Infants. Neonatology 2017 Jul 14; 112(3): 203210Google Scholar
Kuban, K, Sanocka, U, Leviton, A, et al. White matter disorders of prematurity: association with intraventricular hemorrhage and ventriculomegaly. The Developmental Epidemiology Network. J Pediatr 1999; 134: 539–46.CrossRefGoogle ScholarPubMed
Brouwer, MJ, van Kooij, BJ, van Haastert, IC, et al. Sequential cranial ultrasound and cerebellar diffusion weighted imaging contribute to the early prognosis of neurodevelopmental outcome in preterm infants. PLoS One. 2014; 9(10): e109556CrossRefGoogle ScholarPubMed
Fernell, E, Hagberg, G, Hagberg, B. Infantile hydrocephalus in preterm, low-birth-weight infants: a nationwide Swedish cohort study 1979–1988. Acta Paediatr 1993; 82: 45–8.CrossRefGoogle ScholarPubMed
Persson, EK, Hagberg, G, Uvebrant, P. Disabilities in children with hydrocephalus: a population-based study of children aged between four and twelve years. Neuropediatrics 2006; 37: 330–6.CrossRefGoogle ScholarPubMed
Sherlock, RL, Synnes, AR, Grunau, RE, et al. Long-term outcome after neonatal intraparenchymal echodensities with porencephaly. Arch Dis Child Fetal Neonatal Ed 2008; 93: F127–31.Google ScholarPubMed
De Vries, LS, Groenendaal, F, Eken, P, et al. Asymmetrical myelination of the posterior limb of the internal capsule: an early predictor of hemiplegia. Neuropediatrics 1999; 30: 314–19.CrossRefGoogle ScholarPubMed
Roze, E, Benders, MJ, Kersbergen, KJ, et al. Neonatal DTI early after birth predicts motor outcome in preterm infants with periventricular hemorrhagic infarction. Pediatr Res 2015; 78(3): 298303.CrossRefGoogle ScholarPubMed
Counsell, SJ, Dyet, LE, Larkman, DJ, et al. Thalamo-cortical connectivity in children born preterm mapped using probabilistic magnetic resonance tractography. Neuroimage 2007; 34: 896904.CrossRefGoogle ScholarPubMed
Roberts, D, Dalziel, S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 2006; 3: CD004454.Google ScholarPubMed
Brownfoot, FC, Gagliardi, DI, Bain, E, et al. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2013; 8: CD006764.Google Scholar
Baud, O, Foix-L’Helias, L, Kaminski, M, et al. Antenatal glucocorticoid treatment and cystic periventricular leukomalacia in very premature infants. N Engl J Med 1999; 341: 1190–6.CrossRefGoogle ScholarPubMed
Modi, N, Lewis, H, Al-Naqeeb, N, et al. The effects of repeated antenatal glucocorticoid therapy on the brain. Pediatr Res 2001; 50: 581–5.CrossRefGoogle Scholar
Wapner, RJ, Sorokin, Y, Mele, L, et al. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Long-term outcomes after repeat doses of antenatal corticosteroids. N Engl J Med 2007; 357(12): 1190–8.CrossRefGoogle ScholarPubMed
Crowther, CA, Hiller, JE, Doyle, LW, et al. Effect of magnesium sulfate given for neuroprotection before preterm birth. JAMA 2003; 290: 2669–76.CrossRefGoogle ScholarPubMed
Rouse, DJ, Hirtz, DG, Thom, E, et al. A randomized controlled trial of magnesium sulfate for the prevention of cerebral palsy. N Engl J Med 2008; 359: 895905.CrossRefGoogle ScholarPubMed
Doyle, LW, Crowther, CA, Middleton, P, Marret, S. Antenatal magnesium sulfate and neurologic outcome in preterm infants: a systematic review. Obstet Gynecol 2009; 113: 1327–33.CrossRefGoogle ScholarPubMed
Stark, MJ, Hodyl, NA, Andersen, CC. Effects of antenatal magnesium sulphate treatment for neonatal neuro-protection on cerebral oxygen kinetics. Pediatr Res 2015; 78(3): 310–4.CrossRefGoogle ScholarPubMed
Kamyar, M, Manuck, TA, Stoddard, GJ, et al. Magnesium sulfate, chorioamnionitis, and neurodevelopment after preterm birth. BJOG 2016; 123(7): 1161–6.Google ScholarPubMed
Crowther, CA, Crosby, DD, Henderson-Smart, DJ. Vitamin K prior to preterm birth for preventing neonatal periventricular haemorrhage. Cochrane Database Syst Rev 2010; 20(1): CD000229.Google Scholar
Smit, E, Odd, D, Whitelaw, A. Postnatal phenobarbital for the prevention of intraventricular haemorrhage in preterm infants. Cochrane Database Syst Rev 2013; 13(8): CD001691.Google Scholar
Fowlie, PW, Davis, PG, McGuire, W. Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. Cochrane Database Syst Rev 2010; 7(7): CD000174.Google Scholar
Schmidt, B, Davis, P, Moddeman, D, et al. Trial of indomethacin prophylaxis in preterm investigators: long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Eng J Med 2001; 344: 1966–72.CrossRefGoogle Scholar
Ment, LR, Peterson, BS, Meltzer, JA, et al. A functional magnetic resonance imaging study of the long-term influences of early indomethacin exposure on language processing in the brains of prematurely born children. Pediatrics 2006; 118: 961–70.CrossRefGoogle ScholarPubMed
Van Overmeire, B, Allegaert, K, Casaer, A, et al. Prophylactic ibuprofen in premature infants: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2004; 364(9449): 1945–9.CrossRefGoogle ScholarPubMed
Shah, SS, Ohlsson, A. Ibuprofen for the prevention of patent ductus arteriosus in preterm and/or low birth weight infants. Cochrane Database Syst Rev 2006; 1: CD004213.Google Scholar
Synnes, AR, Macnab, YC, Qiu, Z, et al. Neonatal intensive care unit characteristics affect the incidence of severe intraventricular hemorrhage. Med Care 2006; 44: 754–9.CrossRefGoogle ScholarPubMed
Wu, YW, Hamrick, SEG, Miller, SP, et al. Intraventricular hemorrhage in term neonates caused by sinovenous thrombosis. Ann Neurol 2003; 54: 123–6.CrossRefGoogle ScholarPubMed
Roland, EH, Flodmark, O, Hill, A. Thalamic hemorrhagic with intraventricular hemorrhage in the full term newborn. Pediatrics 1990; 85: 737–42.Google Scholar
Jocelyn, LJ, Casiro, OG. Neurodevelopmental outcome of term infants with intraventricular hemorrhage. Am J Dis Child 1992; 146: 194–7.Google ScholarPubMed
Whitby, EH, Griffiths, PD, Rutter, S, et al. Frequency and natural history of subdural haemorrhages in babies and relation to obstetric factors. Lancet 2004; 363: 846–51.CrossRefGoogle ScholarPubMed
Looney, CB, Smith, JK, Merck, LH, et al. Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors. Radiology 2007; 242: 535–41.CrossRefGoogle ScholarPubMed
Hofmeyr, GJ, Hannah, ME. Planned caesarean section for term breech delivery. Cochrane Database Syst Rev 2003; 3: CD000166.Google Scholar
Chamnanvanakij, S, Rollins, N, Perlman, JM. Subdural hematoma in term infants. Pediatr Neurol 2002; 26: 301–14.CrossRefGoogle ScholarPubMed
Govaert, P, Vanhaesebrouck, P, de Praeter, C. Traumatic neonatal intracranial bleeding and stroke. Arch Dis Child 1992; 67: 840–5.CrossRefGoogle ScholarPubMed
Brouwer, AJ, Groenendaal, F, Koopman, C, et al. Intracranial hemorrhage in full-term newborns: a hospital-based cohort study. Neuroradiology 2010; 52(6): 567–76CrossRefGoogle ScholarPubMed
Vinchon, M, Pierrat, V, Tchofo, PJ, et al. Traumatic intracranial hemorrhage in newborns. Childs Nerv Syst 2005; 21: 1042–8.CrossRefGoogle ScholarPubMed
Kilani, RA, Wetmore, J. Neonatal subgaleal hematoma:presentation and outcome. Radiological findings and factors associated with mortality. Am J Perinatol 2006; 23: 41–8.CrossRefGoogle ScholarPubMed
Chang, HY, Peng, CC, Kao, HA, et al. Neonatal subgaleal hemorrhage: clinical presentation, treatment, and predictors of poor prognosis. Pediatr Int 2007; 49: 903–7.CrossRefGoogle ScholarPubMed
Dale, ST, Coleman, LT. Neonatal alloimmune thrombocytopenia: antenatal and postnatal imaging findings in the pediatric brain. AJNR Am J Neuroradiol 2002; 23: 1457–65.Google ScholarPubMed
Berkowitz, RL, Bussel, JB, McFarland, JG. Alloimmune thrombocytopenia: state of the art 2006. Am J Obstet Gynecol 2006; 195(4): 907–13.CrossRefGoogle ScholarPubMed
Hardart, GE, Hardart, MKM, Arnold, JH. Intracranial hemorrhage in premature neonates treated with extracorporeal membrane oxygenation correlates with conceptional age. J Pediatr 2004; 145: 184–9.CrossRefGoogle ScholarPubMed
Gannon, CM, Kornhauser, MS, Gross, GW, et al. When combined, early bedside head ultrasound and electroencephalography predict abnormal computerized tomography or magnetic resonance brain images obtained after extracorporeal membrane oxygenation treatment. J Perinatol 2001; 21: 451–5.CrossRefGoogle ScholarPubMed
Bulas, DI, Glass, P, O’Donnell, RM, et al. Neonates treated with ECMO: predictive value of early CT and US neuroimaging findings on short-term neurodevelopmental outcome. Radiology 1995; 195: 407–12.CrossRefGoogle ScholarPubMed
Bulas, D, Glass, P. Neonatal ECMO: neuroimaging and neurodevelopmental outcome. Semin Perinatol 2005; 29(1): 5865.CrossRefGoogle ScholarPubMed
de Mol, AC, Gerrits, LC, van Heijst, AF, et al. Intravascular volume administration: a contributing risk factor for intracranial hemorrhage during extracorporeal membrane oxygenation? Pediatrics 2008; 121(6): e1599–603.CrossRefGoogle ScholarPubMed
Mercuri, E, Barnett, A, Rutherford, M, et al. Neonatal cerebral infarction and neuromotor outcome at school age. Pediatrics 2004; 113: 95100.CrossRefGoogle ScholarPubMed
Mercuri, E, Anker, S, Guzzetta, A, et al. Neonatal cerebral infarction and visual function at school age. Arch Dis Child Fetal Neonatal Ed 2003; 88:F487–91.CrossRefGoogle ScholarPubMed
Mercuri, E, Rutherford, M, Cowan, F, et al. Early prognostic indicators of outcome in infants with neonatal cerebral infarction: a clinical, electroencephalogram, and magnetic resonance imaging study. Pediatrics 1999; 103:3946.CrossRefGoogle ScholarPubMed
deVeber, GA, MacGregor, D, Curtis, R, et al. Neurologic outcome in survivors of childhood arterial ischemic stroke and sinovenous thrombosis. J Child Neurol 2000; 15: 316–24.CrossRefGoogle ScholarPubMed
McLinden, A, Baird, AD, Westmacott, R, et al. Early cognitive outcome after neonatal stroke. J Child Neurol 2007; 22: 1111–16.CrossRefGoogle ScholarPubMed
Sran, SK, Baumann, RJ. Outcome of neonatal strokes. Am J Dis Child 1988; 142: 1086–8.Google ScholarPubMed
Sreenan, C, Bhargava, R, Robertson, CM. Cerebral infarction in the term newborn: clinical presentation and long-term outcome. J Pediatr 2000; 137: 351–5.CrossRefGoogle ScholarPubMed
Lee, J, Croen, LA, Lindan, C, et al. Predictors of outcome in perinatal arterial stroke: a population-based study. Ann Neurol 2005; 58: 303–8.CrossRefGoogle ScholarPubMed
Schulzke, S, Weber, P, Luetschg, J, Fahnenstich, H. Incidence and diagnosis of unilateral arterial cerebral infarction in newborn infants. J Perinat Med 2005; 33: 170–5.CrossRefGoogle ScholarPubMed
Raju, TN, Nelson, KB, Ferriero, D, et al. Ischemic perinatal stroke: summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke. Pediatrics 2007; 120: 609–16.CrossRefGoogle ScholarPubMed
Laugesaar, R, Kolk, A, Tomberg, T, et al. Acutely and retrospectively diagnosed perinatal stroke: a population-based study. Stroke 2007; 38: 2234–40.CrossRefGoogle ScholarPubMed
Lee, J, Croen, LA, Backstrand, KH, et al. Maternal and infant characteristics associated with perinatal arterial stroke in the infant. JAMA 2005; 293: 723–9.CrossRefGoogle ScholarPubMed
Laugesaar, R, Kolk, A, Tomberg, T, et al. Acutely and retrospectively diagnosed perinatal stroke: a population-based study. Stroke 2007; 38: 2234–40.CrossRefGoogle ScholarPubMed
Wu, YW, March, WM, Croen, LA, et al. Perinatal stroke in children with motor impairment: a population-based study. Pediatrics 2004; 114: 612–19.CrossRefGoogle ScholarPubMed
Ozduman, K, Pober, BR, Barnes, P, et al. Fetal stroke. Pediatr Neurol 2004; 30: 151–62.CrossRefGoogle ScholarPubMed
Levy, SR, Abroms, IF, Marshall, PC, et al. Seizures and cerebral infarction in the full-term newborn. Ann Neurol 1985; 17: 366–70.CrossRefGoogle ScholarPubMed
Clancy, R, Malin, S, Laraque, D, et al. Focal motor seizures heralding stroke in full-term neonates. Am J Dis Child 1985; 139: 601–6.Google ScholarPubMed
Ramaswamy, V, Miller, SP, Barkovich, AJ, et al. Perinatal stroke in term infants with neonatal encephalopathy. Neurology 2004; 62: 2088–91.CrossRefGoogle ScholarPubMed
Guzzetta, A, Mercuri, E, Rapisardi, G, et al. General movements detect early signs of hemiplegia in term infants with neonatal cerebral infarction. Neuropediatrics 2003; 34: 61–6.Google ScholarPubMed
Kirton, A, Armstrong-Wells, J, Chang, T, et al. Symptomatic neonatal arterial ischemic stroke: The international pediatric stroke study. Pediatrics 2011; 128:e1402–10.CrossRefGoogle ScholarPubMed
Ecury-Goossen, GM, Raets, MM, Lequin, M, et al. Risk factors, clinical presentation, and neuroimaging findings of neonatal perforator stroke. Stroke 2013; 44: 2115–20.CrossRefGoogle ScholarPubMed
Fitzgerald, KC, Williams, LS, Garg, BP, et al. Cerebral sinovenous thrombosis in the neonate. Arch Neurol 2006; 63: 405–9.CrossRefGoogle ScholarPubMed
Wu, YW, Miller, SP, Chin, K, et al. Multiple risk factors in neonatal sinovenous thrombosis. Neurology 2002; 59: 438–40.CrossRefGoogle ScholarPubMed
Fitzgerald, KC, Golomb, MR. Neonatal arterial ischemic stroke and sinovenous thrombosis associated with meningitis. J Child Neurol 2007; 22: 818–22.CrossRefGoogle ScholarPubMed
deVeber, G, Andrew, M, Adams, C, et al. Cerebral sinovenous thrombosis in children. N Engl J Med 2001; 345: 417–23.CrossRefGoogle ScholarPubMed
Roland, EH, Flodmark, O, Hill, A. Thalamic hemorrhage with intraventricular hemorrhage in the full-term newborn. Pediatrics 1990; 85: 737–42.Google ScholarPubMed
Wu, YW, Hamrick, SE, Miller, SP, et al. Intraventricular hemorrhage in term neonates caused by sinovenous thrombosis. Ann Neurol 2003; 54: 123–6.CrossRefGoogle ScholarPubMed
Benders, MJ, Groenendaal, F, Uiterwaal, CS, et al. Maternal and infant characteristics associated with perinatal arterial stroke in the preterm infant. Stroke 2007; 38: 1759–65.CrossRefGoogle ScholarPubMed
de Vries, LS, Groenendaal, F, Eken, P, et al. Infarcts in the vascular distribution of the middle cerebral artery in preterm and fullterm infants. Neuropediatrics 1997; 28:8896.CrossRefGoogle ScholarPubMed
Golomb, MR, MacGregor, DL, Domi, T, et al. Presumed pre- or perinatal arterial ischemic stroke: risk factors and outcomes. Ann Neurol 2001; 50: 163–8.CrossRefGoogle ScholarPubMed
Kirton, A, Shroff, M, Pontigon, AM, et al. Risk factors and presentations of periventricular venous infarction vs. arterial presumed perinatal ischemic stroke. Arch Neurol 2010; 67: 842–8.CrossRefGoogle ScholarPubMed
Takanashi, J, Tada, H, Barkovich, AJ, et al. Magnetic resonance imaging confirms periventricular venous infarction in a term-born child with congenital hemiplegia. Dev Med Child Neurol 2005; 47: 706–8.CrossRefGoogle Scholar
Armstrong-Wells, J, Johnston, CS, Wu, YW, et al. Prevalence and predictors of perinatal hemorrhagic stroke: results from the Kaiser pediatric stroke study. Pediatrics 2009; 123: 823–8.CrossRefGoogle ScholarPubMed
Gould, DB, Phalan, FC, Breedveld, GJ, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 2005; 308: 1167–71.CrossRefGoogle ScholarPubMed
Breedveld, G, de Coo, IF, Lequin, MH, et al. Novel mutations in three families confirm a major role of COL4A1 in hereditary porencephaly. J Med Genet 2006; 43: 490–5.CrossRefGoogle Scholar
de Vries, LS, Koopman, C, Groenendaal, F, et al. COL4A1 mutation in two preterm siblings with antenatal onset of parenchymal hemorrhage. Ann Neurol 2009; 65: 12–8.CrossRefGoogle ScholarPubMed
Meuwissen, MEC Halley, DJJ, Smit, LS, et al. The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet Med 2015; 17(11):843–53.CrossRefGoogle Scholar
Arkel, YS, Ku, DH. Thrombophilia and pregnancy: review of the literature and some original data. Clin Appl Thromb Hemost 2001; 7: 259–68.CrossRefGoogle ScholarPubMed
Silver, RK, MacGregor, SN, Pasternak, JF, et al. Fetal stroke associated with elevated maternal anticardiolipin antibodies. Obstet Gynecol 1992; 80: 497–9.Google ScholarPubMed
Akanli, LF, Trasi, SS, Thuraisamy, K, et al. Neonatal middle cerebral artery infarction: association with elevated maternal anticardiolipin antibodies. Am J Perinatol 1998; 15:399402.CrossRefGoogle ScholarPubMed
Gunther, G, Junker, R, Strater, R, et al. Symptomatic ischemic stroke in full-term neonates: role of acquired and genetic prothrombotic risk factors. Stroke 2000; 31: 2437–41.CrossRefGoogle ScholarPubMed
Ballem, P. Acquired thrombophilia in pregnancy. Semin Thromb Hemost 1998; 24: 41–7.Google ScholarPubMed
Rigo, J, Nagy, B, Fintor, L, et al. Maternal and neonatal outcome of preeclamptic pregnancies: the potential roles of factor V Leiden mutation and 5,10 methylenetetrahydrofolate reductase. Hypertens Pregnancy 2000; 19: 163–72.CrossRefGoogle ScholarPubMed
Hague, WM, Dekker, GA. Risk factors for thrombosis in pregnancy. Best Pract Res Clin Haematol 2003; 16:197210.CrossRefGoogle ScholarPubMed
Chasnoff, IJ, Bussey, ME, Savich, R, et al. Perinatal cerebral infarction and maternal cocaine use. J Pediatr 1986; 108: 456–9.CrossRefGoogle ScholarPubMed
Heier, LA, Carpanzano, CR, Mast, J, et al. Maternal cocaine abuse: the spectrum of radiologic abnormalities in the neonatal CNS. AJNR Am J Neuroradiol 1991; 12: 951–6.Google ScholarPubMed
Ment, LR, Ehrenkranz, RA, Duncan, CC. Bacterial meningitis as an etiology of perinatal cerebral infarction. Pediatr Neurol 1986; 2: 276–9.CrossRefGoogle ScholarPubMed
Amit, M, Camfield, PR. Neonatal polycythemia causing multiple cerebral infarcts. Arch Neurol 1980; 37: 109–10.CrossRefGoogle ScholarPubMed
Jarjour, IT, Ahdab-Barmada, M. Cerebrovascular lesions in infants and children dying after extracorporeal membrane oxygenation. Pediatr Neurol 1994; 10:1319.CrossRefGoogle ScholarPubMed
Pellicer, A, Cabanas, F, Garcia-Alix, A, et al. Stroke in neonates with cardiac right-to-left shunt. Brain Dev 1992; 14: 381–5.CrossRefGoogle ScholarPubMed
Brenner, B, Fishman, A, Goldsher, D, et al. Cerebral thrombosis in a newborn with a congenital deficiency of antithrombin III. Am J Hematol 1988; 27: 209–11.CrossRefGoogle Scholar
Hogeveen, M, Blom, HJ, Van Amerongen, M, et al. Hyperhomocysteinemia as risk factor for ischemic and hemorrhagic stroke in newborn infants. J Pediatr 2002; 141: 429–31.CrossRefGoogle ScholarPubMed
Garoufi, AJ, Prassouli, AA, Attilakos, AV, et al. Homozygous MTHFR C677T gene mutation and recurrent stroke in an infant. Pediatr Neurol 2006; 35:4951.CrossRefGoogle ScholarPubMed
Curry, CJ, Bhullar, S, Holmes, J, et al. Risk factors for perinatal arterial stroke: a study of 60 mother-child pairs. Pediatr Neurol 2007; 37:99107.CrossRefGoogle ScholarPubMed
Lynch, JK, Han, CJ, Nee, LE, et al. Prothrombotic factors in children with stroke or porencephaly. Pediatrics 2005; 116: 447–53.CrossRefGoogle ScholarPubMed
Kurnik, K, Kosch, A, Strater, R, et al. Recurrent thromboembolism in infants and children suffering from symptomatic neonatal arterial stroke: a prospective follow-up study. Stroke 2003; 34: 2887–92.CrossRefGoogle ScholarPubMed
Miller, SP, Wu, YW, Lee, J, et al. Candidate gene polymorphisms do not differ between newborns with stroke and normal controls. Stroke 2006; 37: 2678–83.CrossRefGoogle Scholar
Hernanz-Schulman, M, Cohen, W, Genieser, NB. Sonography of cerebral infarction in infancy. AJR Am J Roentgenol 1988; 150:897902.CrossRefGoogle ScholarPubMed
Messer, J, Haddad, J, Casanova, R. Transcranial Doppler evaluation of cerebral infarction in the neonate. Neuropediatrics 1991; 22: 147–51.CrossRefGoogle ScholarPubMed
Golomb, MR, Dick, PT, MacGregor, DL, et al. Cranial ultrasonography has a low sensitivity for detecting arterial ischemic stroke in term neonates. J Child Neurol 2003; 18:98103.CrossRefGoogle Scholar
Cowan, F, Mercuri, E, Groenendaal, F, et al. Does cranial ultrasound imaging identify arterial cerebral infarction in term neonates? Arch Dis Child Fetal Neonatal Ed 2005; 90:F252–6.CrossRefGoogle ScholarPubMed
Mader, I, Schoning, M, Klose, U, et al. Neonatal cerebral infarction diagnosed by diffusion-weighted MRI: pseudonormalization occurs early. Stroke 2002; 33: 1142–5.CrossRefGoogle ScholarPubMed
Kuker, W, Mohrle, S, Mader, I, et al. MRI for the management of neonatal cerebral infarctions: importance of timing. Childs Nerv Syst 2004; 20: 742–8.Google ScholarPubMed
Shroff, M, deVeber, G. Sinovenous thrombosis in children. Neuroimag Clin North Am 2003; 13: 115–38.CrossRefGoogle ScholarPubMed
De Vries, LS, Van der Grond, J, Van Haastert, IC, et al. Prediction of outcome in new-born infants with arterial ischaemic stroke using diffusion-weighted magnetic resonance imaging. Neuropediatrics 2005; 36:1220.CrossRefGoogle ScholarPubMed
Groenendaal, F, Benders, MJ, de Vries, LS. Pre-Wallerian degeneration in the neonatal brain following perinatal cerebral hypoxia-ischemia demonstrated with MRI. Semin Perinatol 2006; 30: 146–50.CrossRefGoogle ScholarPubMed
Kirton, A, Deveber, G, Pontigon, AM, et al. Presumed perinatal ischemic stroke: vascular classification predicts outcomes. Ann Neurol 2008; 63: 436–43.CrossRefGoogle ScholarPubMed
Weiner, SP, Painter, MJ, Geva, D, et al. Neonatal seizures: electroclinical dissociation. Pediatr Neurol 1991; 7: 363–8.CrossRefGoogle ScholarPubMed
Koelfen, W, Freund, M, Varnholt, V. Neonatal stroke involving the middle cerebral artery in term infants: clinical presentation, EEG and imaging studies, and outcome. Dev Med Child Neurol 1995; 37: 204–12.Google ScholarPubMed
Chalmers, EA. Perinatal stroke: risk factors and management. Br J Haematol 2005; 130: 333–43.CrossRefGoogle ScholarPubMed
Elbers, J, Viero, S, MacGregor, D, et al. Placental pathology in neonatal stroke. Pediatrics 2011; 127:e722–9.CrossRefGoogle ScholarPubMed
Baird, TA, Parsons, MW, Phanh, T, et al. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke 2003; 34: 2208–14.CrossRefGoogle ScholarPubMed
Vannucci, RC, Mujsce, DJ. Effect of glucose on perinatal hypoxic-ischemic brain damage. Biol Neonate 1992; 62: 215–24.CrossRefGoogle ScholarPubMed
Clancy, RR. Prolonged electroencephalogram monitoring for seizures and their treatment. Clin Perinatol 2006; 33: 649–65, vi.CrossRefGoogle ScholarPubMed
Monagle, P, Chan, A, Massicotte, P, et al. Antithrombotic therapy in children: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 2004; 126: 645S–87S.Google ScholarPubMed
Jones, MW, Morgan, E, Shelton, JE. Primary care of the child with cerebral palsy: a review of systems (part II). J Pediatr Health Care 2007; 21: 226–37.CrossRefGoogle Scholar
Juenger, H, Linder-Lucht, M, Walther, M, et al. Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study. Neuropediatrics 2007; 38: 130–6.CrossRefGoogle ScholarPubMed
Sutcliffe, TL, Gaetz, WC, Logan, WJ, et al. Cortical reorganization after modified constraint-induced movement therapy in pediatric hemiplegic cerebral palsy. J Child Neurol 2007; 22: 1281–7.CrossRefGoogle ScholarPubMed
Hoare, BJ, Wasiak, J, Imms, C, et al. Constraint-induced movement therapy in the treatment of the upper limb in children with hemiplegic cerebral palsy. Cochrane Database Syst Rev 2007; 2:CD004149.Google Scholar
Rajapakse, T, Kirton, A. Non-invasive brain stimulation in children: applications and future directions. Transl Neurosci 2013; 4: 217–33.CrossRefGoogle ScholarPubMed
Trauner, DA, Chase, C, Walker, P, et al. Neurologic profiles of infants and children after perinatal stroke. Pediatr Neurol 1993; 9: 383–6.CrossRefGoogle ScholarPubMed
Wulfeck, BB, Trauner, DA, Tallal, PA. Neurologic, cognitive, and linguistic features of infants after early stroke. Pediatr Neurol 1991; 7: 266–9.CrossRefGoogle ScholarPubMed
Tillema, JM, Byars, AW, Jacola, LM, et al. Cortical reorganization of language functioning following perinatal left MCA stroke. Brain Lang 2008; 105:99111.CrossRefGoogle ScholarPubMed
Jacola, LM, Schapiro, MB, Schmithorst, VJ, et al. Functional magnetic resonance imaging reveals atypical language organization in children following perinatal left middle cerebral artery stroke. Neuropediatrics 2006; 37:4652.CrossRefGoogle ScholarPubMed
Adhikari, MH, Beharelle, AR, Griffa, A, et al. Computational modeling of resting-state activity demonstrates markers of normalcy in children with prenatal or perinatal stroke. J Neurosci 2015; 35: 8914–24.CrossRefGoogle ScholarPubMed
Golomb, MR, deVeber, GA, MacGregor, DL, et al. Independent walking after neonatal arterial ischemic stroke and sinovenous thrombosis. J Child Neurol 2003; 18: 530–6CrossRefGoogle ScholarPubMed
Kirton, A, Shroff, M, Visvanathan, T, et al. Quantified corticospinal tract diffusion restriction predicts neonatal stroke outcome. Stroke 2007; 38: 974–80.CrossRefGoogle ScholarPubMed
Estan, J, Hope, P. Unilateral neonatal cerebral infarction in full term infants. Arch Dis Child Fetal Neonatal Ed 1997; 76:F8893.CrossRefGoogle ScholarPubMed
Golomb, MR, Garg, BP, Carvalho, KS, et al. Perinatal stroke and the risk of developing childhood epilepsy. J Pediatr 2007; 151:409–13.e2.CrossRefGoogle ScholarPubMed
Hetherington, R, Tuff, L, Anderson, P, et al. Short-term intellectual outcome after arterial ischemic stroke and sinovenous thrombosis in childhood and infancy. J Child Neurol 2005; 20: 553–9.CrossRefGoogle ScholarPubMed
Trauner, DA, Nass, R, Ballantyne, A. Behavioural profiles of children and adolescents after pre- or perinatal unilateral brain damage. Brain 2001; 124:9951002.CrossRefGoogle ScholarPubMed
Mercuri, E, Spano, M, Bruccini, G, et al. Visual outcome in children with congenital hemiplegia: correlation with MRI findings. Neuropediatrics 1996; 27: 184–8.CrossRefGoogle ScholarPubMed
Guzzetta, A, Fazzi, B, Mercuri, E, et al. Visual function in children with hemiplegia in the first years of life. Dev Med Child Neurol 2001; 43: 321–9.CrossRefGoogle ScholarPubMed
Wen, TC, Rogido, M, Gressens, P, et al. A reproducible experimental model of focal cerebral ischemia in the neonatal rat. Brain Res Brain Res Protoc 2004; 13:7683.CrossRefGoogle ScholarPubMed
Derugin, N, Ferriero, DM, Vexler, ZS. Neonatal reversible focal cerebral ischemia: a new model. Neurosci Res 1998; 32: 349–53.CrossRefGoogle ScholarPubMed
Renolleau, S, Aggoun-Zouaoui, D, Ben-Ari, Y, et al. A model of transient unilateral focal ischemia with reperfusion in the P7 neonatal rat: morphological changes indicative of apoptosis. Stroke 1998; 29: 1454–61.CrossRefGoogle Scholar
Wendland, M, Manabat, C, Fox, CK, et al. The blood–brain barrier is more preserved in neonatal versus adult rats following transient focal cerebral ischemia. J Cereb Blood Flow Metab 2003; 23:169.Google Scholar
Manabat, C, Han, BH, Wendland, M, et al. Reperfusion differentially induces caspase-3 activation in ischemic core and penumbra after stroke in immature brain. Stroke 200(34): 207–13.
Gonzalez, FF, Larpthaveesarp, A, McQuillen, P, et al. Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke 2013; 44: 753–8.CrossRefGoogle ScholarPubMed
Gonzalez, FF, Abel, R, Almli, CR, et al. Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev Neurosci 2009; 31: 403–11.CrossRefGoogle ScholarPubMed
Tamaki, M, Fujitani, Y, Hara, A, et al. The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest 2013; 123(10): 4513–24.CrossRefGoogle ScholarPubMed
Thorsson, AV, Hintz, RL. Insulin receptors in the newborn: increase in receptor affinity and number. N Engl J Med 1977; 297(17): 908–12.CrossRefGoogle Scholar
Chernausek, SD, Beach, DC, Banach, W, Sperling, MA. Characteristics of hepatic receptors for somatomedin-C/insulin-like growth factor I and insulin in the developing human. J Clin Endocrinol Metab 1987; 64(4): 737–43.CrossRefGoogle ScholarPubMed
Harken, AH, Filler, RM, AvRuskin, TW, Crigler, JF Jr. The role of “total” pancreatectomy in the treatment of unremitting hypoglycemia of infancy. J Pediatr Surg 1971; 6(3): 284–9.CrossRefGoogle ScholarPubMed
Menni, F, de Lonlay, P, Sevin, C, et al. Neurologic outcomes of 90 neonates and infants with persistent hyperinsulinemic hypoglycemia. Pediatrics 2001; 107(3): 476–9.CrossRefGoogle ScholarPubMed
Meissner, T, Wendel, U, Burgard, P, et al. Long-term follow-up of 114 patients with congenital hyperinsulinism. Eur J Endocrinol 2003; 149(1):4351.CrossRefGoogle ScholarPubMed
Steinkrauss, L, Lipman, TH, Hendell, CD, et al. Effects of hypoglycemia on developmental outcome in children with congenital hyperinsulinism. J Pediatr Nurs 2005; 20(2): 109–18.CrossRefGoogle ScholarPubMed
Avatapalle, HB, Banerjee, I, Shah, S, et al. Abnormal neurodevelopmental outcomes are common in children with transient congenital hyperinsulinism. Front Endocrinol (Lausanne) 2013; 4:60.Google ScholarPubMed
Lord, K, Radcliffe, J, Gallagher, PR, et al. High risk of diabetes and neurobehavioral deficits in individuals with surgically treated hyperinsulinism. J Clin Endocrinol Metab 2015; 100(11): 4133–9.CrossRefGoogle ScholarPubMed
Hoe, FM, Thornton, PS, Wanner, LA, et al. Clinical features and insulin regulation in infants with a syndrome of prolonged neonatal hyperinsulinism. J Pediatr 2006; 148(2): 207–12.CrossRefGoogle ScholarPubMed
Hume, R, McGeechan, A, Burchell, A. Failure to detect preterm infants at risk of hypoglycemia before discharge. J Pediatr 1999; 134(4):499502.CrossRefGoogle ScholarPubMed
Lucas, A, Morley, R, Cole, TJ. Adverse neurodevelopmental outcome of moderate neonatal hypoglycemia. BMJ 1988; 297(6659): 1304–8.CrossRefGoogle Scholar
Cornblath, M, Schwartz, R. Outcome of neonatal hypoglycaemia: complete data are needed. BMJ 1999; 318(7177): 194–5.CrossRefGoogle ScholarPubMed
Tin, W, Brunskill, G, Kelly, T, Fritz, S. 15-year follow-up of recurrent “hypoglycemia” in preterm infants. Pediatrics 2012; 130(6): e1497–503.CrossRefGoogle Scholar
Kerstjens, JM, Bocca-Tjeertes, IF, de Winter, AF, et al. Neonatal morbidities and developmental delay in moderately preterm-born children. Pediatrics 2012:130(2): e265–72.CrossRefGoogle ScholarPubMed
McIntyre, S, Taitz, D, Keogh, J, et al. A systemic review of risk factors for cerebral palsy in children born at term in developed countries. Dev Med Child Neurol 2013; 55(6): 499508.CrossRefGoogle Scholar
Tam, EW, Haeusslein, LA, Bonifacio, SL, et al. Hypoglycemia is associated with increased risk for brain injury and adverse neurodevelopmental outcome in neonates at risk for encephalopathy. J Pediatr 2012; 161(1): 8893.CrossRefGoogle ScholarPubMed
Kaiser, JR, Bai, S, Gibson, N, et al. Association between transient newborn hypoglycemia and fourth-grade achievement test proficiency: a population-based study. JAMA Pediatr 2015; 169(10): 913–21.CrossRefGoogle ScholarPubMed
McKinlay, CJ, Harding, JE. Revisiting transitional hypoglycemia: only time will tell. JAMA Pediatr 2015; 169(10): 892–4.CrossRefGoogle ScholarPubMed
Boluyt, N, van Kempen, A, Offringa, M. Neurodevelopment after neonatal hypoglycemia: a systemic review and design of an optimal future study. Pediatrics 2006; 117(6): 2231–43.CrossRefGoogle Scholar
Waisbren, SE, Landau, Y, Wilson, J, Vockley, J. Neuropsychological outcomes in fatty acid oxidation disorders: 85 cases detected by newborn screening. Dev Disabil Res Rev 2013; 17(3): 260–8.CrossRefGoogle ScholarPubMed
Signorini, SG, Decio, A, Fedeli, C, et al. Septo-optic dysplasia in childhood: the neurological, cognitive and neuro-ophthalmological perspective. Dev Med Child Neurol 2012; 54(11): 1018–24.CrossRefGoogle ScholarPubMed
Stanley, CA, Rozance, PJ, Thornton, PS, et al. Re-evaluating “transitional neonatal hypoglycemia”: mechanism and implications for management. J Pediatr 2015; 166(6): 1520–5.CrossRefGoogle ScholarPubMed
Thornton, PS, Stanley, CA, De León, DD, et al. Recommendations from the Pediatric Endocrine Society for evaluation and management of persistent hypoglycemia in neonates, infants, and children. J Pediatr 2015; 167(2): 238–45.CrossRefGoogle Scholar
Bier, DM, Leake, RD, Haymond, MW, et al. Measurement of “true” glucose production rates in infancy and childhood with 6,6-dideuteroglucose. Diabetes 1977; 26(11): 1016–23.CrossRefGoogle ScholarPubMed
Kalhan, SC, D’Angelo, LJ, Savin, SM, Adam, PA. Glucose production in pregnant women at term gestation: sources of glucose for human fetus. J Clin Invest 1979; 63(3): 388–94.CrossRefGoogle ScholarPubMed
Bougneres, PF, Lemmel, C, Ferré, P, Bier, DM. Ketone body transport in the human neonate and infant. J Clin Invest 1986; 77(1): 42–8.CrossRefGoogle ScholarPubMed
Boardman, JP, Hawdon, JM. Hypoglycemia and hypoxic-ischaemic encephalopathy. Dev Med Child Neurol 2015; 57(Suppl 3):2933.CrossRefGoogle ScholarPubMed
Sperling, MA, DeLamater, PV, Phelps, D, et al. Spontaneous and amino acid-stimulated glucagon secretion in the immediate postnatal period: relation to glucose and insulin. J Clin Invest 1974; 53(4): 1159–66.CrossRefGoogle ScholarPubMed
Guemes, M, Rahman, SA, Hussain, K. What is a normal blood glucose? Arch Dis Child 2016; 101(6): 569–74.CrossRefGoogle ScholarPubMed
Dekelbab, BH, Sperling, MA. Recent advances in hyperinsulinemic hypoglycemia of infancy. Acta Paediatr 2006; 95(10): 1157–64.CrossRefGoogle ScholarPubMed
McKinlay, CJ, Alsweiler, JM, Ansell, JM, et al. Neonatal glycemia and neurodevelopmental outcomes at 2 years. N Engl J Med 2015; 373(16): 1507–18.CrossRefGoogle ScholarPubMed
Auer, RN. Hypoglycemic brain damage. Metab Brain Dis 2004; 19(3–4): 169–75.CrossRefGoogle ScholarPubMed
Turner, CP, Blackburn, MR, Rivkees, SA. A1 adenosine receptors mediate hypoglycemia-induced neuronal injury. J Mol Endocrinol 2004; 32(1): 129–44.CrossRefGoogle ScholarPubMed
Kim, M, Yu, ZX, Fredholm, BB, Rivkees, SA. Susceptibility of the developing brain to acute hypoglycemia involving A1 adenosine receptor activation. Am J Physiol Endocrinol Metab 2005; 289(4): E562–9.CrossRefGoogle ScholarPubMed
Mujsce, DJ, Christensen, MA, Vannucci, RC. Regional cerebral blood flow and glucose utilization during hypoglycemia in newborn dogs. Am J Physiol 1989; 256(6 Pt 2): H1659–66.Google ScholarPubMed
Karaoğlu, P, Polat, AI, Yiş, U, Hiz, S. Parieto-occipital encephalomalacia in children: clinical and electrophysiological features of twenty-seven cases. J Pediatr Neurosci 2015; 10(2): 103–7.CrossRefGoogle ScholarPubMed
LaManna, JC, Harik, SI. Regional comparisons of brain glucose influx. Brain Res 1985; 326(2): 299305.CrossRefGoogle ScholarPubMed
Sperling, MA, Menon, RK. Differential diagnosis and management of neonatal hypoglycemia. Pediatr Clin North Am 2004; 51(3): 703–23.CrossRefGoogle ScholarPubMed
Duvanel, CB, Fawer, CL, Cotting, J, et al. Long-term effects of neonatal hypoglycemia on brain growth and psychomotor development in small-for-gestational-age preterm infants. J Pediatr 1999; 134(4): 492–8.CrossRefGoogle ScholarPubMed
Rozance, PJ. Update on neonatal hypoglycemia. Curr Opin Endocrinol Diabetes Obes 2014; 21(1):4550.CrossRefGoogle ScholarPubMed
Ferrara, C, Patel, P, Becker, S, et al. Biomarkers of insulin for the diagnosis of hyperinsulinemic hypoglycemia in infants. J Pediatr 2016; 168: 212–9.CrossRefGoogle Scholar
Kelly, A, Tang, R, Becker, S, Stanley, CA. Poor specificity of low growth hormone and cortisol levels during fasting hypoglycemia for the diagnoses of growth hormone deficiency and adrenal insufficiency. Pediatrics 2008; 122(3): e522–8.CrossRefGoogle ScholarPubMed
Cornblath, M, Parker, ML, Reisner, SH, et al. Secretion and metabolism of growth hormone in premature and full-term infants. J Clin Endocrinol Metab 1965; 25: 209–18.CrossRefGoogle ScholarPubMed
Kaplan, SL, Grumbach, MM, Shepard, TH. The ontogenesis of human fetal hormones. I. Growth hormone and insulin. J Clin Invest 1972; 51(12): 3080–93.CrossRefGoogle ScholarPubMed
Lanes, R, Nieto, C, Bruguera, C, et al. Growth hormone release in response to growth hormone-releasing hormone in term and preterm neonates. Biol Neonate 1989; 56(5): 252–6CrossRefGoogle ScholarPubMed
Secco, A, di lorgi, N, Napoli, F, et al. The glucagon test in the diagnosis of growth hormone deficiency in children with short stature younger than 6 years. J Clin Endocrinol Metab 2009; 94(11): 4251–7.CrossRefGoogle Scholar
Finegold, DN, Stanely, CA, Baker, L. Glycemic response to glucagon during fasting hypoglycemia: an aid in the diagnosis of hyperinsulinism. J Pediatr 1980; 96(2): 257–9.CrossRefGoogle Scholar
Rahman, SA, Nessa, A, Hussain, K. Molecular mechanisms of congenital hyperinsulinism. J Mol Endocrinol 2015; 54(2): R119–29.CrossRefGoogle ScholarPubMed
Barkovich, AJ, Ali, FA, Rowley, HA, Bass, N. Imaging patterns of neonatal hypoglycemia. AJNR Am J Neuroradiol 1998; 19(3): 523–8.Google ScholarPubMed
Alkalay, AL, Flores-Sarnat, L, Sarnat, HB, et al. Brain imaging findings in neonatal hypoglycemia: case report and review of 23 cases. Clin Pediatr (Phila) 2005; 44(9): 783–90.CrossRefGoogle ScholarPubMed
Alkalay, AL, Flores-Sarnat, L, Sarnat, HB, et al. Plasma glucose concentrations in profound neonatal hypoglycemia. Clin Pediatr (Phila) 2006:45(6): 550–8.CrossRefGoogle ScholarPubMed
Wong, DS, Poskitt, KJ, Chau, V, et al. Brain injury patterns in hypoglycemia in neonatal encephalopathy. AJNR Am J Neuroradiol 2013; 34(7): 1456–61.CrossRefGoogle ScholarPubMed
Burns, CM, Rutherford, MA, Boardman, JP, Cowan, FM. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics 2008; 122(1): 6574.CrossRefGoogle ScholarPubMed
Bozzola, M, Adamsbaum, C, Biscaldi, I, et al. Role of magnetic resonance imaging in the diagnosis and prognosis of growth hormone deficiency. Clin Endocrinol (Oxf) 1996; 45(1): 21–6.CrossRefGoogle ScholarPubMed
Kornreich, L, Horev, G, Lazar, L, et al. MR findings in growth hormone deficiency: correlation with severity of hypopituitarism. AJNR Am J Neuroradiol 1998; 19(8): 1495–9.Google ScholarPubMed
Dutta, P, Bhansali, A, Singh, P, et al. Congenital hypopituitarism: clinico-radiological correlation. J Pediatr Endocrinol Metab 2009; 22(10): 921–8.CrossRefGoogle ScholarPubMed
Saudubray, JM, Martin, D, de Lonlay, P, et al. Recognition and management of fatty acid oxidation defects: a series of 107 patients. J Inherit Metab Dis 1999; 22(4): 488502.CrossRefGoogle ScholarPubMed
Shulman, DI, Palmert, MR, Kemp, SF, Lawson Wilkins Drug and Therapeutics Committee. Adrenal insufficiency: still a cause of morbidity and death in childhood. Pediatrics 2007; 119(2): e484–94.CrossRefGoogle Scholar
Grimberg, A, DiVall, SA, Polychronakos, C, et al.; Drug and Therapeutics Committee and Ethics Committee of the Pediatric Endocrine Society. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-I deficiency. Horm Res Paediatr. 2016; 86(6): 361–97.CrossRefGoogle ScholarPubMed
Tas, E, Mahmood, B, Garibaldi, L, Sperling, M. Liver injury may increase the risk of diazoxide toxicity: a case report. Eur J Pediatr 2015; 174(3): 403–6.CrossRefGoogle ScholarPubMed
Sperling, MA, Menon, R. Hypoglycemia in the Newborn. In Stevenson, DK, Cohen, RS, Sunshine, P, eds., Neonatology: Clinical Practice and Procedures, 1st ed. New York: McGraw-Hill Education, 2015: 649–64.Google Scholar
Palladino, AA, Bennett, MJ, Stanley, CA. Hyperinsulinism in infancy and childhood: when an insulin level is not always enough. Clin Chem 2008; 54(2): 256–63.CrossRefGoogle ScholarPubMed
Laje, P, Halaby, L, Adzick, NS, Stanley, CA. Necrotizing enterocolitis in neonates receiving octreotide for the management of congenital hyperinsulinism. Pediatr Diabetes 2010; 11(2): 142–7.CrossRefGoogle ScholarPubMed
Demirbilek, H, Shah, P, Arya, VB, et al. Long-term follow-up of children with congenital hyperinsulinism on octreotide therapy. J Clin Endocrinol Metab 2014; 99(10): 3660–7.CrossRefGoogle ScholarPubMed
Senniappan, S, Alexandrescu, S, Tatevian, N, et al. Sirolimus therapy in infants with severe hyperinsulinemic hypoglycemia. N Engl J Med 2014; 370(12): 1131–7.CrossRefGoogle ScholarPubMed
Gopal-Kothandapani, JS, Hussain, K. Congenital hyperinsulinism: role of fluorine-18 L-3,4 hydroxyphenylalanine positron emission tomography scanning. World J Radiol 2014; 6(6): 252–60.CrossRefGoogle Scholar
Suchi, M, MacMullen, CM, Thornton, PS, et al. Molecular and immunohistochemical analyses of the focal form of congenital hyperinsulinism. Mod Pathol 2006; 19(1): 122–9.CrossRefGoogle ScholarPubMed
Adzick, NS, Thornton, PS, Stanley, CA, et al. A multidisciplinary approach to the focal form of congenital hyperinsulinism leads to successful treatment by partial pancreatectomy. J Pediatr Surg 2004; 39(3): 270–5.CrossRefGoogle ScholarPubMed
Laje, P, Stanley, CA, Palladino, AA, et al. Pancreatic head resection and roux-en-Y pancreaticojejunostomy for the treatment of the focal form of congenital hyperinsulinism. J Pediatr Surg 2012:47(1): 130–5.CrossRefGoogle ScholarPubMed
Schmorl, G. Zur kenntis des icterus neonatorum. Verh Dtsch Ges Pathol 1903; 6: 109.Google Scholar
American Academy of Pediatrics. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 2004; 114: 297–16.PubMed
Bhutani, VK, Wong, R. Bilirubin-induced neurologic dysfunction (BIND). Semin Fetal Neonatal Med 2015; 20:1.CrossRefGoogle Scholar
Johnson, L, Bhutani, VK. The clinical syndrome of bilirubin-induced neurologic dysfunction. Semin Perinatol 2011; 35: 101–13.CrossRefGoogle ScholarPubMed
Good, WV, Hou, C. Visuocortical bilirubin-induced neurological dysfunction. Semin Fetal Neonatal Med 2015; 20:3741.CrossRefGoogle ScholarPubMed
Olds, C, Oghalai, JS. Audiologic impairment associated with bilirubin-induced neurologic damage. Semin Fetal Neonatal Med 2015; 20: 42–6.CrossRefGoogle ScholarPubMed
Rose, J, Vassar, R. Movement disorders due to bilirubin toxicity. Semin Fetal Neonatal Med 2015; 20: 20–5.CrossRefGoogle ScholarPubMed
Wusthoff, CJ, Loe, IM. Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes. Semin Fetal Neonatal Med 2015; 20: 52–7.CrossRefGoogle ScholarPubMed
Govaert, P, Lequin, M, Swarte, R, et al. Changes in globus pallidus with (pre)term kernicterus. Pediatrics 2003; 112: 1256–63.CrossRefGoogle ScholarPubMed
Penn, AA, Enzmann, DR, Hahn, JS, Stevenson, DK. Kernicterus in a full term infant. Pediatrics 1994; 93: 1003–6.Google Scholar
Wisnowski, JL, Panigrahy, A, Painter, MJ, Watchko, JF. Magnetic resonance imaging of bilirubin encephalopathy: current limitations and future promise. Semin Perinatol 2014; 38: 422–8.CrossRefGoogle ScholarPubMed
Stevenson, DK, Bartoletti, AL, Ostrander, CR, Johnson, JD. Pulmonary excretion of carbon monoxide in the human newborn infant as an index of bilirubin production. III. Measurement of pulmonary excretion of carbon monoxide after the first postnatal week in premature infants. Pediatrics 1979; 64:598600.Google ScholarPubMed
Bhutani, VK, Johnson, L, Sivieri, EM. Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. Pediatrics 1999; 103:614.CrossRefGoogle ScholarPubMed
Volpe, JJ. Bilirubin and brain injury. In Volpe, JJ, ed., Neurology of the Newborn, 2nd edn. Philadelphia: Saunders, 2000:490514.Google ScholarPubMed
Amato, M. Mechanisms of bilirubin toxicity. Eur J Pediatr 1995; 154:S54–9.CrossRefGoogle ScholarPubMed
Amit, Y, Chan, G, Fedunec, S, et al. Bilirubin toxicity in a neuroblastoma cell line N-115. I. Effects on Na+K+-ATPase, [3H]-thymidine uptake, l-[35S]-methionine incorporation, and mitochondrial function. Pediatr Res 1989; 25: 364–8.CrossRefGoogle Scholar
Brito, MA, Silva, RF, Brites, D. Bilirubin induces loss of membrane lipids and exposure of phosphatidylserine in human erythrocytes. Cell Biol Toxicol 2002; 18: 181–92.CrossRefGoogle ScholarPubMed
Hanko, E, Hansen, TW, Almaas, R, et al. Bilirubin induces apoptosis and necrosis in human NT2-N neurons. Pediatr Res 2005; 57: 179–84.CrossRefGoogle ScholarPubMed
Wennberg, RP. Cellular basis of bilirubin toxicity. NY State J Med 1991; 91: 493–6.Google ScholarPubMed
Wennberg, RP, Gospe, SM Jr., Rhine, WD, et al. Brainstem bilirubin toxicity in the newborn primate may be promoted and reversed by modulating PCO2. Pediatr Res 1993; 34:69.CrossRefGoogle ScholarPubMed
Brites, D, Fernandes, A. Bilirubin-induced neural impairment:a special focus on myelination, age-related windows of susceptibility and associated co-morbidities. Semin Fetal Neonatal Med 2015; 20: 14–9.CrossRefGoogle ScholarPubMed
Watchko, JF, Painter, MJ, Panigrahy, A. Are the neuromotor disabilities of bilirubin-induced neurologic dysfunction disorders related to the cerebellum and its connections? Semin Fetal Neonatal Med 2015; 20:4751.CrossRefGoogle ScholarPubMed
Ahlfors, CE. Measurement of plasma unbound unconjugated bilirubin. Anal Biochem 2000; 279: 130–5.CrossRefGoogle ScholarPubMed
Ahlfors, CE. Unbound bilirubin associated with kernicterus: a historical approach. J Pediatr 2000; 137: 540–4.CrossRefGoogle ScholarPubMed
Ahlfors, CE, Wennberg, RP. Bilirubin-albumin binding and neonatal jaundice. Semin Perinatol 2004; 28: 334–9.CrossRefGoogle ScholarPubMed
Lamola, AA, Bhutani, VK, Du, L, et al. Neonatal bilirubin binding capacity discerns risk of neurological dysfunction. Pediatr Res 2015; 77: 334–9.CrossRefGoogle ScholarPubMed
Morioka, I, Nakamura, H, Koda, T, et al. Serum unbound bilirubin as a predictor for clinical kernicterus in extremely low birth weight infants at a late age in the neonatal intensive care unit. Brain Dev 2015; 37(8):753–7.CrossRefGoogle Scholar
Levine, RL, Fredericks, WR, Rapoport, SI. Clearance of bilirubin from rat brain after reversible osmotic opening of the blood-brain barrier. Pediatr Res 1985; 19: 1040–3.CrossRefGoogle ScholarPubMed
Dennery, PA, McDonagh, AF, Spitz, DR, et al. Hyperbilirubinemia results in reduced oxidative injury in neonatal Gunn rats exposed to hyperoxia. Free Radic Biol Med 1995; 19: 395–04.CrossRefGoogle ScholarPubMed
Stocker, R, Yamamoto, Y, McDonagh, AF, et al. Bilirubin is an antioxidant of possible physiological importance. Science 1987; 235: 1043–6.CrossRefGoogle ScholarPubMed
Berardi, A, Lugli, L, Ferrari, F, et al. Kernicterus associated with hereditary spherocytosis and UGT1A1 promoter polymorphism. Biol Neonate 2006; 90: 243–6.CrossRefGoogle ScholarPubMed
Kaplan, M, Hammerman, C, Rubaltelli, FF, et al. Hemolysis and bilirubin conjugation in association with UDP-glucuronosyltransferase 1A1 promoter polymorphism. Hepatology 2002; 35: 905–11.CrossRefGoogle ScholarPubMed
Kaplan, M, Renbaum, P, Levy-Lahad, E, et al. Gilbert syndrome and glucose-6-phosphate dehydrogenase deficiency: a dose-dependent genetic interaction crucial to neonatal hyperbilirubinemia. Proc Natl Acad Sci USA 1997; 94: 12128–32.CrossRefGoogle ScholarPubMed
Beutler, E, Gelbart, T, Demina, A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter:A balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci USA 1998; 95: 8170–4.CrossRefGoogle ScholarPubMed
Akaba, K, Kimura, T, Sasaki, A, et al. Neonatal hyperbilirubinemia and mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene: a common missense mutation among Japanese, Koreans and Chinese. Biochem Mol Biol Int 1998; 46: 21–6.Google ScholarPubMed
Kaplan, M, Hammerman, C, Renbaum, P, et al. Differing pathogenesis of perinatal bilirubinemia in glucose-6-phosphate dehydrogenase-deficient versus-normal neonates. Pediatr Res 2001; 50: 532–7.CrossRefGoogle ScholarPubMed
Kaplan, M, Renbaum, P, Vreman, HJ, et al. (TA)n UGT 1A1 promoter polymorphism: a crucial factor in the pathophysiology of jaundice in G-6-PD deficient neonates. Pediatr Res 2007; 61: 727–31.CrossRefGoogle ScholarPubMed
Kaplan, M, Renbaum, P, Hammerman, C, et al. Heme oxygenase-1 promoter polymorphisms and neonatal jaundice. Neonatology 2014; 106: 323–9.CrossRefGoogle ScholarPubMed
Denschlag, D, Marculescu, R, Unfried, G, et al. The size of a microsatellite polymorphism of the haem oxygenase 1 gene is associated with idiopathic recurrent miscarriage. Mol Hum Reprod 2004; 10: 211–4.CrossRefGoogle ScholarPubMed
Exner, M, Minar, E, Wagner, O, Schillinger, M. The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic Biol Med 2004; 37: 1097–104.CrossRefGoogle ScholarPubMed
Takeda, M, Kikuchi, M, Ubalee, R, et al. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to cerebral malaria in Myanmar. Jpn J Infect Dis 2005; 58: 268–71.Google ScholarPubMed
Yamada, N, Yamaya, M, Okinaga, S, et al. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet 2000; 66: 187–95.CrossRefGoogle ScholarPubMed
Katayama, Y, Yokota, T, Zhao, H, et al. Association of HMOX1 gene promoter polymorphisms with hyperbilirubinemia in the early neonatal period. Pediatr Int 2015; 57(4):645–9.CrossRefGoogle ScholarPubMed
Huang, MJ, Kua, KE, Teng, HC, et al. Risk factors for severe hyperbilirubinemia in neonates. Pediatr Res 2004; 56: 682–9.CrossRefGoogle ScholarPubMed
Watchko, JF, Daood, MJ, Hansen, TW. Brain bilirubin content is increased in P-glycoprotein-deficient transgenic null mutant mice. Pediatr Res 1998; 44: 763–6.CrossRefGoogle ScholarPubMed
Mollison, PL, Cutbush, M. Haemaolytic disease of the newborn. In Gairdner, D, ed., Recent Advances in Pediatrics. New York: Blakinston, 1954:110.Google Scholar
Watchko, JF. Vigintiphobia revisited. Pediatrics 2005; 115: 1747–53.CrossRefGoogle ScholarPubMed
Watchko, JF, Oski, FA. Bilirubin 20 mg/dL = vigintiphobia. Pediatrics 1983; 71: 660–3.Google ScholarPubMed
Andersen, DH, Blanc, WA, Crozier, DN, Silverman, WA. A difference in mortality rate and incidence of kernicterus among premature infants allotted to two prophylactic antibacterial regimens. Pediatrics 1956; 18: 614–25.Google ScholarPubMed
Stevenson, DK, Fanaroff, AA, Maisels, MJ, et al. Prediction of hyperbilirubinemia in near-term and term infants. Pediatrics 2001; 108: 31–9.CrossRefGoogle ScholarPubMed
Vreman, HJ, Stevenson, DK, Oh, W, et al. Semiportable electrochemical instrument for determining carbon monoxide in breath. Clin Chem 1994; 40: 1927–33.Google ScholarPubMed
Castillo Cuadrado, ME, Bhutani, VK, Aby, JL, et al. Evaluation of a new end-tidal carbon monoxide monitor from the bench to the bedside. Acta Paediatr 2015; 104:e279–82.CrossRefGoogle Scholar
Brodersen, R, Stern, L. Deposition of bilirubin acid in the central nervous system: a hypothesis for the development of kernicterus. Acta Paediatr Scand 1990; 79: 12–9.CrossRefGoogle ScholarPubMed
Bratlid, D, Cashore, WJ, Oh, W. Effect of acidosis on bilirubin deposition in rat brain. Pediatrics 1984; 73: 431–4.Google ScholarPubMed
Herschel, M, Karrison, T, Wen, M, et al. Evaluation of the direct antiglobulin (Coombs’) test for identifying newborns at risk for hemolysis as determined by end-tidal carbon monoxide concentration (ETCOc); and comparison of the Coombs’ test with ETCOc for detecting significant jaundice. J Perinatol 2002; 22: 341–7.CrossRefGoogle ScholarPubMed
Tidmarsh, GF, Wong, RJ, Stevenson, DK. End-tidal carbon monoxide and hemolysis. J Perinatol 2014; 34: 577–81.CrossRefGoogle ScholarPubMed
Gartner, LM, Snyder, RN, Chabon, RS, Bernstein, J. Kernicterus: high incidence in premature infants with low serum bilirubin concentrations. Pediatrics 1970; 45: 906–17.Google ScholarPubMed
Morris, BH, Oh, W, Tyson, JE, et al. Aggressive vs. conservative phototherapy for infants with extremely low birth weight. N Engl J Med 2008; 359: 1885–96.CrossRefGoogle ScholarPubMed
Tyson, JE, Pedroza, C, Langer, J, et al. Does aggressive phototherapy increase mortality while decreasing profound impairment among the smallest and sickest newborns? J Perinatol 2012; 32: 677–84.CrossRefGoogle ScholarPubMed
Vreman, HJ, Knauer, Y, Wong, RJ, et al. Dermal carbon monoxide excretion in neonatal rats during light exposure. Pediatr Res 2009; 66: 66–9.CrossRefGoogle ScholarPubMed
Lamola, AA, Bhutani, VK, Wong, RJ, et al. The effect of hematocrit on the efficacy of phototherapy for neonatal jaundice. Pediatr Res 2013; 74:5460.CrossRefGoogle ScholarPubMed
Ebbesen, F. Recurrence of kernicterus in term and near-term infants in Denmark. Acta Paediatr 2000; 89: 1213–7.CrossRefGoogle ScholarPubMed
Ebbesen, F, Andersson, C, Verder, H, et al. Extreme hyperbilirubinaemia in term and near-term infants in Denmark. Acta Paediatr 2005; 94:5964.CrossRefGoogle ScholarPubMed
Maisels, MJ, Newman, TB. Kernicterus in otherwise healthy, breast-fed term newborns. Pediatrics 1995; 96: 730–3.Google ScholarPubMed
Newman, TB, Maisels, MJ. Less aggressive treatment of neonatal jaundice and reports of kernicterus: lessons about practice guidelines. Pediatrics 2000; 105: 242–5.Google ScholarPubMed
Perlman, JM, Rogers, BB, Burns, D. Kernicteric findings at autopsy in two sick near term infants. Pediatrics 1997; 99: 612–5.CrossRefGoogle ScholarPubMed
Fischer, AF, Nakamura, H, Uetani, Y, et al. Comparison of bilirubin production in Japanese and Caucasian infants. J Pediatr Gastroenterol Nutr 1988; 7: 27–9.CrossRefGoogle ScholarPubMed
Stevenson, DK, Vreman, HJ, Oh, W, et al. Bilirubin production in healthy term infants as measured by carbon monoxide in breath. Clin Chem 1994; 40: 1934–9.Google ScholarPubMed
Wood, JL. Plethora in the newborn infant associated with cyanosis and convulsions. J Pediatr 1952; 54: 143–51.Google ScholarPubMed
Michael, A, Mauer, AM. Maternal-fetal transfusion as a cause of plethora in the neonatal period. Pediatrics 1961; 28: 458–61.Google ScholarPubMed
Minkowski, A. Acute cardiac failure in connection with neonatal polycythemia in monovular twins and single newborn infants. Biol Neonate 1962; 4: 6174.CrossRefGoogle Scholar
Danks, DM, Stevens, LH. Neonatal respiratory distress associated with a high haematocrit reading. Lancet 1964; 2: 499500.CrossRefGoogle ScholarPubMed
Gross, CP, Hathaway, WE, McCaughey, HR. Hyperviscosity in the neonate. J Pediatr 1973; 82: 1004–12.CrossRefGoogle ScholarPubMed
Oh, W, Oh, MA, Lind, J. Renal function and blood volume in newborn infants related to placental transfusion. Acta Paediatr Scand 1966; 56: 197210.CrossRefGoogle Scholar
Nowicki, P, Oh, W, Yao, A, et al. Effect of polycythemia on gastrointestinal blood flow and oxygenation in piglets. Am J Physiol 1984; 247: G220–5.Google ScholarPubMed
Surjadhana, A, Rouleau, J, Boerboom, L, et al. Myocardial blood flow and its distribution in anesthetized polycythemic dogs. Circ Res 1978; 43: 619–31.CrossRefGoogle ScholarPubMed
Rosenkrantz, TS, Oh, W. Cerebral blood flow velocity in infants with polycythemia and hyperviscosity: effects of partial exchange transfusion with plasmanate. J Pediatr 1982; 101: 94–8.CrossRefGoogle ScholarPubMed
Fouron, JC, Hebert, F. The circulatory effects of hematocrit variations in normovolemic newborn lambs. J Pediatr 1973; 82: 9951003.CrossRefGoogle ScholarPubMed
Gatti, RA, Muster, AJ, Cole, RB, et al. Neonatal polycythemia with transient cyanosis and cardiorespiratory abnormalities. J Pediatr 1966; 69: 1063–72.CrossRefGoogle ScholarPubMed
Kotagal, VR, Keenan, WJ, Reuter, JH, et al. Regional blood flow in polycythemia and hypervolemia. Pediatr Res 1977; 11: 394.CrossRefGoogle Scholar
Kotagal, VR, Kleinman, LI. Effect of acute polycythemia on newborn renal hemodynamics and function. Pediatr Res 1982; 16: 148–51.CrossRefGoogle ScholarPubMed
Bergqvist, G, Zetterman, R. Blood viscosity and peripheral circulation in newborn infants. Acta Paediatr Scand 1974; 63: 865–8.Google ScholarPubMed
Linderkamp, O, Strohhacker, I, Versmold, HT, et al. Peripheral circulation in the newborn: interaction of peripheral blood flow, blood pressure, blood volume and blood viscosity. J Pediatr 1978; 129: 7381.Google ScholarPubMed
Gustafsson, L, Applegren, L, Myrvold, HE. The effect of polycythemia on blood flow in working and non-working skeletal muscle. Acta Physiol Scand 1980; 109: 143–8.CrossRefGoogle ScholarPubMed
Waffarn, F, Cole, CD, Huxtable, RF. Effects of polycythemia on cutaneous blood flow and transcutaneous PO2 and PCO2 in the hyperviscosity neonate. Pediatrics 1984; 74: 389–94.Google ScholarPubMed
Jones, MD, Traystman, RJ, Simmons, MA, et al. Effects of changes in arterial O2 content on cerebral blood flow in the lamb. Am J Physiol 1981; 240: H209–15.Google ScholarPubMed
Rosenkrantz, TS, Stonestreet, BS, Hansen, NB, et al. Cerebral blood flow in the newborn lamb with polycythemia and hyperviscosity. J Pediatr 1984; 104: 276–80.CrossRefGoogle ScholarPubMed
Rosenkrantz, TS, Philipps, AF, Skrzypczak, PS, et al. Cerebral metabolism in the newborn lamb with polycythemia. Pediatr Res 1988; 23: 329–33.CrossRefGoogle ScholarPubMed
Oh, W, Wallgren, G, Hanson, JS, et al. The effects of placental transfusion on respiratory mechanics of normal term newborn infants. Pediatrics 1967; 40: 612.Google ScholarPubMed
Hakanson, DO, Oh, W. Necrotizing enterocolitis and hyperviscosity in the newborn infant. J Pediatr 1977; 90: 458–61.CrossRefGoogle ScholarPubMed
LeBlanc, MH, D’Cruz, C, Pate, K. Necrotizing enterocolitis can be caused by polycythemic hyperviscosity in the newborn dog. J Pediatr 1984; 105: 804–9.CrossRefGoogle ScholarPubMed
Black, VD, Rumack, CM, Lubchenco, LO, et al. Gastrointestinal injury in polycythemic term infants. Pediatrics 1985; 76: 225–31.Google ScholarPubMed
Herson, VC, Raye, JR, Rowe, JC, et al. Acute renal failure associated with polycythemia in a neonate. J Pediatr 1982; 100: 137–9.CrossRefGoogle Scholar
Leake, RD, Chan, GM, Zakauddin, S, et al. Glucose perturbation in experimental hyperviscosity. Pediatr Res 1980; 14: 1320–3.CrossRefGoogle ScholarPubMed
Creswell, JS, Warburton, D, Susa, JB, et al. Hyperviscosity in the newborn lamb produces perturbation in glucose homeostasis. Pediatrics 1981; 15: 1348–50.Google Scholar
Rivers, RPA. Coagulation changes associated with a high haematocrit in the newborn infant. Acta Paediatr Scand 1975; 64: 449–56.CrossRefGoogle ScholarPubMed
Katz, J, Rodriquez, E, Mandani, G, et al. Normal coagulation findings, thrombocytopenia, and peripheral hemoconcentration in neonatal polycythemia. J Pediatr 1982; 101: 99102.CrossRefGoogle ScholarPubMed
Henriksson, P. Hyperviscosity of the blood and haemostasis in the newborn infant. Acta Paediatr Scand 1979; 68: 701–4.CrossRefGoogle ScholarPubMed
Shaikh, BS, Erslev, AJ. Thrombocytopenia in polycythemic mice. J Lab Clin Med 1978; 92: 765–71.Google ScholarPubMed
Jackson, CW, Smith, PJ, Edwards, CC, et al. Relationship between packed cell volume platelets and platelet survival in red blood cell–hypertransfused mice. J Lab Clin Med 1979; 94: 500–9.Google ScholarPubMed
Meberg, A. Transitory thrombocytopenia in newborn mice after intrauterine hypoxia. Pediatr Res 1980; 14: 1071–3.CrossRefGoogle ScholarPubMed
Rosenkrantz, TS, Oh, W. Neonatal polycythemia and hyperviscosity. In Milunsky, A, Friedman, EA, Gluck, L, eds., Advances in Perinatal Medicine, vol. 5. New York: Plenum, 1986: 93123.CrossRefGoogle Scholar
Cornbleet, J. Spurious results from automated hematology cell counters. Lab Med 1983; 14: 509–14.CrossRefGoogle Scholar
Penn, D, Williams, PR, Dutcher, TF, et al. Comparison of hematocrit determination by microhematocrit electronic particle counter. Am J Clin Pathol 1979; 72: 71–4.CrossRefGoogle ScholarPubMed
Pearson, TC, Guthrie, L. Trapped plasma in the microhematocrit. Am J Clin Pathol 1982; 78: 770–2.CrossRefGoogle ScholarPubMed
Oh, W, Lind, J. Venous and capillary hematocrit in newborn infants and placental transfusion. Acta Paediatr Scand 1966; 55: 3840.CrossRefGoogle ScholarPubMed
Shohat, M, Reisner, SH, Mimouni, F, et al. Neonatal polycythemia II. Definition related to time of sampling. Pediatrics 1984; 73: 1113.Google ScholarPubMed
Wirth, FH, Goldberg, KE, Lubchenco, LO. Neonatal hyperviscosity. I. Incidence. Pediatrics 1979; 63: 833–6.Google ScholarPubMed
Stevens, K, Wirth, FH. Incidence of neonatal hyperviscosity at sea level. J Pediatr 1980; 97: 118–19.CrossRefGoogle ScholarPubMed
Ghavam, S, Batra, D, Mercer, J, et al. Effects of placental transfusion in extremely low birthweight infants: meta-analysis of long- and short-term outcomes. Transfusion 2014; 54(4): 1192–8.CrossRefGoogle ScholarPubMed
Christensen, R, Baer, V, Gerday, E, et al. Whole blood viscosity in the neonate: effects of gestational age, hematocrit, mean corpuscular volume, and umbilical cord milking. J Perinatol 2014; 34(1): 1621.CrossRefGoogle ScholarPubMed
Hutton, EK, Hassan, ES: Late vs early clamping of the umbilical cord in full-term neonates: systematic review and meta-analysis of controlled trials. JAMA. 2007; 297(11): 1241–52.CrossRefGoogle ScholarPubMed
Oh, W, Blankenship, W, Lind, J. Further study of neonatal blood volume in relation to placental transfusion. Ann Paediatr 1966; 207: 147–59.Google Scholar
Yao, AC, Moinian, M, Lind, J. Distribution of blood between infants and placenta after birth. Lancet 1969; 2: 871–3.Google ScholarPubMed
Linderkamp, O. Placental transfusion: determinants and effects. Clin Perinatol 1981; 9: 559–92.Google ScholarPubMed
Saigal, S, Usher, RH. Symptomatic neonatal plethora. Biol Neonate 1977; 32: 6272.CrossRefGoogle ScholarPubMed
Philip, AGS, Yee, AB, Rosy, M, et al. Placental transfusion as an intrauterine phenomenon in deliveries complicated by fetal distress. BMJ 1969; 2: 1113.CrossRefGoogle Scholar
Flod, NE, Ackerman, BD. Perinatal asphyxia and residual placenta blood volume. Acta Paediatr Scand 1971; 60: 433–6.CrossRefGoogle ScholarPubMed
Yao, AC, Lind, J. Effect of gravity on placental transfusion. Lancet 1969; 2: 505–8.Google ScholarPubMed
Oh, W, Omori, K, Emmanouilides, GC, et al. Placenta to lamb fetus transfusion in utero during acute hypoxia. Am J Obstet Gynecol 1975; 122: 316–21.CrossRefGoogle Scholar
Sacks, MO. Occurrence of anemia and polycythemia in phenotypically dissimilar single ovum human twins. Pediatrics 1959; 24: 604–8.Google ScholarPubMed
Schwartz, JL, Maniscalco, WM, Lane, AT, et al. Twin transfusion syndrome causing cutaneous erythropoiesis. Pediatrics 1984; 74: 527–9.Google ScholarPubMed
Humbert, JR, Abelson, H, Hathaway, WE, et al. Polycythemia in small for gestational age infants. J Pediatr 1969; 75: 812–19.CrossRefGoogle ScholarPubMed
Widness, JA, Garcia, JA, Oh, W, et al. Cord serum erythropoietin values and disappearance rates after birth in polycythemic newborns. Pediatr Res 1982; 16: 218A.Google Scholar
Philipps, AF, Dubin, JW, Matty, PJ, et al. Arterial hypoxemia and hyperinsulinemia in the chronically hyperglycemic fetal lamb. Pediatr Res 1982; 16: 653–8.CrossRefGoogle Scholar
Wells, RE, Penton, R, Merrill, EW. Measurements of viscosity of biologic fluids by core plate viscometer. J Lab Clin Med 1961; 57: 646–56.Google Scholar
Linderkamp, O, Versmold, HT, Riegel, KP, et al. Contributions of red cells and plasma to blood viscosity in preterm and full-term infants and adults. Pediatrics 1984; 74: 4551.Google ScholarPubMed
Poiseuille, JLM. Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diameters. C R Acad Sci 1840; 11: 9611041.Google Scholar
van der Elst, CW, Malan, AF, de Heese, HV. Blood viscosity in modern medicine. S Afr Med J 1977; 52: 526–8.Google ScholarPubMed
Dintenfass, L. Blood viscosity, internal fluidity of the red cell, dynamic coagulation and the critical capillary radius as factors in the physiology and pathology of circulation and microcirculation. Med J Aust 1968; 1: 688–96.Google ScholarPubMed
Wells, RE, Merrill, EW. Influence of flow properties of blood upon viscosity-hematocrit relationships. J Clin Invest 1962; 41: 1591–8.CrossRefGoogle ScholarPubMed
Bergqvist, G. Viscosity of the blood in the newborn infants. Acta Paediatr Scand 1974; 63: 858–64.Google ScholarPubMed
Wells, R. Syndromes of hyperviscosity. N Engl J Med 1970; 283: 183–6.CrossRefGoogle ScholarPubMed
Smith, CM, Prasler, WJ, Tukey, DP, et al. Fetal red cells are more deformable than adult red cells. Blood 1981; 58: 35a.Google Scholar
Lichtman, MA. Cellular deformability during maturation of the myeloblast: possible role in marrow egress. N Engl J Med 1970; 283: 943–8.CrossRefGoogle ScholarPubMed
Lichtman, MA. Rheology of leukocytes, leukocyte suspensions, and blood in leukemia. J Clin Invest 1973; 52: 350.CrossRefGoogle ScholarPubMed
Miller, ME. Developmental maturation of human neutrophil motility and its relationship to membrane deformability. In Bellanti, UA, Dayton, DH, eds., The Phagocytic Cell in Host Resistance. New York: Raven Press, 1975: 295.Google Scholar
Burton, AC. Role of geometry, of size and shape, in the microcirculation. Fed Proc 1966; 25: 1753–60.Google ScholarPubMed
Fahraeus, R, Lindqvist, T. The viscosity of the blood in narrow capillary tubes. Am J Physiol 1931; 96: 561–8.Google Scholar
Goldstein, M, Stonestreet, BS, Brann, BS, et al. Cerebral cortical blood flow and oxygen metabolism in normocythemic hyperviscous newborn piglets. Pediatr Res 1988; 24: 486–9.CrossRefGoogle ScholarPubMed
Massik, J, Tang, YL, Hudak, ML, et al. Effect of hematocrit on cerebral blood flow with induced polycythemia. J Appl Physiol 1987; 62: 1090–6.Google ScholarPubMed
Rosenkrantz, TS, Philipps, AF, Knox, I, et al. Regulation of cerebral glucose metabolism in normal and polycythemic newborns. J Cereb Blood Flow Metab 1992; 12: 856–65.CrossRefGoogle Scholar
LeBlanc, MH, Kotagal, UR, Kleinman, LI. Physiological effects of hypervolemic polycythemia in newborn dogs. J Appl Physiol 1982; 53: 865–72.Google ScholarPubMed
Murphy, DJ, Reller, MD, Meyer, RA, et al. Effects of neonatal polycythemia and partial exchange transfusion on cardiac function: an echocardiographic study. Pediatrics 1985; 76: 909–13.Google Scholar
Brashear, RE. Effects of acute plasma for blood exchange in experimental polycythemia. Respiration 1980; 40: 297306.CrossRefGoogle ScholarPubMed
Bada, HS, Korones, SB, Pourcyrous, M, et al. Asymptomatic syndrome of polycythemic hyperviscosity: effect of partial plasma exchange transfusion. J Pediatr 1992; 120: 579–85.CrossRefGoogle ScholarPubMed
Ramamurthy, RS, Brans, YW. Neonatal polycythemia. I. Criteria for diagnosis and treatment. Pediatrics 1981; 68: 168–74.Google ScholarPubMed
Goldberg, K, Wirth, FH, Hathaway, WE, et al. Neonatal hyperviscosity. II. Effect of partial plasma exchange transfusion. Pediatrics 1982; 69: 419–25.Google ScholarPubMed
van der Elst, CW, Molteno, CD, Malan, AF, et al. The management of polycythemia in the newborn infant. Early Hum Dev 1980; 4: 393403.CrossRefGoogle Scholar
Høst, A, Ulrich, M. Late prognosis in untreated neonatal polycythemia with minor or no symptoms. Acta Paediatr Scand 1982; 71: 629–33.CrossRefGoogle ScholarPubMed
Black, VD, Lubchenco, LD, Luckey, DW, et al. Developmental and neurologic sequelae of neonatal hyperviscosity syndrome. Pediatrics 1982; 69: 426–31.Google ScholarPubMed
Hakanson, DO, Oh, W. Hyperviscosity in the small-for-gestationa1 age infant. Biol Neonate 1980; 37: 109–12.CrossRefGoogle ScholarPubMed
Black, VD, Lubchenco, LO, Koops, BL, et al. Neonatal hyperviscosity: randomized study of effect of partial plasma exchange on long-term outcome. Pediatrics 1985; 75: 1048–53.Google ScholarPubMed
Black, VD, Camp, BW, Lubchenco, LO, et al. Neonatal hyperviscosity is associated with lower achievement and IQ scores at school age. Pediatr Res 1988; 23: 442A.Google Scholar
Dempsey, EM, Barrington, K. Short and long term outomes following partial exchange transfusion in the polycythemic newborn: a systematic review. Arch Dis Child Fetal Neonatal Ed 2006; 91: F26.CrossRefGoogle Scholar
American Academy of Pediatrics Committee on the Fetus and Newborn. Routine evaluation of blood pressure, hematocrit and glucose in newborns. Pediatrics 1993; 92: 474–6.PubMed
Rosenkrantz, TS. Polycythemia and hyperviscosity in the newborn. Semin Thromb Hemost 2003; 29: 515–27.Google ScholarPubMed
Bowman, JM, Pollock, JM, Penston, LE. Fetomaternal transplacental hemorrhage during pregnancy and after delivery. Vox Sang 1986; 51: 117–21.CrossRefGoogle ScholarPubMed
Scott, JR, Warenski, JC. Tests to detect and quantitate fetal maternal bleeding. Clin Obstet Gynecol 1982; 25: 277.CrossRefGoogle Scholar
Sebring, ES, Polesky, HF. Fetomaternal hemorrhage: Incidence, risk factors, time of occurrence and clinical effects. Transfusion 1990; 30: 344–57.CrossRefGoogle ScholarPubMed
Pollack, W, Ascari, WQ,