Skip to main content Accessibility help
Hostname: page-component-99c86f546-4hcbs Total loading time: 5.456 Render date: 2021-12-02T00:51:11.033Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Section 2 - Pregnancy, Labor, and Delivery Complications Causing Brain Injury

Published online by Cambridge University Press:  13 December 2017

David K. Stevenson
Stanford University, California
William E. Benitz
Stanford University, California
Philip Sunshine
Stanford University, California
Susan R. Hintz
Stanford University, California
Maurice L. Druzin
Stanford University, California
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


World Health Organization. Prevention of perinatal morbidity. In Public Health Papers 42. Geneva: WHO, 1969.PubMed
Nelson, KB, Ellenberg, JH. Antecedents of cerebral palsy: multivariate analysis of risk. N Engl J Med 1986; 315: 81–6.CrossRefGoogle Scholar
Martin, JA, Hamilton, BE, Osterman, MJK, et al. Births: Final Data for 2013. National Vital Statistic Reports, vol. 64, no. 1. Hyattsvill, MD: National Center for Health Statistics, 2015.Google Scholar
Spong, CY. Prediction and prevention of recurrent spontaneous preterm birth. Am J Obstet Gynecol 2007; 110: 404–15.Google ScholarPubMed
Cooper, RK, Goldenberg, RL, Creasy, RK, et al. A multicenter study of preterm birth weight and gestational age specific mortality. Am J Obstet Gynecol 1993; 168: 7884.CrossRefGoogle Scholar
Ferrara, TB, Hoekstra, RE, Couser, RS, et al. Survival and follow-up of infants born at 23–26 weeks’ gestational age: effects of surfactant therapy. J Pediatr 1994; 124: 119–24.CrossRefGoogle Scholar
Hack, M, Fanaroff, AA. Outcomes of children of extremely low birth weight and gestational age in the 1990s. Early Hum Dev 1999; 53: 193218.CrossRefGoogle Scholar
Gunn, AJ, Quaedackers, JS, Guan, J, et al. The premature fetus: not as defenseless as we thought, but still paradoxically vulnerable? Dev Neurosci 2001; 23: 175–9.CrossRefGoogle ScholarPubMed
Fedrick, J, Anderson, ABM. Factors associated with spontaneous preterm birth. Br J Obstet Gynaecol 1976; 83: 342–50.CrossRefGoogle Scholar
US Department of Health and Human Services. Report of the Secretary’s Task Force on Black and Minority Health (Publication 0-487-637 [QL3]), vol. 6: Infant Mortality and Low Birth Weight. Hyattsville, MD: National Center for Health Statistics, 1985.
Bakketeig, LS, Hoffman, HJ. Epidemiology of preterm birth: results from longitudinal study of births in Norway. In Elder, MG, Dendricks, CH, eds., Preterm Labour. London: Butterworths, 1981: 1746.Google Scholar
Abrams, B, Newman, V, Key, T, et al. Maternal weight gain and preterm delivery. Obstet Gynecol 1989; 74: 577–83.Google ScholarPubMed
MacGregor, SW, Keith, LG, Chasnoff, IJ, et al. Cocaine use during pregnancy: adverse perinatal outcome. Am J Obstet Gynecol 1987; 57: 686–90.Google Scholar
Shiono, PH, Klebanoff, MA, Rhoads, GG. Smoking and drinking during pregnancy. JAMA 1986; 255: 82–4.CrossRefGoogle ScholarPubMed
Keirse, M, Rush, R, Anderson, A, et al. Risk of pre-term delivery in patients with previous preterm delivery and/or abortion. Br J Obstet Gynaecol 1978; 85: 81–5.CrossRefGoogle ScholarPubMed
Linn, S, Schoenbaum, S, Monson, R, et al. The relationship between induced abortion and outcome of subsequent pregnancies. Am J Obstet Gynecol 1983; 146: 136–40.CrossRefGoogle ScholarPubMed
Wilson-Costello, D, Friedman, H, Minich, N, et al. Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics 2005; 115: 9971003.CrossRefGoogle ScholarPubMed
Back, SA, Rivkees, SA. Emerging concepts in periventricular white matter injury. Semin Perinatol 2004; 28: 405–14.CrossRefGoogle ScholarPubMed
Leviton, A, Paneth, N. White matter damage in preterm newborns: an epidemiologic perspective. Early Hum Dev 1990; 24: 122.CrossRefGoogle Scholar
Barrett, RD, Bennet, L, Davidson, J, et al. Destruction and reconstruction: hypoxia and the developing brain. Birth Defects Res C Embryo Today 2007; 81: 163–76.CrossRefGoogle ScholarPubMed
Meis, PJ, MacErnest, J, Moore, ML. Causes of low birth weight births in public and private patients. Am J Obstet Gynecol 1987; 156: 1165–8.CrossRefGoogle ScholarPubMed
Bobbitt, JR, Ledger, WJ. Unrecognized amnionitis and prematurity: a preliminary report. J Reprod Med 1977; 19: 812.Google Scholar
Bobbitt, JR, Ledger, WJ. Amniotic fluid analysis: its role in maternal and neonatal infection. Obstet Gynecol 1978; 51: 5662.Google Scholar
Leigh, J, Garite, TJM. Amnionitis and the management of premature labor. Obstet Gynecol 1986; 67: 500–6.Google Scholar
Gravett, MG, Hummel, D, Eschenbach, DA, et al. Preterm labor associated with subclinical amniotic infection and with bacterial vaginosis. Obstet Gynecol 1986; 67: 229–37.CrossRefGoogle ScholarPubMed
Hameed, C, Teiane, N, Verma, UL, et al. Silent chorioamnionitis as a cause of preterm labor refractory to tocolytic therapy. Am J Obstet Gynecol 1984; 149: 726–30.CrossRefGoogle ScholarPubMed
Duff, P, Kopelman, JN. Subclinical intraamniotic infection in asymptomatic patients with refractory preterm labor. Obstet Gynecol 1987; 69: 756–69.Google Scholar
Kaltreider, DF, Kohl, S. Epidemiology of preterm delivery. Clin Obstet Gynecol 1980; 23: 1731.CrossRefGoogle ScholarPubMed
Taylor, J, Garite, TJ. Premature rupture of membranes before fetal viability. Obstet Gynecol 1984; 64: 615–20.Google ScholarPubMed
Mead, PB. Management of the patient with premature rupture of the membranes. Clin Perinatol 1980; 7: 243–55.Google ScholarPubMed
Kennedy, KA, Clark, SL. Premature rupture of the membranes: management controversies. Clin Perinatol 1992; 19: 385–97.Google ScholarPubMed
Artal, JP, Sokol, RJ, Newman, M, et al. The mechanical properties of prematurely and non-prematurely ruptured membranes. Am J Obstet Gynecol 1976; 125: 655–9.CrossRefGoogle ScholarPubMed
Lavery, JP, Miller, CE, Knight, RD. The effect of labor on the rheologic response of chorioamniotic membranes. Obstet Gynecol 1982; 60: 8791.Google ScholarPubMed
Naeye, RL. Factors that predispose to premature rupture of the fetal membranes. Obstet Gynecol 1982; 60: 93–8.Google ScholarPubMed
Lonky, NN, Hayashi, RH. A proposed mechanism for premature rupture of membranes. Obstet Gynecol Surv 1988; 43: 22–8.CrossRefGoogle ScholarPubMed
Minkoff, H, Grunebaum, AN, Schwarz, RH, et al. Risk factors for prematurity and premature rupture of membranes: a prospective study of vaginal flora in pregnancy. Am J Obstet Gynecol 1984; 150: 965–72.CrossRefGoogle ScholarPubMed
Iams, JD, McGregor, JA. Cervicovaginal microflora and pregnancy outcome: results of a double blind, placebo-controlled trial of erythromycin treatment. Am J Obstet Gynecol 1990; 163: 1580–91.Google Scholar
Garite, TJ, Freeman, RK, Linzy, EM, et al. Prospective randomized study of corticosteroids in the management of premature rupture of membranes and the premature gestation. Am J Obstet Gynecol 1981; 141: 508–15.CrossRefGoogle ScholarPubMed
Gibbs, RS, Blanco, JD, St Clair, PJ, et al. Quantitative bacteriology of amniotic fluid from patients with clinical intraamniotic infection at term. J Infect Dis 1982; 145: 18.CrossRefGoogle ScholarPubMed
Yoder, PR, Gibbs, RS, Blanco, JD, et al. A prospective controlled study of maternal and perinatal outcome after intra-amniotic infection at term. Am J Obstet Gynecol 1983; 145: 695701.CrossRefGoogle ScholarPubMed
Garite, TJ, Freeman, RK. Chorioamnionitis in the preterm gestation. Obstet Gynecol 1982; 54: 539–45.Google Scholar
Gabbe, SG, Ettinger, BB, Freeman, RK, et al. Umbilical cord compression associated with amniotomy: laboratory observations. Am J Obstet Gynecol 1976; 126: 353–6.CrossRefGoogle ScholarPubMed
Wilson, JC, Levy, DC, Wilds, PL. Premature rupture of membranes prior to term: consquences of non-intervention. Obstet Gynecol 1982; 60: 601–6.Google Scholar
Morretti, M, Sibai, BM. Maternal and perinatal outcome of expectant management of premature rupture of membranes in the mid-trimester. Am J Obstet Gynecol 1988; 159: 390–6.Google Scholar
Major, CA, Kitzmiller, JL. Perinatal survival with expectant management of mid-trimester rupture of membranes. Am J Obstet Gynecol 1990; 163: 838–44.CrossRefGoogle Scholar
Lindner, W, Pohlandt, F, Grab, D, et al. Acute respiratory failure and short-term outcome after premature rupture of the membranes and oligohydramnios before 20 weeks of gestation. J Pediatr 2002; 140(2): 177182.CrossRefGoogle ScholarPubMed
Resch, B, Resch, E, Maurer-Fellbaum, U, et al. The whole spectrum of cystic periventricular leukomalacia of the preterm infant: results from a large consecutive case series. Childs Nerv Syst 2015; 31(9):1527–32.CrossRefGoogle ScholarPubMed
Ekin, A, Gezer, C, Taner, CY, et al. Risk factors and perinatal outcomes associated with latency in preterm premature rupture of membranes between 24 and 34 weeks of gestation. Arch Gynecol Obstet 2014; 290: 449–55.CrossRefGoogle ScholarPubMed
Iams, JD. Prevention of preterm parturition. N Engl J Med 2014; 370: 254–61.CrossRefGoogle ScholarPubMed
Zemlyn, S. The length of the uterine cervix and its significance. J Clin Ultrasound 1981; 9: 267–9.CrossRefGoogle ScholarPubMed
Rush, RLO. Incidence of preterm delivery in patients with previous preterm delivery and/or abortion. S Afr Med J 1979; 56: 1085–7.Google ScholarPubMed
Rust, OA, Atlas, RO, Jones, KJ, et al. A randomized trial of cerclage versus no cerclage among patients with ultrasonographically detected second-trimester preterm dilatation of the internal os. Am J Obstet Gynecol 2000; 183: 830–5.CrossRefGoogle ScholarPubMed
Berghella, V, Odibo, AO, Tolosa, JE. Cerclage for prevention of preterm birth in women with a short cervix found on transvaginal ultrasound examination: a randomized trial. Am J Obstet Gynecol 2004; 191: 1311–17.CrossRefGoogle ScholarPubMed
To, MS, Alfirevic, Z, Heath, VCF, et al. Cervical cerclage for prevention of preterm delivery in women with short cervix: randomized controlled trial. Lancet 2004; 363: 1849–53.CrossRefGoogle Scholar
Althusius, SM, Dekker, GA, Hummel, P, et al. Final results of the cervical incompetence prevention randomized cerclage trial (CIPRACT): therapeutic cerclage with bed rest versus bed rest alone. Am J Obstet Gynecol 2001; 185: 1106–12.Google Scholar
Owen, J, Hankins, G, Iams, JD, et al. Multicenter randomized trial of cerclage for preterm birth prevention in high-risk women with shortened midtrimester cervical length. Am J Obstet Gynecol 2009; 201(375): e18.Google ScholarPubMed
Meis, PJ, Klebanoff, M, Thom, E, et al. Prevention of recurrent preterm delivery by 17α-hydroxyprogesterone caproate. N Eng J Med 2003; 384: 2379–85.Google Scholar
Althuisius, SM, Dekker, GA, Hummel, P, et al. Cervical incompetence prevention randomized cerclage trial: emergency cerclage with bed rest versus bed rest alone. Am J Obstet Gynecol 2003; 189: 907–10.CrossRefGoogle ScholarPubMed
Hassan, SS, Romero, R, Vidyadhari, D, et al. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound Obstet Gynecol 2011; 38: 1831.CrossRefGoogle ScholarPubMed
Herbst, AL, Hubby, MM, Blough, RR, et al. A comparison of pregnancy experiment in DES-exposed and DES-unexposed daughters. J Reprod Med 1980; 24: 62–9.Google Scholar
Kaufman, RH, Noller, K, Adam, E, et al. Upper genital tract abnormalities and pregnancy outcome in diethylstilbestrol-exposed progeny. Am J Obstet Gynecol 1985; 148: 973–84.Google ScholarPubMed
Iams, JD, Goldenberg, RL, Mercer, BM, et al. The preterm prediction study: recurrence risk of spontaneous preterm birth. Am J Obstet Gynecol 1998; 178: 1035–40.CrossRefGoogle ScholarPubMed
Papiernik, E, Kaminski, M. Multifactorial study of the risk of prematurity at 32 weeks of gestation. J Perinat Med 1974; 2: 30–6.CrossRefGoogle ScholarPubMed
Chung, C, Smith, R, Steinhoff, P, et al. Induced abortion and spontaneous fetal loss in subsequent pregnancies. Am J Public Health 1982; 72: 548–54.CrossRefGoogle ScholarPubMed
US Department of Health and Human Services, Public Health Service. Vital Statistics of the United States, 1982, vol. 1: Natality. Hyattsville, MD: Department of Health, 1986.
Neilson, JP, Verkuyl, DAA, Crowther, CA, et al. Preterm labor in twin pregnancies: prediction by cervical assessment. Obstet Gynecol 1988; 72: 719–23.Google ScholarPubMed
Society for Assisted Reproductive Technology. Clinic Summary Report: All SART Member Clinics. Available at
Elliot, JP. High order multiple gestations. Semin Perinatol 2005; 5: 305–11.Google Scholar
Dunietz, GL, Holzman, C, McKane, P, et al. Assisted reproductive technology and the risk of preterm birth among primiparas. Fertil Steril, 2015; 103(4): 974–9.CrossRefGoogle ScholarPubMed
Australian Institute of Health and Welfare National Perinatal Statistics Unit. Assisted Conception in Australia and New Zealand. Sydney: AIHW, 1992.PubMed
Williams, MA, Millendorf, R, Liererman, E, et al. Adverse infant outcomes associated with first trimester vaginal bleeding. Obstet Gynecol 1991; 78: 14–8.Google ScholarPubMed
Roberts, G. Unclassified antepartum haemorrhage incidence and perinatal mortality in a community. J Obstet Gynaecol Br Commonwlth 1970; 77: 492–5.CrossRefGoogle Scholar
Peaceman, AM, Andrews, WW, Thorp, JM, et al. Fetal fibronectin as a predictor of preterm birth in patients with symptoms: a multicenter trial. Am J Obstet Gynecol 1997; 177: 1318.CrossRefGoogle ScholarPubMed
Iams, JD, Goldenberg, RL, Meis, PJ, et al. The length of the cervix and the risk of spontaneous preterm delivery. N Engl J Med 1996; 334: 567–72.CrossRefGoogle Scholar
Mercer, BM, Arheart, KL. Antimicrobial therapy in expectant management of preterm premature rupture of the membranes. Lancet 1995; 346: 1271–9.CrossRefGoogle ScholarPubMed
Mercer, BM, Miodovnik, M, Thurnau, GR, et al. Antibiotic therapy for reduction of infant morbidity after preterm premature rupture of the membranes: a randomized controlled trial. JAMA 1997; 278: 989–95.CrossRefGoogle ScholarPubMed
Usher, R. Changing mortality rates with perinatal intensive care and regionalization. Semin Perinatol 1977; 1: 309–19Google ScholarPubMed
Gortmaker, S, Sobol, A, Clark, C, et al. The survival of very low-birth weight infants by level of hospital of birth: a population study of perinatal systems in four states. Am J Obstet Gynecol 1985; 152: 517–24.CrossRefGoogle ScholarPubMed
Kitchen, W, Ford, G, Orgill, A, et al. Outcome in infants with birth weight 500–999 grams: a regional study of 1979 and 1980 births. J Pediatr 1984; 104: 921–7.CrossRefGoogle Scholar
Hadlock, FP, Harrist, RB, Carpenter, RJ, et al. Sonographic estimation of fetal weight: the value of fetal length in addition to head and abdominal measurements. Radiology 1984; 152: 497501.CrossRefGoogle Scholar
Seeds, JW, Cefalo, RL, Bowes, WA. Femur lengths in the estimation of fetal weight less than 1500 grams. Am J Obstet Gynecol 1984; 149: 233–5.CrossRefGoogle Scholar
National Institutes of Health. Consensus Statement: Effect of Antenatal Steroids for Fetal Maturation on Perinatal Outcomes. Bethesda, MD: NIH, 1994: 124.PubMed
American College of Obstetricians and Gynecologists. Antenatal corticosteroid therapy for fetal maturation. Committee Opinion No. 677. Obstet Gynecol 2016; 128: e187–94.PubMed
Rouse, D, Hirtz, DG, Thom, E, et al. A randomized controlled trial of magnesium sulfate for the prevention of cerebral palsy. N Engl J Med 2008; 359: 895905.CrossRefGoogle ScholarPubMed
Constantine, MM, Weiner, SJ. Effects of antenatal exposure to magnesium sulfate on neuroprotection and mortality in preterm infants: a meta-analysis. Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Obstet Gynecol 2009; 114: 354–64.Google Scholar
Little, WJ. On the influence of abnormal parturition, difficult labors, premature birth, and asphyxia neonatorum on the mental and physical condition of the child, especially in relation to deformities. Trans Obstet Soc Lond 1862; 2: 293344.Google Scholar
Freud, S. Die infantile Cerebrallähmung. Vienna: Hölder, 1897.Google Scholar
Blair, E, Stanley, FJ. Intrapartum asphyxia: a rare cause of cerebral palsy. J Pediatr 1988; 112: 515–19.CrossRefGoogle ScholarPubMed
Committee on Obstetrics, Maternal and Fetal Medicine. Fetal and neonatal neurologic injury. ACOG Technical Bulletin 163. ACOG, Washington, DC, 1992.PubMed
Naeye, RL, Peters, EC, Bartholomew, M, et al. Origins of cerebral palsy. Am J Dis Child 1989; 143: 1154–6.Google ScholarPubMed
Myers, RE, Myers, SE. Use of sedative, analgesic and anesthetic drugs during labor and delivery: bane or boon. Am J Obstet Gynecol 1979; 133: 83108.CrossRefGoogle ScholarPubMed
Low, JA, Gallbraith, RS, Muir, DW, et al. Factors associated with motor and cognitive deficits in children after intrapartum fetal hypoxia. Am J Obstet Gynecol 1984; 148: 533–9.CrossRefGoogle ScholarPubMed
Bowes, WA, Gabbe, S, Bowes, C. Fetal heart rate monitoring in premature infants weighing 1500 grams or less. Am J Obstet Gynecol 1980; 137: 791–6.CrossRefGoogle ScholarPubMed
Westgren, LMR, Malcus, P, Sveningsen, NW. Intrauterine asphyxia and longterm outcome in preterm fetuses. Obstet Gynecol 1986; 67: 512–16.Google Scholar
Low, JA, Killen, H, Derrick, J. The prediction of asphyxia in preterm pregnancies. Am J Obstet Gynecol 2001; 186: 279–82.Google ScholarPubMed
Low, JA, Killen, H, Derrick, J. Antepartum fetal asphyxia in the preterm pregnancy. Am J Obstet Gynecol 2002; 188: 461–5.Google ScholarPubMed
Low, JA. Determining the contribution of asphyxia to brain damage in the neonate. J Obstet Gynaecol Res 2004; 30: 276–86.CrossRefGoogle ScholarPubMed
Low, JA, Boston, RW, Pancham, FR. Fetal asphyxia during the intrapartum period in intrauterine growth retarded infants. Am J Obstet Gynecol 1972; 113: 351–7.CrossRefGoogle ScholarPubMed
Westgran, LMR, Malcus, P, Svenningsen, NW. Intrauterine asphyxia and long-term outcome in preterm fetuses. Obstet Gynecol 1986; 67: 512–16.Google Scholar
Nageotte, MP, Freeman, RK, Garite, TJ, et al. Prophylactic intrapartum amnioinfusion in patients with preterm premature rupture of membranes. Am J Obstet Gynecol 1985; 153: 557–62.CrossRefGoogle ScholarPubMed
Goldenberg, RL, Huddlestone, JF, Nelson, KG. Apgar scores and umbilical arterial pH in preterm newborn infants. Am J Obstet Gynecol 1984; 149: 651–4.CrossRefGoogle ScholarPubMed
Olshan, AF, Shy, KK, Luthy, DA. Cesarean birth and neonatal mortality in very low birth weight infants. Obstet Gynecol 1984; 64: 267–70.Google ScholarPubMed
Yu, VYH, Bajak, B, Cutting, D, et al. Effect of mode of delivery on outcome of very low birth weight infants. Br J Obstet Gynaecol 1984; 91: 633–9.CrossRefGoogle Scholar
Kithen, W, Ford, GW, Doyle, LW, et al. Cesarean section or vaginal delivery at 24 to 28 weeks’ gestation: comparison of survival and neonatal and two year morbidity. Obstet Gynecol 1985; 66: 149–57.Google Scholar
Alfirevic, Z, Milan, SJ, Livio, S. Caesarean section versus vaginal delivery for preterm birth in singletons. Cochrane Database Syst Rev 2013; 9: CD000078.Google Scholar
Goldenberg, RL, Davis, RO. En caul delivery of the very premature infant. Am J Obstet Gynecol 1983; 145: 645–6.CrossRefGoogle Scholar
Hannah, ME, Hannah, WJ, Hewson, SA, et al. Planned caesarean section versus planned vaginal birth for breech presentation at term: a randomised multicentre trial. Lancet 2000; 356: 1375–83.CrossRefGoogle ScholarPubMed
Bergenhenegouwen, LA, Meertens, LJ, Schaaf, J, et al. Vaginal delivery versus caesarean section in preterm breech delivery: a systematic review. Eur J Obstet Gynecol Reprod Biol 2014; 172: 16.CrossRefGoogle ScholarPubMed
Richmond, JR, Morin, L, Benjamin, A. Extremely preterm vaginal breech delivery en caul. Obstet Gynecol 2002; 99: 1025–30.Google ScholarPubMed
Tucker Edmonds, B, McKenzie, F, Macheras, M, et al. Morbidity and mortality associated with mode of delivery for breech periviable deliveries. Am J Obstet Gynecol 2015; 213(1): e112.CrossRefGoogle ScholarPubMed
Tejani, N, Verma, U, Hameed, C, et al. Method and route of delivery in the low birth weight vertex presentation correlated with early periventricular/intraventricular hemorrhage. Obstet Gynecol 1987; 69: 14.Google ScholarPubMed
Schwarz, DB, Miodovnik, MK, Lavin, JP Jr. Neonatal outcome among low birth weight infants delivered spontaneously or by low forceps. Obstet Gynecol 1983; 62: 283–6.Google Scholar
Kriewall, TJ. Structural, mechanical, and material properties of fetal cranial bone. Am J Obstet Gynecol 1982; 143: 707–14.CrossRefGoogle ScholarPubMed
Lee, HC, Gould, JB. Survival advantage associated with cesarean delivery in very low birth weight vertex neonates. Obstet Gynecol 2006; 107: 97105.CrossRefGoogle ScholarPubMed
Lee, HC, Gould, JB. Survival rates and mode of delivery for vertex preterm neonates according to small- or appropriate-for-gestational-age status. Pediatrics 2007; 1118: e1836–44.Google Scholar
Druzin, ML. Atraumatic delivery in cases of malpresentation of the very low birth weight fetus at cesarean section: the splint technique. Am J Obstet Gynecol 1986; 154: 941–2.CrossRefGoogle ScholarPubMed
Barzilay, E, Mazaki-Tovi, S, Amikam, U, et al. Mode of delivery of twin gestation with very low birth weight: is vaginal delivery safe? Am J Obstet Gynecol 2015; 213:219.e18.CrossRefGoogle ScholarPubMed
Sentilhes, L, Oppenheimer, A, Bouhours, A-C, et al. Neonatal outcome of very preterm twins: policy of planned vaginal or cesarean delivery. Am J Obstet Gynecol 2015; 213(73): e17.CrossRefGoogle ScholarPubMed
Barret, JFR, Hannah, ME, Hutton, EK et al. A randomized trial of planned cesarean or vaginal delivery for twin pregnancy. N Engl J Med 2013; 369: 12951305.CrossRefGoogle Scholar
Rabe, H, Diaz-Rossello, JL, Duley, L, Dowswell, T. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst Rev 2012; 8: CD003248.Google Scholar
Rabe, H, Reynolds, G, Diaz-Rossello, J. A systematic review and meta-analysis of a brief delay in clamping the umbilical cord of preterm infants. Neonatology 2008; 93(2): 138144.CrossRefGoogle ScholarPubMed
Glass, HC, Costarino, AT, Stayer, SA, et al. Outcomes for extremely premature infants. Anesth Anag 2015; 120: 1337–51.Google ScholarPubMed
Martin, JA, Hamilton, BE, Osterman, MJ, et al. Births: final data for 2013. National Vital Statistics Reports: From the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System 2015; 64(1): 165.Google ScholarPubMed
March of Dimes. Peri Stats, 2008. Available at
Alberman, ED. Cerebral palsy in twins. Guy’s Hosp Rep 1964; 113: 285–95.Google ScholarPubMed
Goodman, R. Cerebral palsy in twins. Dev Med Child Neurol 1993; 35(4): 370.Google ScholarPubMed
Livinec, F, Ancel, PY, Marret, S, et al. Prenatal risk factors for cerebral palsy in very preterm singletons and twins. Obstet Gynecol 2005; 105(6): 1341–7.CrossRefGoogle ScholarPubMed
Petterson, B, Nelson, KB, Watson, L, Stanley, F. Twins, triplets, and cerebral palsy in births in Western Australia in the 1980s. BMJ 1993; 307(6914): 1239–43.CrossRefGoogle ScholarPubMed
Pharoah, PO. Twins and cerebral palsy. Acta Paediatr 2001; 90(436): 610.CrossRefGoogle ScholarPubMed
Thorngren-Jerneck, K, Herbst, A. Perinatal factors associated with cerebral palsy in children born in Sweden. Obstet Gynecol 2006; 108(6): 14991505.CrossRefGoogle ScholarPubMed
Cunningham, FG. Williams obstetrics, 24th edn. New York: McGraw-Hill Medical, 2014.Google Scholar
Sadler, TW. Langman’s Medical Embryology, 13th edn. Philadelphia: Wolters Kluwer, 2015.Google Scholar
American College of Obstetricians and Gynecologists, Society for Maternal-Fetal Medicine. Multifetal gestations: twin, triplet, and higher-order multifetal pregnancies (ACOG Practice Bulletin No. 144). Obstet Gynecol 2014; 123(5): 1118–32.
Monteagudo, A, Timor-Tritsch, IE, Sharma, S. Early and simple determination of chorionic and amniotic type in multifetal gestations in the first fourteen weeks by high-frequency transvaginal ultrasonography. Am J Obstet Gynecol 1994; 170(3): 824–9.CrossRefGoogle ScholarPubMed
Scardo, JA, Ellings, JM, Newman, RB. Prospective determination of chorionicity, amnionicity, and zygosity in twin gestations. Am J Obstet Gynecol 1995; 173(5): 1376–80.CrossRefGoogle ScholarPubMed
Blumenfeld, YJ, Momirova, V, Rouse, DJ, et al. Accuracy of sonographic chorionicity classification in twin gestations. J Ultrasound Med 2014; 33(12): 2187–92.CrossRefGoogle ScholarPubMed
Gardner, MO, Goldenberg, RL, Cliver, SP, et al. The origin and outcome of preterm twin pregnancies. Obstet Gynecol 1995; 85(4): 553–7.CrossRefGoogle ScholarPubMed
Newman, RB, Iams, JD, Das, A, et al. A prospective masked observational study of uterine contraction frequency in twins. Am J Obstet Gynecol 2006; 195(6): 1564–70.CrossRefGoogle ScholarPubMed
Romero, R, Espinoza, J, Kusanovic, JP, et al. The preterm parturition syndrome. BJOG 2006; 113(Suppl. 3): 1742.CrossRefGoogle ScholarPubMed
Nassar, AH, Usta, IM, Rechdan, JB, et al. Pregnancy outcome in spontaneous twins versus twins who were conceived through in vitro fertilization. Am J Obstet Gynecol 2003; 189(2): 513–18.CrossRefGoogle ScholarPubMed
Goldenberg, RL, Iams, JD, Das, A, et al. The Preterm Prediction Study: sequential cervical length and fetal fibronectin testing for the prediction of spontaneous preterm birth. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 2000; 182(3): 636–43.CrossRefGoogle ScholarPubMed
Lockwood, CJ, Senyei, AE, Dische, MR, et al. Fetal fibronectin in cervical and vaginal secretions as a predictor of preterm delivery. N Engl J Med 1991; 325(10): 669–74.CrossRefGoogle ScholarPubMed
Gibson, JL, Macara, LM, Owen, P, et al. Prediction of preterm delivery in twin pregnancy: a prospective, observational study of cervical length and fetal fibronectin testing. Ultrasound Obstet Gynecol 2004; 23(6): 561–6.CrossRefGoogle ScholarPubMed
Goldenberg, RL, Iams, JD, Miodovnik, M, et al. The preterm prediction study: risk factors in twin gestations. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 1996; 175(4 Pt 1): 1047–53.CrossRefGoogle ScholarPubMed
Ruiz, RJ, Fullerton, J, Brown, CE. The utility of fFN for the prediction of preterm birth in twin gestations. JOGNN 2004; 33(4): 446–54.Google ScholarPubMed
Fox, NS, Saltzman, DH, Klauser, CK, et al. Prediction of spontaneous preterm birth in asymptomatic twin pregnancies with the use of combined fetal fibronectin and cervical length. Am J Obstet Gynecol 2009; 201(3):e313–15.Google Scholar
Berghella, V, Odibo, AO, To, MS, et al. Cerclage for short cervix on ultrasonography: meta-analysis of trials using individual patient-level data. Obstet Gynecol 2005; 106(1): 181–9.CrossRefGoogle ScholarPubMed
Dor, J, Shalev, J, Mashiach, S, et al. Elective cervical suture of twin pregnancies diagnosed ultrasonically in the first trimester following induced ovulation. Gynecol Obstet Invest 1982; 13(1): 5560.CrossRefGoogle ScholarPubMed
MRC/RCOG Working Party on Cervical Cerclage. Interim report of the Medical Research Council/Royal College of Obstetricians and Gynaecologists multicentre randomized trial of cervical cerclage. BJOG 1988; 95(5): 437–45.PubMed
Eskandar, M, Shafiq, H, Almushait, MA, et al. Cervical cerclage for prevention of preterm birth in women with twin pregnancy. Int J Gynaecol Obstet 2007; 99(2): 110–12.CrossRefGoogle ScholarPubMed
Roman, AS, Rebarber, A, Pereira, L, et al. The efficacy of sonographically indicated cerclage in multiple gestations. J Ultrasound Med 2005; 24(6): 763–8; quiz 770.CrossRefGoogle ScholarPubMed
Newman, RB, Krombach, RS, Myers, MC, McGee, DL. Effect of cerclage on obstetrical outcome in twin gestations with a shortened cervical length. Am J Obstet Gynecol 2002; 186(4): 634–40.CrossRefGoogle ScholarPubMed
Roman, A, Rochelson, B, Fox, NS, et al. Efficacy of ultrasound-indicated cerclage in twin pregnancies. Am J Obstet Gynecol 2015; 212(6): e781–6.CrossRefGoogle ScholarPubMed
Meis, PJ, Klebanoff, M, Thom, E, et al. Prevention of recurrent preterm delivery by 17α-hydroxyprogesterone caproate. N Engl J Med 2003; 348(24): 2379–85.CrossRefGoogle Scholar
Rouse, DJ, Caritis, SN, Peaceman, AM, et al. A trial of 17α-hydroxyprogesterone caproate to prevent prematurity in twins. N Engl J Med 2007; 357(5): 454–61.CrossRefGoogle ScholarPubMed
Fonseca, EB, Celik, E, Parra, M, et al. Fetal Medicine Foundation second trimester screening G: progesterone and the risk of preterm birth among women with a short cervix. N Engl J Med 2007; 357(5): 462–9.CrossRefGoogle Scholar
Hassan, SS, Romero, R, Vidyadhari, D, et al. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound Obstet Gynecol 2011; 38(1): 1831.CrossRefGoogle ScholarPubMed
Brubaker, SG, Pessel, C, Zork, N, et al. Vaginal progesterone in women with twin gestations complicated by short cervix: a retrospective cohort study. BJOG 2015; 122(5): 712–18.CrossRefGoogle ScholarPubMed
Goya, M, Pratcorona, L, Merced, C, et al. Cervical pessary in pregnant women with a short cervix (PECEP): an open-label randomised controlled trial. Lancet. 2012; 379(9828): 1800–6.CrossRefGoogle ScholarPubMed
Hales, KA, Matthews, JP, Rayburn, WF, Atkinson, BD. Intravenous magnesium sulfate for premature labor: comparison between twin and singleton gestations. Am J Perinatol 1995; 12(1): 710.CrossRefGoogle ScholarPubMed
O’Leary, JA. Prophylactic tocolysis of twins. Am J Obstet Gynecol 1986; 154(4): 904–5.Google Scholar
Lyell, DJ, Pullen, K, Campbell, L, et al. Magnesium sulfate compared with nifedipine for acute tocolysis of preterm labor: a randomized controlled trial. Obstet Gynecol 2007; 110(1): 61–7.Google ScholarPubMed
Milki, AA, Jun, SH, Hinckley, MD, et al. Incidence of monozygotic twinning with blastocyst transfer compared to cleavage-stage transfer. Fertil Steril 2003; 79(3): 503–6.CrossRefGoogle ScholarPubMed
Moayeri, SE, Behr, B, Lathi, RB, et al. Risk of monozygotic twinning with blastocyst transfer decreases over time: an 8-year experience. Fertil Steril 2007; 87(5): 1028–32.CrossRefGoogle Scholar
Adegbite, AL, Castille, S, Ward, S, Bajoria, R. Neuromorbidity in preterm twins in relation to chorionicity and discordant birth weight. Am J Obstet Gynecol 2004; 190(1): 156–63.CrossRefGoogle ScholarPubMed
Bejar, R, Vigliocco, G, Gramajo, H, et al. Antenatal origin of neurologic damage in newborn infants. II. Multiple gestations. Am J Obstet Gynecol 1990; 162(5): 1230–6.CrossRefGoogle ScholarPubMed
Bahtiyar, MO, Dulay, AT, Weeks, BP, et al. Prevalence of congenital heart defects in monochorionic/diamniotic twin gestations: a systematic literature review. J Ultrasound Med 2007; 26(11): 1491–8.CrossRefGoogle ScholarPubMed
Pettit, KE, Merchant, M, Machin, GA, et al. Congenital heart defects in a large, unselected cohort of monochorionic twins. J Perinatol 2013; 33(6): 457–61.CrossRefGoogle Scholar
Okumura, A, Hayakawa, F, Kato, T, et al. Brain malformation of the surviving twin of intrauterine co-twin demise. J Child Neurol 2007; 22(1): 85–8.CrossRefGoogle ScholarPubMed
Morokuma, S, Tsukimori, K, Anami, A, et al. Brain injury of the survivor diagnosed at 18 weeks of gestation after intrauterine demise of the co-twin: a case report. Fetal Diagn Ther 2008; 23(2): 146–8.CrossRefGoogle ScholarPubMed
Righini, A, Salmona, S, Bianchini, E, et al. Prenatal magnetic resonance imaging evaluation of ischemic brain lesions in the survivors of monochorionic twin pregnancies: report of 3 cases. J Comput Assist Tomogr 2004; 28(1): 8792.CrossRefGoogle ScholarPubMed
Ezra, Y, Shveiky, D, Ophir, E, et al. Intensive management and early delivery reduce antenatal mortality in monoamniotic twin pregnancies. Acta Obstet Gynecol Scand 2005; 84(5): 432–5.CrossRefGoogle ScholarPubMed
Minakami, H, Sato, I. Reestimating date of delivery in multifetal pregnancies. JAMA 1996; 275(18): 1432–4.CrossRefGoogle ScholarPubMed
Kahn, B, Lumey, LH, Zybert, PA, et al. Prospective risk of fetal death in singleton, twin, and triplet gestations: implications for practice. Obstet Gynecol 2003; 102(4): 685–92.Google ScholarPubMed
Hack, KE, Derks, JB, Elias, SG, et al. Increased perinatal mortality and morbidity in monochorionic versus dichorionic twin pregnancies: clinical implications of a large Dutch cohort study. BJOG 2008; 115(1): 5867.CrossRefGoogle ScholarPubMed
Society for Maternal-Fetal Medicine, Simpson, LL. Twin-twin transfusion syndrome. Am J Obstet Gynecol 2013; 208(1): 318.CrossRefGoogle ScholarPubMed
Bajoria, R, Wigglesworth, J, Fisk, NM. Angioarchitecture of monochorionic placentas in relation to the twin-twin transfusion syndrome. Am J Obstet Gynecol 1995; 172(3): 856–63.CrossRefGoogle ScholarPubMed
Lutfi, S, Allen, VM, Fahey, J, et al. Twin-twin transfusion syndrome: a population-based study. Obstet Gynecol 2004; 104(6): 1289–97.CrossRefGoogle ScholarPubMed
Quintero, RA, Morales, WJ, Allen, MH, et al. Staging of twin-twin transfusion syndrome. J Perinatol 1999; 19(8 Pt 1): 550–5.CrossRefGoogle ScholarPubMed
Rychik, J, Tian, Z, Bebbington, M, et al. The twin-twin transfusion syndrome: spectrum of cardiovascular abnormality and development of a cardiovascular score to assess severity of disease. Am J Obstet Gynecol 2007; 197(4): e391–8.CrossRefGoogle ScholarPubMed
Chescheir, NC, Seeds, JW. Polyhydramnios and oligohydramnios in twin gestations. Obstet Gynecol 1988; 71(6 Pt 1): 882–4.Google ScholarPubMed
Luks, FI, Carr, SR, Plevyak, M, et al. Limited prognostic value of a staging system for twin-to-twin transfusion syndrome. Fetal Diagn Ther 2004; 19(3): 301–4.CrossRefGoogle ScholarPubMed
Mari, G, Roberts, A, Detti, L, et al. Perinatal morbidity and mortality rates in severe twin-twin transfusion syndrome: results of the International Amnioreduction Registry. Am J Obstet Gynecol 2001; 185(3): 708–15.CrossRefGoogle ScholarPubMed
Senat, MV, Deprest, J, Boulvain, M, et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med 2004; 351(2): 136–44.CrossRefGoogle ScholarPubMed
Crombleholme, TM, Shera, D, Lee, H, et al. A prospective, randomized, multicenter trial of amnioreduction vs selective fetoscopic laser photocoagulation for the treatment of severe twin-twin transfusion syndrome. Am J Obstet Gynecol 2007; 197(4): e391–9.CrossRefGoogle ScholarPubMed
Ruano, R, Rodo, C, Peiro, JL, et al. Fetoscopic laser ablation of placental anastomoses in twin-twin transfusion syndrome using ‘Solomon technique’. Ultrasound Obstet Gynecol 2013; 42(4): 434–9.Google ScholarPubMed
Papanna, R, Block-Abraham, D, Mann, LK, et al. Risk factors associated with preterm delivery after fetoscopic laser ablation for twin-twin transfusion syndrome. Ultrasound Obstet Gynecol 2014; 43(1): 4853.CrossRefGoogle ScholarPubMed
Degani, S, Leibovitz, Z, Shapiro, I, et al. Instability of Doppler cerebral blood flow in monochorionic twins. J Ultrasound Med 2006; 25(4): 449–54.CrossRefGoogle ScholarPubMed
Lopriore, E, Nagel, HT, Vandenbussche, FP, Walther, FJ. Long-term neurodevelopmental outcome in twin-to-twin transfusion syndrome. Am J Obstet Gynecol 2003; 189(5): 1314–19.CrossRefGoogle ScholarPubMed
Graef, C, Ellenrieder, B, Hecher, K, et al. Long-term neurodevelopmental outcome of 167 children after intrauterine laser treatment for severe twin-twin transfusion syndrome. Am J Obstet Gynecol 2006; 194(2): 303–8.CrossRefGoogle ScholarPubMed
Lopriore, E, Middeldorp, JM, Sueters, M, et al. Long-term neurodevelopmental outcome in twin-to-twin transfusion syndrome treated with fetoscopic laser surgery. Am J Obstet Gynecol 2007; 196(3): e231–4.Google ScholarPubMed
Lopriore, E, Ortibus, E, Acosta-Rojas, R, et al. Risk factors for neurodevelopment impairment in twin-twin transfusion syndrome treated with fetoscopic laser surgery. Obstet Gynecol 2009; 113(2 Pt 1): 361–6.CrossRefGoogle ScholarPubMed
Masheer, S, Maheen, H, Munim, S. Perinatal outcome of twin pregnancies according to chorionicity: an observational study from tertiary care hospital. J Matern Fetal Neonatal Med. 2015; 28(1): 23–5.CrossRefGoogle ScholarPubMed
Amaru, RC, Bush, MC, Berkowitz, RL, et al. Is discordant growth in twins an independent risk factor for adverse neonatal outcome? Obstet Gynecol 2004; 103(1): 71–6.CrossRefGoogle ScholarPubMed
Branum, AM, Schoendorf, KC. The effect of birth weight discordance on twin neonatal mortality. Obstet Gynecol 2003; 101(3): 570–4.Google ScholarPubMed
Demissie, K, Ananth, CV, Martin, J, et al. Fetal and neonatal mortality among twin gestations in the United States: the role of intrapair birth weight discordance. Obstet Gynecol 2002; 100(3): 474–80.Google ScholarPubMed
Gratacos, E, Carreras, E, Becker, J, et al. Prevalence of neurological damage in monochorionic twins with selective intrauterine growth restriction and intermittent absent or reversed end-diastolic umbilical artery flow. Ultrasound Obstet Gynecol 2004; 24(2): 159–63.CrossRefGoogle ScholarPubMed
Gulmezoglu, AM, Hofmeyr, GJ. Bed rest in hospital for suspected impaired fetal growth. Cochrane Database Syst Rev 2000(2): CD000034.Google ScholarPubMed
Chasen, ST, Spiro, SJ, Kalish, RB, Chervenak, FA. Changes in fetal presentation in twin pregnancies. J Matern Fetal Neonatal Med 2005; 17(1): 4548.CrossRefGoogle ScholarPubMed
Yang, Q, Wen, SW, Chen, Y, et al. Neonatal death and morbidity in vertex-nonvertex second twins according to mode of delivery and birth weight. Am J Obstet Gynecol 2005; 192(3): 840–7.CrossRefGoogle ScholarPubMed
Barrett, JF, Hannah, ME, Hutton, EK, et al. A randomized trial of planned cesarean or vaginal delivery for twin pregnancy. N Engl J Med 2013; 369(14): 12951305.CrossRefGoogle ScholarPubMed
Fox, NS, Silverstein, M, Bender, S, et al. Active second-stage management in twin pregnancies undergoing planned vaginal delivery in a U.S. population. Obstet gynecol. 2010; 115(2 Pt 1): 229233.CrossRefGoogle Scholar
Davison, L, Easterling, TR, Jackson, JC, Benedetti, TJ. Breech extraction of low-birth-weight second twins: can cesarean section be justified? Am j obstet gynecol 1992; 166(2): 497502.CrossRefGoogle ScholarPubMed
Morales, WJ, O’Brien, WF, Knuppel, RA, Gaylord, S, Hayes, P. The effect of mode of delivery on the risk of intraventricular hemorrhage in nondiscordant twin gestations under 1500 g. Obstet Gynecol 1989; 73(1): 107–10.Google ScholarPubMed
Ford, AA, Bateman, BT, Simpson, LL. Vaginal birth after cesarean delivery in twin gestations: a large, nationwide sample of deliveries. Am J Obstet Gynecol 2006; 195(4): 1138–42.CrossRefGoogle ScholarPubMed
Miller, DA, Mullin, P, Hou, D, Paul, RH. Vaginal birth after cesarean section in twin gestation. Am J Obstet Gynecol 1996; 175(1): 194–8.CrossRefGoogle ScholarPubMed
Sansregret, A, Bujold, E, Gauthier, RJ. Twin delivery after a previous caesarean: a twelve-year experience. J Obstet Gynaecol Canada 2003; 25(4): 294–8.CrossRefGoogle ScholarPubMed
Rozance, PJ, Brown, LD, Thorn, SR, et al. Intrauterine growth restriction and the small-for-gestational-age infant. In MacDonald, MG, Seshia, MMK, eds., Avery’s Neonatology: Pathophysiology and Management of the Newborn, 7th edn. Philadelphia: Wolters Kluwer Health, 2015.Google Scholar
Smart, J. Undernutrition, learning and memory: review of experimental studies. In Taylor, TG, Jenkins, NK, eds. Proceedings of XII International Congress of Nutrition. London: John Libbey, 1986: 74.Google Scholar
Cruz-Martínez, R, Figueras, F, Hernandez-Andrade, E, et al. Fetal brain Doppler to predict cesarean delivery for nonreassuring fetal status in term small-for-gestational-age fetuses. Obstet Gynecol 2011; 117: 618–26.CrossRefGoogle ScholarPubMed
Simmons, RA, Gounis, AS, Bangalore, SA, Ogata, ES. Intrauterine growth retardation: fetal glucose transport is diminished in lung but spared in brain. Pediatr Res 1992; 32: 5963.CrossRefGoogle Scholar
Poudel, R, McMillen, IC, Dunn, SL, et al. Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus. Am J Physiol Regul Integr Comp Physiol 2015; 308: R151–62.CrossRefGoogle ScholarPubMed
Castillo-Melendez, M, Yawno, T, Allison, BJ, et al. Cerebrovascular adaptations to chronic hypoxia in the growth restricted lamb. Int J Dev Neurosci 2015; 29:ii.Google Scholar
Toft, PB, Leth, H, Ring, PB, et al. Volumetric analysis of the normal infant brain and in intrauterine growth retardation. Early Hum Dev 1995; 43: 1529.CrossRefGoogle ScholarPubMed
Østgård, HF, Løhaugen, GC, Bjuland, KJ, et al. Brain morphometry and cognition in young adults born small for gestational age at term. J Pediatr 2014; 165: 921–7.CrossRefGoogle ScholarPubMed
Lager, S, Powell, TL. Regulation of nutrient transport across the placenta. J Pregnancy 2012; 2012: 179827.CrossRefGoogle ScholarPubMed
Gaccioli, F, Aye, IL, Roos, S, et al. Expression and functional characterisation of system L amino acid transporters in the human term placenta. Reprod Biol Endocrinol 2015; 9(13):57.CrossRefGoogle Scholar
Lepercq, J, Hauguel De Mouzo, SJ. Leptin during pregnancy. Gynecol Obstet Biol Reprod (Paris) 2002; 31: 167–72.Google ScholarPubMed
Symonds, ME, Pope, M, Sharkey, D, Budge, H. Adipose tissue and fetal programming. Diabetologia 2012; 55: 1597–606.CrossRefGoogle ScholarPubMed
Rosario, FJ, Schumacher, MA, Jiang, J, et al. Chronic maternal infusion of full-length adiponectin in pregnant mice down-regulates placental amino acid transporter activity and expression and decreases fetal growth. J Physiol 2012; 15(590): 1495–509.Google Scholar
Limesand, SW, Jensen, J, Hutton, JC, Hay, WW Jr. Diminished beta-cell replication contributes to reduced beta-cell mass in fetal sheep with intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2005; 288: R1297–305.CrossRefGoogle ScholarPubMed
Rozance, PJ, Anderson, M, Martinez, M, et al. Placental insufficiency decreases pancreatic vascularity and disrupts hepatocyte growth factor signaling in the pancreatic islet endothelial cell in fetal sheep. Diabetes 2015; 64: 555–64.CrossRefGoogle ScholarPubMed
Andrews, SE, Brown, LD, Thorn, SR, et al. Increased adrenergic signaling is responsible for decreased glucose-stimulated insulin secretion in the chronically hyperinsulinemic ovine fetus. Endocrinology 2015; 156: 367–76.CrossRefGoogle ScholarPubMed
Fowden, Al. The insulin-like growth factors and feto-placental growth. Placenta 2003; 24(8–9): 803–12.CrossRefGoogle ScholarPubMed
Ye, P, Carson, J, D’Ercole, AJ. In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice. J Neurosci 1995; 15: 7344.Google ScholarPubMed
Abuzzahab, MJ, Schneider, A, Goddard, A, et al. Intrauterine Growth Retardation (IUGR) Study Group. IFG-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med 2003; 349(23): 2211–22.CrossRefGoogle Scholar
Baumann, MU, Schneider, H, Malek, A, et al. Regulation of human trophoblast GLUT1 glucose transporter by insulin-like growth factor I (IGF-I). PLoS One 2014; 9(8):e106037.CrossRefGoogle Scholar
Sferruzzi-Perri, AN, Vaughan, OR, Forhead, AJ, Fowden, AL. Hormonal and nutritional drivers of intrauterine growth. Curr Opin Clin Nutr Metab Care 2013; 16: 298309.CrossRefGoogle ScholarPubMed
Gressens, P, Hill, JM, Paindaveine, B, et al. Severe microcephaly induced by blockade of vasoactive intestinal peptide function in the primitive neuroepithelium of the mouse. J Clin Invest 1994; 94: 2020–7.CrossRefGoogle ScholarPubMed
Nicolaides, KH, Economides, DL, Soothill, PW. Blood gases, pH, and lactate in appropriate- and small-for-gestational-age fetuses. Am J Obstet Gynecol 1989; 161: 9961001.CrossRefGoogle ScholarPubMed
Scholl, TO, Hediger, ML, Schall, JI, et al. Maternal growth during pregnancy and the competition for nutrients. Am J Clin Nutr 1994; 60: 183–8.Google ScholarPubMed
Klein, JO, Baker, CJ, Remington, JS, et al. Current concepts of infection of the fetus and newborn infants. In Remington, JS, Klein, JO, Wilson, CB, Baker, CJ, eds., Infectious Diseases of the Fetus and Newborn Infant, 6th edn. Philadelphia: Elsevier Saunders, 2006: 125.Google Scholar
Kleigman, RM. Intrauterine growth restriction. In Fanaroff, AA, Martin, RJ, Walsh, MC, eds., Neonatal-Perinatal Medicine: Diseases of the Fetus and Infant, 5th edn. Philadelphia: Mosby Elsevier, 2006: 221306.Google Scholar
Ananth, CV, Friedman, AM. Ischemic placental disease and risks of perinatal mortality and morbidity and neurodevelopmental outcomes. Semin Perinatol 2014; 38: 151–8.CrossRefGoogle ScholarPubMed
Roos, S, Powell, TL, Jansson, T. Placental mTOR links maternal nutrient availability to fetal growth. Biochem Soc Trans 2009; 37: 295–8.CrossRefGoogle ScholarPubMed
Lumey, LH. Decreased birth weights in infants after maternal in utero exposure to the Dutch famine of 1944–1945. Paediatr Perinat Epidemiol 1992; 6: 240–53.CrossRefGoogle ScholarPubMed
Catalano, PM, McIntyre, HD, Cruickshank, JK, et al. HAPO Study Cooperative Research Group. The hyperglycemia and adverse pregnancy outcome study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care 2012; 35: 780–6.CrossRefGoogle Scholar
Hernandez, TL, Van Pelt, RE, Anderson, MA, et al. A higher-complex carbohydrate diet in gestational diabetes mellitus achieves glucose targets and lowers postprandial lipids: a randomized crossover study. Diabetes Care 2014; 37: 1254–62.CrossRefGoogle ScholarPubMed
Crume, TL, Shapiro, AL, Brinton, JT, et al. Maternal fuels and metabolic measures during pregnancy and neonatal body composition: the healthy start study. J Clin Endocrinol Metab 2015; 100: 1672–80.CrossRefGoogle ScholarPubMed
Ota, E, Mori, R, Middleton, P, et al. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst Rev 2015; 2(2):CD000230.Google Scholar
Butterworth, RF. Maternal thiamine deficiency: still a problem in some world communities. Am J Clin Nutr 2001; 74: 712–13.Google Scholar
Conti, J, Abraham, S, Taylor, A. Eating behavior and pregnancy outcome. J Psychosom Res 1998; 44: 465–77.CrossRefGoogle ScholarPubMed
Many, A, Fattal, A, Leitner, Y, et al. Neurodevelopmental and cognitive assessment of children born growth restricted to mothers with and without preeclampsia. Hypertens Pregnancy 2003; 22: 25–9.CrossRefGoogle ScholarPubMed
Manuck, T, Branch, DW, Lai, Y, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Antiphospholipid antibodies and pregnancy outcomes in women heterozygous for factor V Leiden. J Reprod Immunol 2010; 85: 180–5.CrossRefGoogle ScholarPubMed
Triche, EW, Hossain, N. Environmental factors implicated in the causation of diverse pregnancy outcome. Semin Perinatol 2007; 31: 240–2.CrossRefGoogle Scholar
Blatt, K, Moore, E, Chen, A, et al. Association of reported trimester-specific smoking cessation with fetal growth restriction. Obstet Gynecol 2015; 125: 1452–9.CrossRefGoogle ScholarPubMed
Kallen, K. Maternal smoking during pregnancy and infant head circumference at birth. Early Hum Dev 2000; 58: 197204.CrossRefGoogle ScholarPubMed
Carter, RC, Jacobson, JL, Sokol, RJ, et al. Fetal alcohol-related growth restriction from birth through young adulthood and moderating effects of maternal prepregnancy weight. Alcohol Clin Exp Res 2013; 37: 452–62.CrossRefGoogle ScholarPubMed
Little, BB, Snell, LM. Brain growth among fetuses exposed to cocaine in utero: asymmetrical growth retardation. Obstet Gynecol 1991; 77: 361–4.Google ScholarPubMed
Frank, DA, Bauchner, H, Parker, S, et al. Neonatal body proportionality and body composition after in utero exposure to cocaine and marijuana. J Pediatr 1990; 117: 622–6.CrossRefGoogle ScholarPubMed
Christian, MS, Brent, RL. Teratogen update: evaluation of the reproductive and developmental risks of caffeine. Teratology 2001; 64: 5178.CrossRefGoogle ScholarPubMed
Giussani, DA, Salinas, CE, Villena, M. The role of oxygen in prenatal growth: studies in the chick embryo. J Physiol 2007; 585: 911–17.CrossRefGoogle ScholarPubMed
Milley, JR. Ovine fetal leucine kinetics and protein metabolism during decreased oxygen availability. Am J Physiol 1998; 274:e618–26.Google ScholarPubMed
Illsley, NP, Caniggia, I, Zamudio, S. Placental metabolic reprogramming: do changes in the mix of energy-generating substrates modulate fetal growth? Int J Dev Biol 2010; 54: 409–19.CrossRefGoogle ScholarPubMed
Soria, R, Julian, CG, Vargas, E, et al. Graduated effects of high-altitude hypoxia and highland ancestry on birth size. Pediatr Res 2013; 74: 633–8.CrossRefGoogle ScholarPubMed
Wilson, MJ, Lopez, M, Vargas, M, et al. Greater uterine artery blood flow during pregnancy in multigenerational (Andean) than shorter-term (European) high-altitude residents. Am J Physiol Regul Integr Comp Physiol 2007; 293: R1313–24.CrossRefGoogle ScholarPubMed
Bennett, A, Sain, SR, Vargas, E, Moore, LG. The effect of heavy maternal workload on fetal growth retardation and preterm delivery: a study among southern Thai women. J Occup Environ Med 1998; 40: 1013–21.Google Scholar
Tuntiseranee, P, Geater, A, Chongsuvivatwong, V, Kor-anantakul, O. The effect of heavy maternal workload on fetal growth retardation and preterm delivery: a study among southern Thai women. J Occup Environ Med 1998; 40: 1013–21.CrossRefGoogle ScholarPubMed
Koos, BJ, Longo, LD. Mercury toxicity in the pregnant woman, fetus, and newborn infant: a review. Am J Obstet Gynecol 1976; 126: 390409.CrossRefGoogle ScholarPubMed
Albu, AR, Horhoianu, IA, Dumitrascu, MC, Horhoianu, V. Growth assessment in diagnosis of fetal growth restriction. J Med Life 2014; 5(7): 150–4.Google Scholar
Grivell, RM, Wong, L, Bhatia, V. Regimens of fetal surveillance for impaired fetal growth. Cochrane Database Syst Rev 2012; 6:CD007113.CrossRefGoogle Scholar
Businelli, C, de Wit, C, Visser, GH, Pistorius, LR. Ultrasound evaluation of cortical brain development in fetuses with intrauterine growth restriction. J Matern Fetal Neonatal Med 2014; 10: 16.Google Scholar
Hershkovitz, R, Kingdom, JC, Geary, M, Rodeck, CH. Fetal cerebral blood flow redistribution in late gestation: identification of compromise in small fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 2000; 15: 209–12.CrossRefGoogle ScholarPubMed
Flood, K, Unterscheider, J, Daly, S, et al. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: results of the multicenter PORTO Study. Am J Obstet Gynecol 2014; 211(288):e15.CrossRefGoogle ScholarPubMed
Cruz-Martinez, R, Tenorio, V, Padilla, N, et al. Risk of neonatal brain ultrasound abnormalities in intrauterine growth restricted fetuses born between 28 and 34 weeks: relationship with gestational age at birth and fetal Doppler. Ultrasound Obstet Gynecol 2015; 46:389–90.CrossRefGoogle ScholarPubMed
Girardi, G. MRI-based methods to detect placental and fetal brain abnormalities in utero. J Reprod Immunol 2015; 2:pii: S01650378(15)00094–7.Google Scholar
Marconi, AM, Ronzoni, S, Vailati, S, et al. Neonatal morbidity and mortality in intrauterine growth restricted (IUGR) pregnancies is predicated upon prenatal diagnosis of clinical severity. Reprod Sci 2009; 16: 373–9.CrossRefGoogle ScholarPubMed
Marconi, AM, Paolini, CL, Zerbe, G, Battaglia, FC. Lactacidemia in intrauterine growth restricted (IUGR) pregnancies: relationship to clinical severity, oxygenation and placental weight. Pediatr Res 2006; 59: 570–4.CrossRefGoogle ScholarPubMed
Regnault, TR, de Vrijer, B, Galan, HL, et al. Development and mechanisms of fetal hypoxia in severe fetal growth restriction. Placenta 2007; 28: 714–23.CrossRefGoogle ScholarPubMed
Salihagić-Kadić, A, Medić, M, Jugović, D, et al. Fetal cerebrovascular response to chronic hypoxia: implications for the prevention of brain damage. J Matern Fetal Neonatal Med 2006; 19: 387–96.CrossRefGoogle ScholarPubMed
Figueras, F, Eixarch, E, Meler, E, et al. Small-for-gestational-age fetuses with normal umbilical artery Doppler have suboptimal perinatal and neurodevelopmental outcome. Eur J Obstet Gynecol Reprod Biol 2008; 136: 34–8.CrossRefGoogle ScholarPubMed
Bendapudi, P, Rao, GG, Greenough, A. Diagnosis and management of persistent pulmonary hypertension of the newborn. Paediatr Respir Rev. 2015; 16: 157–61.Google ScholarPubMed
Harris, DL, Weston, PJ, Harding, JE. Incidence of neonatal hypoglycemia in babies identified as at risk. J Pediatr 2012; 161: 787–91.CrossRefGoogle ScholarPubMed
Hawdon, JM, Aynsley-Green, A, Ward Platt, MP. Neonatal blood glucose concentrations: metabolic effects of intravenous glucagon and intragastric medium chain triglyceride. Arch Dis Child 1993; 68: 255–61.CrossRefGoogle ScholarPubMed
Limesand, SW, Rozance, PJ, Smith, D, Hay, WW Jr. Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction. Am J Physiol Endocrinol Metab 2007; 293: E1716–25.CrossRefGoogle ScholarPubMed
van Kempen, AA, Ackermans, MT, Endert, E, et al. Glucose production in response to glucagon is comparable in preterm AGA and SGA infants. Clin Nutr 2005; 24: 727–36.CrossRefGoogle ScholarPubMed
Arya, VB, Flanagan, SE, Kumaran, A, et al. Clinical and molecular characterization of hyperinsulinaemic hypoglycaemia in infants born small-for-gestational age. Arch Dis Child Fetal Neonatal Ed 2013; 98: F356–8.CrossRefGoogle Scholar
Macko, AR, Yates, DT, Chen, X, et al. Elevated plasma norepinephrine inhibits insulin secretion, but adrenergic blockade reveals enhanced β-cell responsiveness in an ovine model of placental insufficiency at 0.7 of gestation. J Dev Orig Health Dis 2013; 4: 402–10.CrossRefGoogle Scholar
Gatford, KL, Simmons, RA. Prenatal programming of insulin secretion in intrauterine growth restriction. Clin Obstet Gynecol 2013; 56: 520–8.CrossRefGoogle ScholarPubMed
Law, TL, Korte, JE, Katikaneni, LD, et al. Ultrasound assessment of intrauterine growth restriction: relationship to neonatal body composition. Am J Obstet Gynecol 2011; 205(255):e16.CrossRefGoogle ScholarPubMed
Thorn, SR, Regnault, TRH, Brown, LD, et al. Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and reduces hepatic and skeletal muscle mRNA translation initiation and nutrient sensing. Endocrinology 2009; 150: 3021–30.CrossRefGoogle ScholarPubMed
Thorn, SR, Brown, LD, Rozance, PJ, et al. Increased hepatic glucose production in fetal sheep with intrauterine growth restriction is not suppressed by insulin. Diabetes 2013; 62: 6573.CrossRefGoogle Scholar
Jain, A, Agarwal, R, Sankar, MJ, et al. Hypocalcemia in the newborn. Ind J Pediatr 2010; 77: 1123–8.Google ScholarPubMed
Bauer, J, Masin, M, Brodner, K. Resting energy expenditure and metabolic parameters in small for gestational age moderately preterm infants. Horm Res Paediatr 2011; 76: 202–7.CrossRefGoogle ScholarPubMed
Glasser, I, Sutten, N, Schmeling, M, Machan, JT. A comprehensive study of umbilical cord blood cell developmental changes and reference ranges by gestation, gender and mode of delivery. J Perinatol 2015; 35: 469–75.CrossRefGoogle ScholarPubMed
Basha, S, Surendran, N, Pichichero, M. Immune responses in neonates. Exp Rev Clin Immunol 2014; 10: 1171–84.CrossRefGoogle ScholarPubMed
Kempley, S, Gupta, N, Linsell, L, et al. Feeding infants below 29 weeks’ gestation with abnormal antenatal Doppler: analysis from a randomised trial. Arch Dis Child Fetal Neonatal Ed. 2014; 99: F611.CrossRefGoogle ScholarPubMed
Abdelmaaboud, M, Mohammed, A. Early versus late minimal enteral feeding in weeks preterm growth-restricted neonates with abnormal antenatal Doppler studies. J Matern Fetal Neonatal Med 2012 (epub ahead of print).
Leaf, A, Dorling, J, Kempley, S, et al. Abnormal Doppler Enteral Prescription Trial Collaborative Group. Early or delayed enteral feeding for preterm growth-restricted infants: a randomized trial. Pediatrics 2012; 129: e1260–8.CrossRefGoogle ScholarPubMed
Pettigrew, AG, Edwards, DA, Henderson-Smart, DJ. The influence of intra-uterine growth retardation on brainstem development of preterm infants. Dev Med Child Neurol 1985; 27: 467–72.Google ScholarPubMed
Stanley, OH, Fleming, PJ, Morgan, MH. Development of visual evoked potentials following intrauterine growth retardation. Early Hum Dev 1991; 27: 7991.CrossRefGoogle ScholarPubMed
Scherjon, S, Briët, J, Oosting, H, Kok, J. The discrepancy between maturation of visual-evoked potentials and cognitive outcome at five years in very preterm infants with and without hemodynamic signs of fetal brain-sparing. Pediatrics 2000; 105: 385–91.CrossRefGoogle ScholarPubMed
Nijhuis, IJ, ten Hof, J, Nijhuis, JG, et al. Temporal organization of fetal behavior from 24-weeks gestation onwards in normal and complicated pregnancies. Dev Psychobiol 1999; 34: 257–68.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Leventhal, JM, Berg, A, Egerter, SA. Is intrauterine growth retardation a risk factor for child abuse? Pediatrics 1987; 79: 515–19.Google ScholarPubMed
Watt, J. Interaction and development in the first year. II. The effects of intrauterine growth retardation. Early Hum Dev 1986; 13: 211–23.Google ScholarPubMed
Pallotto, EK, Killbride, HW. Perinatal outcome and later implications of intrauterine growth restriction. Clin Obstet Gynecol 2006; 49: 257–69.CrossRefGoogle ScholarPubMed
Ortibus, E, Lopriore, E, Deprest, J, et al. The pregnancy and long-term neurodevelopmental outcome of monochorionic diamniotic twin gestations: a multicenter prospective cohort study from the first trimester onward. Am J Obstet Gynecol 2009; 200(494):e18.CrossRefGoogle ScholarPubMed
von Beckerath, AK, Kollmann, M, Rotky-Fast, C, et al. Perinatal complications and long-term neurodevelopmental outcome of infants with intrauterine growth restriction. Am J Obstet Gynecol 2013; 208(130):e16.CrossRefGoogle ScholarPubMed
Levine, TA, Grunau, RE, McAuliffe, FM, et al. Early childhood neurodevelopment after intrauterine growth restriction: a systematic review. Pediatrics 2015; 135: 126–41.CrossRefGoogle ScholarPubMed
Wang, Y, Fu, W, Liu, J. Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions. J Matern Fetal Neonatal Med 2015; 23: 19.CrossRefGoogle Scholar
Murray, E, Fernandes, M, Fazel, M, et al. Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review. BJOG 2015; 122: 1062–72.CrossRefGoogle ScholarPubMed
Casey, PH. Growth of low birth weight preterm children. Semin Perinatol 2008; 32: 20–7.CrossRefGoogle ScholarPubMed
Rogne, T, Engstrøm, AA, Jacobsen, GW, et al. Fetal growth, cognitive function, and brain volumes in childhood and adolescence. Obstet Gynecol 2015; 125: 673–82.CrossRefGoogle ScholarPubMed
McIntyre, S, Blair, E, Badawi, N, et al. Antecedents of cerebral palsy and perinatal death in term and late preterm singletons. Obstet Gynecol 2013; 122: 869–77.CrossRefGoogle ScholarPubMed
Hack, M. Effects of intrauterine growth retardation on mental performance and behavior outcomes during adolescence and adulthood. Eur J Clin Nutr 1998; 52: S6570.Google ScholarPubMed
Yerushalmy-Feler, A, Marom, R, Peylan, T, et al. Electroencephalographic characteristics in preterm infants born with intrauterine growth restriction. J Pediatr 2014; 164: 756–61.CrossRefGoogle ScholarPubMed
Simić Klarić, A, Kolundžić, Z, Galić, S. Language development inpreschool children born after asymmetrical intrautering growth retardation. Eur J Paediatr Neurol 2012; 16: 132–7.CrossRefGoogle Scholar
Ortigosa Rocha, C, Bittar, RE, Zugaib, M. Neonatal outcomes of late-preterm birth associated or not with intrauterine growth restriction. Obstet Gynecol Int 2010; 2010: 231842.CrossRefGoogle ScholarPubMed
Fattal-Valevski, A, Leitner, Y, Kutai, M, et al. Neurodevelopmental outcome in children with intrauterine growth retardation: a 3-year follow-up. J Child Neurol 1999; 14: 724–7.CrossRefGoogle ScholarPubMed
De Jesus, LC, Pappas, A, Shankaran, S, et al. Eunice Kennedy Shriver National Institute of Health and Human Development Neonatal Research Network. Outcomes of small for gestational age infants born at <27 weeks’ gestation. J Pediatr 2013; 163(55–60):e13.CrossRefGoogle Scholar
Guellec, I, Lapillonne, A, Renolleau, S, et al. Neurologic outcomes at school age in very preterm infants born with severe or mild growth restriction. Pediatrics 2011; 127: e883–91.CrossRefGoogle ScholarPubMed
Aucott, SW, Donohue, PK, Northington, FJ. Increased morbidity in severe early intrauterine growth restriction. J Perinatol 2004; 24: 435–40.CrossRefGoogle ScholarPubMed
Christian, P. Fetal growth restriction and preterm as determinants of child growth in the first two years and potential interventions. Nestle Nutr Inst Workshop Ser 2014; 78: 8191.CrossRefGoogle ScholarPubMed
Baker, J, Workman, M, Bedrick, E, et al. Brains versus brawn: an empirical test of Barker’s brain sparing model. Am J Hum Biol 2010; 22: 206–15.Google ScholarPubMed
Basilious, A, Yager, J, Fehlings, MG. Neurological outcomes of animal models of uterine artery ligation and relevance to human intrauterine growth restriction: a systematic review. Dev Med Child Neurol 2015; 57: 420–30.CrossRefGoogle ScholarPubMed
Piorkowska, K, Thompson, J, Nygard, K, et al. Synaptic development and neuronal myelination are altered with growth restriction in fetal guinea pigs. Dev Neurosci 2014; 36: 465–76.CrossRefGoogle ScholarPubMed
Hack, M, Breslau, N, Weissman, B, et al. Effect of very low birth weight and subnormal head size on cognitive abilities at school age. N Engl J Med 1991; 325: 231–7.CrossRefGoogle ScholarPubMed
Lundgren, EM, Tuvemo, T. Effects of being born small for gestational age on long-term intellectual performance. Best Pract Res Clin Endocrinol Metab. 2008; 22: 477–88.CrossRefGoogle ScholarPubMed
Paz, I, Seidman, DS, Danon, YL, et al. Are children born small for gestational age at increased risk of short stature? Am J Dis Child 1993; 147: 337–9.Google ScholarPubMed
Bergvall, N, Iliadou, A, Johansson, S, et al. Risks for low intellectual performance related to being born small for gestational age are modified by gestational age. Pediatrics 2006; 117: e460–7.CrossRefGoogle ScholarPubMed
Monset-Couchard, M, de Bethmann, O. Catch-up growth in 166 small-forgestational age premature infants weighing less than 1,000 g at birth. Biol Neonate 2000; 78: 161–7.CrossRefGoogle Scholar
de Bie, HM, de Ruiter, MB, Ouwendijk, M, et al. Using fMRI to investigate memory in young children born small for gestational age. PLoS One 2015; 1(10):e0129721.CrossRefGoogle Scholar
Spinillo, A, Gardella, B, Preti, E, et al. Rates of neonatal death and cerebral palsy associated with fetal growth restriction among very low birth weight infants: a temporal analysis. BJOG 2006; 113: 775–80.CrossRefGoogle ScholarPubMed
MacLennan, AH, Thompson, SC, Gecz, J. Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol 2015; 213: 779–88.CrossRefGoogle ScholarPubMed
Blair, EM, Nelson, KB. Fetal growth restriction and risk of cerebral palsy in singletons born after at least 35 weeks’ gestation. Am J Obstet Gynecol 2015; 212(520):e17.CrossRefGoogle Scholar
O’Callaghan, ME, MacLennan, AH, Gibson, CS, et al. Epidemiologic associations with cerebral palsy. Obstet Gynecol 2011; 118: 576–82.CrossRefGoogle ScholarPubMed
Spence, D, Alderdice, FA, Stewart, MC, et al. Does intrauterine growth restriction affect quality of life in adulthood? Arch Dis Child 2007; 92: 700–3.CrossRefGoogle ScholarPubMed
Geva, R, Eshel, R, Leitner, Y, et al. Neuropsychological outcome of children with intrauterine growth restriction: a 9-year prospective study. Pediatrics 2006; 118: 91100.CrossRefGoogle ScholarPubMed
Bergvall, N, Iliadou, A, Tuvemo, T, Cnattingius, S. Birth characteristics and risk of low intellectual performance in early adulthood: are the associations confounded by socioeconomic factors in adolescence or familial effects? Pediatrics 2006; 117: 714–21.CrossRefGoogle ScholarPubMed
Leonard, H, Nassar, N, Bourke, J, et al. Relation between intrauterine growth and subsequent intellectual disability in a ten-year population cohort of children in Western Australia. Am J Epidemiol 2008; 167: 103–11.Google Scholar
Leitner, Y, Fattal-Valevski, A, Geva, R, et al. Neurodevelopmental outcome of children with intrauterine growth retardation: a longitudinal, 10-year prospective study. J Child Neurol 2007; 22: 580–7.CrossRefGoogle ScholarPubMed
Barker, DJ, Gluckman, PD, Godfrey, KM, et al. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993; 341: 938–41.CrossRefGoogle ScholarPubMed
Gortner, L. Intrauterine growth restriction and risk for arterial hypertension: a causal relationship? J Perinat Med 2007; 35: 361–5.CrossRefGoogle ScholarPubMed
Ong, TP, Ozanne, SE. Developmental programming of type 2 diabetes: early nutrition and epigenetic mechanisms. Curr Opin Clin Nutr Metab Care 2015; 18: 354–60.CrossRefGoogle ScholarPubMed
Duque-Guimarães, DE, Ozanne, SE. Nutritional programming of insulin resistance: causes and consequences. Trends Endocrinol Metab 2013; 245: 525–35.Google Scholar
Forsén, T, Eriksson, J, Tuomilehto, J, et al. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 2000; 133: 176–82.CrossRefGoogle ScholarPubMed
Gluckman, PD, Hanson, MA, Cooper, C, Thornburg, KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008; 359: 6173.CrossRefGoogle ScholarPubMed
Sayer, AA, Syddall, H, Martin, H, et al. The developmental origins of sarcopenia. J Nutr Health Aging 2008; 12: 427–32.CrossRefGoogle ScholarPubMed
Koklu, E, Ozturk, MA, Kurtoglu, S, et al. Aortic intima-media thickness, serum IGF-I, IGFBP-3, and leptin levels in intrauterine growth-restricted newborns of healthy mothers. Pediatr Res 2007; 62: 704–9.CrossRefGoogle ScholarPubMed
Skilton, MR, Evans, N, Griffiths, KA, et al. Aortic wall thickness in newborns with intrauterine growth restriction. Lancet 2005; 365: 1484–6.CrossRefGoogle ScholarPubMed
Bloomfield, FH, Oliver, MH, Harding, JE. The late effects of fetal growth patterns. Arch Dis Child Fetal Neonatal Ed 2006; 91: F299304.CrossRefGoogle ScholarPubMed
Barker, DJ, Eriksson, JG, Forsen, T, Osmond, C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 2002; 31: 1235–9.CrossRefGoogle ScholarPubMed
Bujold, E, Roberge, S, Lacasse, Y, et al. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol 2010; 116: 402–14.CrossRefGoogle ScholarPubMed
Satterfield, MC, Bazer, FW, Spencer, TE, Wu, G. Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction. J Nutr 2010; 140: 251–8.CrossRefGoogle Scholar
de Boo, HA, Eremia, SC, Bloomfield, FH, et al. Treatment of intrautere growth restriction with maternal growth hormone supplementation in sheep. Am J Obstet Gynecol 2008; 199(599):e19.CrossRefGoogle Scholar
Rozance, PJ, Limesand, SW, Barry, JS, et al. Glucose replacement to euglycemia causes hypoxia, acidosis, and decreased insulin secretion in fetal sheep with intrauterine growth restriction. Pediatr Res 2009; 65: 72–8.CrossRefGoogle ScholarPubMed
Rush, D, Stein, Z, Susser, M. A randomized controlled trial of prenatal nutritional supplementation in New York City. Pediatrics 1980; 65: 683–97.Google ScholarPubMed
Ceesay, SM, Prentice, AM, Cole, TJ, et al. Effects on birth weight and perinatal mortality of maternal dietary supplements in rural Gambia: 5 year randomised controlled trial. BMJ 1997; 315: 786–90.CrossRefGoogle ScholarPubMed
Gulmezoglu, AM, Hofmeyr, GJ. Maternal nutrient supplementation for suspected impaired fetal growth. Cochrane Database Syst Rev 2000; 2: CD000148.Google Scholar
Catalano, PM, Thomas, AJ, Huston, LP, Fung, CM. Effect of maternal metabolism on fetal growth and body composition. Diabetes Care. 1998; 21(Suppl. 2):B8590.Google ScholarPubMed
Fernandez-Twinn, DS, Ozanne, SE. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav 2006; 88: 234–43.CrossRefGoogle ScholarPubMed
Gulmezoglu, AM, Hofmeyr, GJ. Plasma volume expansion for suspected impaired fetal growth. Cochrane Database Syst Rev 2000; 2: CD000167.Google Scholar
Gulmezoglu, AM, Hofmeyr, GJ. Bed rest in hospital for suspected impaired fetal growth. Cochrane Database Syst Rev 2000; 2: CD000034.Google Scholar
Kinzler, WL, Kaminsky, L. Fetal growth restriction and subsequent pregnancy risks. Semin Perinatol 2007; 31: 126–34.CrossRefGoogle ScholarPubMed
Brenner, B, Aharon, A. Thrombophilia and adverse pregnancy outcome. Clin Perinatol 2007; 34: 527–41.CrossRefGoogle ScholarPubMed
Brown, LD, Green, AS, Limesand, SW, Rozance, PJ. Maternal amino acid supplementation for intrauterine growth restriction. Front Biosci (Schol Ed) 2011; 3: 428–44.Google ScholarPubMed
Dusick, AM, Poindexter, BB, Ehrenkranz, RA, Lemons, JA. Growth failure in the preterm infant: can we catch up? Semin Perinatol 2003; 27: 302–10.CrossRefGoogle ScholarPubMed
Figueras, F, Cruz-Martinez, R, Sanz-Cortes, M, et al. Neurobehavioral outcomes in preterm, growth-restricted infants with and without prenatal advanced signs of brain-sparing. Ultrasound Obstet Gynecol 2011; 38: 288–94.CrossRefGoogle ScholarPubMed
Levine, TA, Grunau, RE, McAuliffe, FM, et al. Early childhood neurodevelopment after intrauterine growth restriction: a systematic review. Pediatrics 2015; 135: 126–41.CrossRefGoogle ScholarPubMed
Murray, E, Fernandes, M, Fazel, M, et al. Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review. BJOG 2015; 122: 1062–72.CrossRefGoogle ScholarPubMed
Johnson, S, Evans, TA, Draper, ES, et al. Neurodevelopmental outcomes following late and moderate prematurity: a population-based cohort study. Arch Dis Childhood Fetal Neonatal Ed 2015; 100: F301–8.CrossRefGoogle ScholarPubMed
Serenius, F, Kallen, K, Blennow, M, et al. Neurodevelopmental outcome in extremely preterm infants at 2.5 years after active perinatal care in Sweden. JAMA 2013; 309: 1810–20.CrossRefGoogle ScholarPubMed
Wu, YW, Colford, JM Jr. Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA 2000; 284: 1417–24.CrossRefGoogle ScholarPubMed
Banach, R, Boskovic, R, Einarson, T, Koren, G. Long-term developmental outcome of children of women with epilepsy, unexposed or exposed prenatally to antiepileptic drugs: a meta-analysis of cohort studies. Drug Safety 2010; 33: 73–9.CrossRefGoogle ScholarPubMed
Vajda, FJ, Hitchcock, AA, Graham, J, et al. The teratogenic risk of antiepileptic drug polytherapy. Epilepsia 2010; 51: 805–10.CrossRefGoogle ScholarPubMed
Bromley, R, Weston, J, Adab, N, et al. Treatment for epilepsy in pregnancy: neurodevelopmental outcomes in the child. Cochrane Database Syst Rev 2014; 10: CD010236.Google Scholar
Meador, KJ, Baker, GA, Browning, N, et al. Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study. Lancet Neurol 2013; 12: 244–52.CrossRefGoogle ScholarPubMed
Cohen, MJ, Meador, KJ, Browning, N, et al. Fetal antiepileptic drug exposure: adaptive and emotional/behavioral functioning at age 6 years. Epilepsy Behav 2013; 29: 308–15.CrossRefGoogle Scholar
Marchenko, A, Etwel, F, Olutunfese, O, et al. Pregnancy outcome following prenatal exposure to triptan medications: a meta-analysis. Headache 2015; 55:490501.CrossRefGoogle ScholarPubMed
Stewart, DE. Clinical practice: depression during pregnancy. N Engl J Med 2011; 365: 1605–11.CrossRefGoogle ScholarPubMed
Mei-Dan, E, Ray, JG, Vigod, SN. Perinatal outcomes among women with bipolar disorder: a population-based cohort study. Am J Obstet Gynecol 2015; 212(367): e18.CrossRefGoogle ScholarPubMed
Eriksen, HL, Kesmodel, US, Pedersen, LH, Mortensen, EL. No association between prenatal exposure to psychotropics and intelligence at age five. Acta Obstet Gynaecol Scand 2015; 94: 501–7.CrossRefGoogle ScholarPubMed
Streissguth, AP, Aase, JM, Clarren, SK, et al. Fetal alcohol syndrome in adolescents and adults. JAMA 1991; 265: 1961–7.CrossRefGoogle ScholarPubMed
Patra, J, Bakker, R, Irving, H, et al. Dose-response relationship between alcohol consumption before and during pregnancy and the risks of low birthweight, preterm birth and small for gestational age (SGA): a systematic review and meta-analyses. BJOG 2011; 118: 1411–21.CrossRefGoogle ScholarPubMed
Falgreen Eriksen, HL, Kesmodel, US, et al. Effects of tobacco smoking in pregnancy on offspring intelligence at the age of 5. J Pregnancy 2012; 2012:945196.CrossRefGoogle ScholarPubMed
Gilman, SE, Gardener, H, Buka, SL. Maternal smoking during pregnancy and children’s cognitive and physical development: a causal risk factor? Am J Epidemiol 2008; 168: 522–31.CrossRefGoogle ScholarPubMed
Behnke, M, Smith, VC, Committee on Substance A, Committee on F, Newborn. Prenatal substance abuse: short- and long-term effects on the exposed fetus. Pediatrics 2013; 131:e1009–24.CrossRefGoogle Scholar
Creasy, R, Resnik, R, Iams, J, et al. Creasy and Resnik’s Maternal-Fetal Medicine: Principles and Practice, 7th edn. New York: Elsevier Saunders, 2014.Google Scholar
Kronenberg, ME, Raz, S, Sander, CJ. Neurodevelopmental outcome in children born to mothers with hypertension in pregnancy: the significance of suboptimal intrauterine growth. Dev Med Child Neurol 2006; 48: 200–6.CrossRefGoogle ScholarPubMed
Ehrenstein, V, Rothman, KJ, Pedersen, L, et al. Pregnancy-associated hypertensive disorders and adult cognitive function among Danish conscripts. Am J Epidemiol 2009; 170: 1025–31.CrossRefGoogle ScholarPubMed
Walker, CK, Krakowiak, P, Baker, A, et al. Preeclampsia, placental insufficiency, and autism spectrum disorder or developmental delay. JAMA Pediatrics 2015; 169: 154–62.CrossRefGoogle ScholarPubMed
Bortolus, R, Ricci, E, Chatenoud, L, Parazzini, F. Nifedipine administered in pregnancy: effect on the development of children at 18 months. BJOG 2000; 107: 792–4.CrossRefGoogle ScholarPubMed
Chan, WS, Koren, G, Barrera, M, et al. Neurocognitive development of children following in-utero exposure to labetalol for maternal hypertension: a cohort study using a prospectively collected database. Hypertension in Pregnancy 2010; 29: 271–83.CrossRefGoogle ScholarPubMed
Sawhney, H, Suri, V, Vasishta, K, et al. Pregnancy and congenital heart disease: maternal and fetal outcome. Aust NZ J Obstet Gynaecol 1998; 38: 266–71.CrossRefGoogle ScholarPubMed
Kallen, B, Rydhstroem, H, Aberg, A. Asthma during pregnancy: a population based study. Eur J Epidemiol 2000; 16: 167–71.CrossRefGoogle ScholarPubMed
Lyall, K, Ashwood, P, Van de Water, J, Hertz-Picciotto, I. Maternal immune-mediated conditions, autism spectrum disorders, and developmental delay. J Autism Dev Disord 2014; 44: 1546–55.Google ScholarPubMed
Patel, EM, Swamy, GK, Heine, RP, et al. Medical and obstetric complications among pregnant women with cystic fibrosis. Am J Obstet Gynecol 2015; 212(98):e19.CrossRefGoogle ScholarPubMed
Morreale de Escobar, G, Obregon, MJ, Escobar del Rey, F. Role of thyroid hormone during early brain development. Eur J Endocrinol 2004; 151(Suppl. 3):U2537.CrossRefGoogle ScholarPubMed
Lavado-Autric, R, Auso, E, Garcia-Velasco, JV, et al. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest 2003; 111: 1073–82.CrossRefGoogle ScholarPubMed
Gyamfi, C, Wapner, RJ, D’Alton, ME. Thyroid dysfunction in pregnancy: the basic science and clinical evidence surrounding the controversy in management. Obstet Gynecol 2009; 113: 702–7.Google ScholarPubMed
Pharoah, PO, Buttfield, IH, Hetzel, BS. Neurological damage to the fetus resulting from severe iodine deficiency during pregnancy. Lancet 1971; 1: 308–10.Google ScholarPubMed
Haddow, JE, Palomaki, GE, Allan, WC, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 1999; 341: 549–55.CrossRefGoogle ScholarPubMed
Schaefer-Graf, UM, Buchanan, TA, Xiang, A, et al. Patterns of congenital anomalies and relationship to initial maternal fasting glucose levels in pregnancies complicated by type 2 and gestational diabetes. Am J Obstet Gynecol 2000; 182: 313–20.CrossRefGoogle ScholarPubMed
Clausen, TD, Mortensen, EL, Schmidt, L, et al. Cognitive function in adult offspring of women with type 1 diabetes. Diabetic Med 2011; 28: 838–44.CrossRefGoogle ScholarPubMed
Fraser, A, Almqvist, C, Larsson, H, et al. Maternal diabetes in pregnancy and offspring cognitive ability: sibling study with 723,775 men from 579,857 families. Diabetologia 2014; 57: 102–9.CrossRefGoogle ScholarPubMed
Clausen, TD, Mortensen, EL, Schmidt, L, et al. Cognitive function in adult offspring of women with gestational diabetes–the role of glucose and other factors. PloS One 2013; 8: e67107.CrossRefGoogle ScholarPubMed
Tam, EW, Haeusslein, LA, Bonifacio, SL, et al. Hypoglycemia is associated with increased risk for brain injury and adverse neurodevelopmental outcome in neonates at risk for encephalopathy. J Pediatr 2012; 161: 8893.CrossRefGoogle ScholarPubMed
American Academy of Pediatrics CoG. Maternal phenylketonuria. Pediatrics 2008; 122: 445–9.PubMed
Cetin, I, Corbetta, C, Sereni, LP, et al. Umbilical amino acid concentrations in normal and growth-retarded fetuses sampled in utero by cordocentesis. Am J Obstet Gynecol 1990; 162: 253–61.CrossRefGoogle ScholarPubMed
Lenke, RR, Levy, HL. Maternal phenylketonuria and hyperphenylalaninemia: an international survey of the outcome of untreated and treated pregnancies. N Engl J Med 1980; 303: 1202–8.CrossRefGoogle ScholarPubMed
Rouse, B, Azen, C, Koch, R, et al. Maternal Phenylketonuria Collaborative Study (MPKUCS) offspring: facial anomalies, malformations, and early neurological sequelae. Am J Med Genet 1997; 69:8995.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Pacheco, LD, Berkowitz, RL, Moise, KJ Jr, et al. Fetal and neonatal alloimmune thrombocytopenia: a management algorithm based on risk stratification. Obstet Gynecol 2011; 118: 1157–63.CrossRefGoogle ScholarPubMed
Pearson, HA, Shulman, NR, Marder, VJ, Cone, TE Jr. Isoimmune neonatal thrombocytopenic purpura: clinical and therapeutic considerations. Blood 1964; 23: 154–77.Google ScholarPubMed
Tiller, H, Kamphuis, MM, Flodmark, O, et al. Fetal intracranial haemorrhages caused by fetal and neonatal alloimmune thrombocytopenia: an observational cohort study of 43 cases from an international multicentre registry. BMJ Open 2013; 3.CrossRefGoogle ScholarPubMed
Weisz, B, Rosenbaum, O, Chayen, B, et al. Outcome of severely anaemic fetuses treated by intrauterine transfusions. Arch Dis Child Fetal Neonatal Ed 2009; 94: F201–4.Google ScholarPubMed
Copel, JA, Bahtiyar, MO. A practical approach to fetal growth restriction. Obstet Gynecol 2014; 123: 1057–69.CrossRefGoogle ScholarPubMed
Tong, M, Viall, CA, Chamley, LW. Antiphospholipid antibodies and the placenta: a systematic review of their in vitro effects and modulation by treatment. Hum Reprod Update 2015; 21: 97118.CrossRefGoogle ScholarPubMed
Smyth, A, Oliveira, GH, Lahr, BD, et al. A systematic review and meta-analysis of pregnancy outcomes in patients with systemic lupus erythematosus and lupus nephritis. Clin J Am Soc Nephrol 2010; 5: 2060–8.CrossRefGoogle ScholarPubMed
Ostensen, M, Clowse, M. Pathogenesis of pregnancy complications in systemic lupus erythematosus. Curr Opin Rheumatol 2013; 25: 591–6.CrossRefGoogle ScholarPubMed
Friedman, DM, Kim, MY, Copel, JA, et al. Prospective evaluation of fetuses with autoimmune-associated congenital heart block followed in the PR Interval and Dexamethasone Evaluation (PRIDE) study. Am J Cardiol 2009; 103: 1102–6.CrossRefGoogle ScholarPubMed
Hirvikoski, T, Nordenstrom, A, Lindholm, T, et al. Cognitive functions in children at risk for congenital adrenal hyperplasia treated prenatally with dexamethasone. J Clin Endocrinol Metab 2007; 92: 542–8.CrossRefGoogle ScholarPubMed
Khandaker, GM, Zimbron, J, Lewis, G, Jones, PB. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med 2013; 43: 239–57.CrossRefGoogle ScholarPubMed
Atladottir, HO, Henriksen, TB, Schendel, DE, Parner, ET. Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study. Pediatrics 2012; 130: e1447–54.CrossRefGoogle Scholar
Zerbo, O, Iosif, AM, Walker, C, et al. Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) study. J Autism Dev Disord 2013; 43:2533.CrossRefGoogle ScholarPubMed
Roizen, N, Swisher, CN, Stein, MA, et al. Neurologic and developmental outcome in treated congenital toxoplasmosis. Pediatrics 1995; 95:1120.Google ScholarPubMed
Demmler, GJ, Infectious Diseases Society of America and Centers for Disease Control. Summary of a workshop on surveillance for congenital cytomegalovirus disease. Rev Infect Dis 1991; 13: 315–29.CrossRefGoogle ScholarPubMed
Foulon, I, Naessens, A, Foulon, W, et al. A 10-year prospective study of sensorineural hearing loss in children with congenital cytomegalovirus infection. J Pediatr 2008; 153: 84–8.CrossRefGoogle ScholarPubMed
Lanari, M, Lazzarotto, T, Venturi, V, et al. Neonatal cytomegalovirus blood load and risk of sequelae in symptomatic and asymptomatic congenitally infected newborns. Pediatrics 2006; 117: e7683.CrossRefGoogle ScholarPubMed
Fowler, KB, Stagno, S, Pass, RF, et al. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 1992; 326: 663–7.CrossRefGoogle ScholarPubMed
Sauerbrei, A, Wutzler, P. The congenital varicella syndrome. J Perinatol 2000; 20: 548–54.CrossRefGoogle ScholarPubMed
Chau, V, McFadden, DE, Poskitt, KJ, Miller, SP. Chorioamnionitis in the pathogenesis of brain injury in preterm infants. Clin Perinatol 2014; 41: 83103.CrossRefGoogle ScholarPubMed
Meeraus, WH, Petersen, I, Gilbert, R. Association between antibiotic prescribing in pregnancy and cerebral palsy or epilepsy in children born at term: a cohort study using the health improvement network. PloS One 2015; 10: e0122034.CrossRefGoogle ScholarPubMed
Manuck, TA, Varner, MW. Neonatal and early childhood outcomes following early vs later preterm premature rupture of membranes. Am J Obstet Gynecol 2014; 211(308): e16.CrossRefGoogle ScholarPubMed
Reddy, UM, Abuhamad, AZ, Levine, D, Saade, GR; Fetal Imaging Workshop Invited Participants. Fetal imaging: executive summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for MaternalFetal Medicine, American Institute of Ultrasound in Medicine, American College of Obstetricians and Gynecologists, American College of Radiology, Society for Pediatric Radiology, and Society of Radiologists in Ultrasound Fetal Imaging workshop. J Ultrasound Med 2014; 33: 745–57.CrossRefGoogle Scholar
Iyasu, S, Saftlas, AK, Rowley, DL, et al. The epidemiology of placenta previa in the United States, 1979 through 1987. Am J Obstet Gynecol 1993; 168: 1424–9.CrossRefGoogle ScholarPubMed
Cresswell, JA, Ronsmans, C, Calvert, C, Filippi, V. Prevalence of placenta praevia by world region: a systematic review and meta-analysis. Trop Med Int Health 2013; 18: 712–24.CrossRefGoogle ScholarPubMed
Clark, SL, Koonings, PP, Phelan, JP. Placenta previa/accreta and prior cesarean sections. Obstet Gynecol 1985; 66:8992.Google Scholar
Ananth, CV, Smulian, JC, Vintzileos, AM. The association of placenta previa with history of cesarean delivery and abortion: a metaanlysis. Am J Obstet Gynecol 1997; 177: 1071–8.CrossRefGoogle Scholar
Babinszki, A, Kerenyi, T, Torok, O, et al. Perinatal outcome in grand and great grand multiparity: effects of parity on obstetric risk factors. Am J Obstet Gynecol 1999; 181: 669–74.CrossRefGoogle ScholarPubMed
Ananth, CV, Smulian, JC, Vintzileos, AM. The association of placenta previa with history of cesarean delivery and abortion: a metaanalysis. Am J Obstet Gynecol 1997; 177: 1071–8.CrossRefGoogle ScholarPubMed
Williams, MA, Mittendorf, R, Lieberman, E, et al. Cigarette smoking during pregnancy in relation to placenta previa. Am J Obstet Gynecol 1991; 165:2832.CrossRefGoogle ScholarPubMed
Handler, AS, Mason, ED, Rosenberg, DL, et al. The relationship between exposure during pregnancy to cigarette smoking and cocaine use and placenta previa. Am J Obstet Gynecol 1994; 170: 884–9.CrossRefGoogle ScholarPubMed
Schachter, M, Torbin, Y, Arieli, S, et al. In vitro fertilization is a risk factor for vasa previa. Fertil Steril 2002; 78: 642–3.CrossRefGoogle ScholarPubMed
Love, CD, Wallace, EM. Pregnancies complicated by placenta previa: what is appropriate management? Br J Obstet Gynaecol 1996; 103: 864–7.CrossRefGoogle ScholarPubMed
Farine, D, Fox, HE, Jakobson, S, et al. Is it really a placenta previa? Eur J Obstet Gynecol Reprod Biol 1989; 31: 103–8.CrossRefGoogle ScholarPubMed
Smith, RS, Lauria, MR, Comstock, CH, et al. Transvaginal ultrasonography for all placentas that appear to be low lying or over the internal cervical os. Ultrasound Obstet Gynecol 1997; 9: 22–4.CrossRefGoogle ScholarPubMed
Hertzberg, BS, Bowie, JD, Carroll, BA, et al. Diagnosis of placenta previa during the third trimester: role of transperineal sonography. AJR Am J Roetgenol 1992; 159: 83–7.CrossRefGoogle ScholarPubMed
Dawson, WB, Dumas, MD, Romano, WM, et al. Translabial ultrasonography and placenta previa: does measurement of the os-placenta distance predict outcome? Ultrasound Med 1996; 15: 441–6.Google ScholarPubMed
McShane, PM, Heyl, PS, Epstein, MF. Maternal and perinatal morbidity resulting from placenta previa. Obstet Gynecol 1985; 65: 176–82.Google ScholarPubMed
Cotton, DB, Read, JA, Paul, RH, et al. The conservative aggressive management of placenta previa. Am J Obstet Gynecol 1980; 137: 687–95.CrossRefGoogle ScholarPubMed
Besinger, RE, Moniak, CW, Paskiweicz, LS, et al. The effect of tocolytic use in the management of symptomatic placenta previa. Am J Obstet Gynecol 1995; 172: 1770–5.CrossRefGoogle ScholarPubMed
Chamberlain, G, Steer, P. ABC of labour care: obstetric emergencies. BMJ 1999; 318: 1342–5.Google ScholarPubMed
D’Angelo, LJ, Irwin, LF. Conservation management of placenta previa: a cost-benefit analysis. Am J Obstet Gynecol 1984; 149: 320–6.Google Scholar
Wing, DA, Paul, RH, Millar, LK. Management of the symptomatic placenta previa: a randomized, controlled trial of inpatient versus outpatient expectant management. Am J Obstet Gynecol 1996; 175: 806–11.CrossRefGoogle ScholarPubMed
Brar, HS, Platt, LD, De Vore, GR, et al. Fetal umbilical velocimetry for the surveillance of pregnancies complicated by placenta previa. Reprod Med 1988; 33: 741–4.Google ScholarPubMed
Wolf, EJ, Mallozi, A, Rodis, JF, et al. Placenta previa is not an independent risk factor for a small for gestational age infant. Obstet Gynecol 1991; 77: 707–9.Google Scholar
Ananth, CV, Demisse, K, Smulian, JC, Vintzileos, AM. Placenta previa in singleton and twin births in the United States, 1989 through 1998: a comparison of risk factor profiles and associated conditions. Am J Obstet Gynecol 2003; 188: 275–81.CrossRefGoogle ScholarPubMed
Ananth, CV, Smulian, JC, Vintzileos, AM. The effect of placenta previa on neonatal mortality: a population-based study in the United States, 1989 through 1997. Am J Obstet Gynecol 2003; 188: 1299–304.CrossRefGoogle ScholarPubMed
Crane, JM, van den Hof, MC, Dodds, L, et al. Neonatal outcomes with placenta previa. Obstet Gynecol 1999; 93: 541–4.Google ScholarPubMed
Kåregård, M, Gennser, G. Incidence and recurrence rate of abruptio placentae in Sweden. Obstet Gynecol 1986; 67: 523–8.Google ScholarPubMed
Ananth, CV, Smulian, JC, Vintzileos, AM. Incidence of placental abruption in relation to cigarette smoking and hypertensive disorders during pregnancy: a meta-analysis of observational studies. Obstet Gynecol 1999; 93: 622–8.Google ScholarPubMed
Ananth, CV, Wilcox, AJ. Placental abruption and perinatal mortality in the United States. Am J Epidemiol 2001; 153: 332–7.CrossRefGoogle ScholarPubMed
Abdella, TN, Sibai, BM, Hays, JM, et al. Perinatal outcome in abruptio placentae. Obstet Gynecol 1984; 63: 365–70.Google Scholar
Pritchard, JA, Cunningham, FG, Pritchard, SA, et al. On reducing the frequency of severe abruptio placentae. Am J Obstet Gynecol 1991; 165: 1345–51.CrossRefGoogle ScholarPubMed
Kramer, MS, Usher, RH, Pollack, R, et al. Etiologic determinants of abruptio placentae. Obstet Gynecol 1997; 89: 221–6.CrossRefGoogle ScholarPubMed
Krohn, M, Voig, L, McKnight, B, et al. Correlates of placental abruption. Br J Obstet Gynaecol 1987; 94: 333–40.CrossRefGoogle ScholarPubMed
Toohey, JS, Keegan, KA, Morgan, MA, et al. The “dangerous multipara”: fact or fiction? Am J Obstet Gynecol 1995; 172: 683–6.CrossRefGoogle ScholarPubMed
Ananth, CV, Savitz, DA, Williams, MA. Placental abruption and its association with hypertension and prolonged rupture of membranes: a methodologic review and meta-analysis. Obstet Gynecol 1996; 88: 309–18.CrossRefGoogle ScholarPubMed
Ananth, CV, Savitz, DA, Bowes, WA, et al. Influence of hypertensive disorders and cigarette smoking on placental abruption and uterine bleeding during pregnancy. Br J Obstet Gynaecol 1997; 104: 572–8.CrossRefGoogle ScholarPubMed
Sibai, BM, Lindheimer, M, Hauth, J, et al. Risk factors for preeclampsia, abruptio placentae and adverse neonatal outcomes among women with chronic hypertension. National Institute of Child Health and Human Development network of maternal–fetal medicine units. N Engl J Med 1998; 339: 667–71.CrossRefGoogle ScholarPubMed
Ananth, CV, Berkowitz, GS, Savitz, DA, et al. Placental abruption and adverse perinatal outcomes. JAMA 1999; 282: 1646–51.CrossRefGoogle ScholarPubMed
Misra, DP, Ananth, CV. Risk factor profiles of placental abruption in first and second pregnancies: heterogeneous etiologies. J Clin Epidemiol 1999; 52: 453–61.CrossRefGoogle ScholarPubMed
Gonen, R, Hannah, ME, Milligan, JE. Does prolonged premature rupture of the membranes predispose to abruptio placentae? Obstet Gynecol 1989; 74: 347–50.Google ScholarPubMed
Major, CA, de Veciana, M, Lewis, DF, et al. Preterm premature rupture of membranes and abruptio placentae: is there an association between these pregnancy complications? Am J Obstet Gynecol 1995; 172: 672–6.CrossRefGoogle ScholarPubMed
Bingol, N, Fuchs, M, Diaz, V, et al. Teratogenicity of cocaine in humans. J Pediatr 1987; 110: 93–6.CrossRefGoogle ScholarPubMed
Hoskins, IA, Friedman, DM, Frieden, FJ, et al. Relationship between antepartum cocaine abuse, abnormal umbilical artery Doppler velocimetry, and placental abruption. Obstet Gynecol 1991; 78: 279–82.Google ScholarPubMed
Slutsker, L. Risks associated with cocaine use during pregnancy. Obstet Gynecol 1992; 79: 778–89.Google ScholarPubMed
Kupferminc, MJ, Eldor, A, Steinman, N, et al. Increased frequency of genetic thrombophilia in women with complications of pregnancy. N Engl J Med 1999; 340: 50–2.CrossRefGoogle ScholarPubMed
Gherman, RB, Goodwin, TM. Obstetric implications of activated protein C resistance and factor V Leiden mutation. Obstet Gynecol Surv 2000; 55: 117–22.CrossRefGoogle ScholarPubMed
Kettel, LM, Branch, DW, Scott, JR. Occult placental abruption after maternal trauma. Obstet Gynecol 1988; 71: 449–53.Google ScholarPubMed
Stafford, PA, Biddinger, PW, Zumwalt, RE. Lethal intrauterine fetal trauma. Am J Obstet Gynecol 1988; 159: 485–9.CrossRefGoogle ScholarPubMed
Rice, JP, Kay, HH, Mahony, BS. The clinical significance of uterine leiomyomas in pregnancy. Am J Obstet Gynecol 1989; 160: 1212–16.CrossRefGoogle ScholarPubMed
Nimrod, CA, Oppenheimer, LW. Medicine of the Fetus and Mother, 2nd edn. Philadelphia: Lippincott-Raven, 1999: 1498–501.Google Scholar
Hurd, WW, Miodovnik, M, Hertzberg, V, et al. Selective management of abruptio placentae: a prospective study. Obstet Gynecol 1983; 61: 467–73.Google ScholarPubMed
Combs, CA, Nyberg, DA, Mack, LA, et al. Expectant management after sonographic diagnosis of placental abruption. Am J Perinatol 1992; 9: 170–4.CrossRefGoogle ScholarPubMed
Towers, CV, Pircon, RA, Heppard, M. Is tocolysis safe in the management of third trimester bleeding? Am J Obstet Gynecol 1999; 180: 1572–8.CrossRefGoogle ScholarPubMed
Grunfeld, JP, Pertuiset, N. Acute renal failure in pregnancy: 1987. Am J Kidney Dis 1987; 9: 359–62.CrossRefGoogle ScholarPubMed
Shaw, KJ. Abruptio placentae. In Mishell, DR, Brenner, DR, eds., Management of Common Problems in Obstetrics and Gynecology, 3rd edn. Boston: Blackwell, 1994: 211–15.Google Scholar
Spinillo, A, Fazzi, E, Stronati, I, et al. Early morbidity and neurodevelopmental outcome in low birth weight infants born after third trimester bleeding. Am J Perinatol 1994; 11:8590.CrossRefGoogle ScholarPubMed
Oyelese, Y, Catanzarite, V, Prefumo, F, et al. Vasa previa: the impact of prenatal diagnosis on outcomes. Obstet Gynecol 2004; 103: 937–42.CrossRefGoogle ScholarPubMed
Englert, Y, Imbert, MC, Van Rosendael, E, et al. Morphological anomalies in the placentae of IVF pregnancies: preliminary report of a multicentric study. Hum Reprod 1987; 2: 155–7.CrossRefGoogle ScholarPubMed
Burton, G, Saunders, DM. Vasa praevia: another cause of concern in in vitro fertilization pregnancies. Aust NZ J Obstet Gynaecol 1988; 28: 180–1.CrossRefGoogle ScholarPubMed
Oyelese, KO, Schwarzler, P, Coates, S, et al. A strategy for reducing the mortality rate from vasa previa using transvaginal sonography with color Doppler. Ultrasound Obstet Gynecol 1998; 12: 377–9.CrossRefGoogle ScholarPubMed
Carp, HJ, Mashiach, S, Serr, DM. Vasa previa: a major complication and its management. Obstet Gynecol 1979; 53: 273–5.Google Scholar
Cordero, DR, Helfgoftt, AW, Landy, HJ, et al. A non-hemorrhagic manifestation of vasa previa: a clinico-pathologic case report. Obstet Gynecol 1993; 82:698700.Google Scholar
Antoine, C, Young, BK, Silverma, F, et al. Sinusoidal fetal heart rate pattern with vasa previa in twin pregnancy. J Reprod Med 1982; 27: 295300.Google ScholarPubMed
Oyelese, KO, Turner, M, Lees, C, et al. Vasa previa: an avoidable obstetric tragedy. Obstet Gynecol Surv 1999; 54: 138–45.CrossRefGoogle ScholarPubMed
Harding, JA, Lewis, DF, Major, CA, et al. Color flow Doppler: a useful instrument in the diagnosis of vasa previa. Am J Obstet Gynecol 1990; 163: 1566–8.CrossRefGoogle Scholar
Meyer, WJ, Blumenthal, L, Cadkin, A, et al. Vasa previa: prenatal diagnosis with transvaginal color Doppler flow imaging. Am J Obstet Gynecol 1993; 169: 1627–9.CrossRefGoogle ScholarPubMed
Hata, K, Hata, T, Fujiwaki, R, et al. An accurate antenatal diagnosis of vasa previa with transvaginal color Doppler ultrasonography. Am J Obstet Gynecol 1994; 171: 265–7.CrossRefGoogle ScholarPubMed
Clerici, G, Burnelli, L, Lauro, V, et al. Prenatal diagnosis of vasa previa presenting as amniotic band: “a not so innocent amniotic band.” Ultrasound Obstet Gynecol 1996; 7: 61–3.CrossRefGoogle Scholar
Lee, W, Kirk, JS, Comstock, CH, et al. Vasa previa: prenatal detection by three-dimensional ultrasonography. Ultrasound Obstet Gynecol 2000; 16: 384–7.CrossRefGoogle ScholarPubMed
Oyelese, Y, Chavez, MR, Yeo, I, et al. Three-dimensional sonographic diagnosis of vasa previa. Ultrasound Obstet Gynecol 2004; 24: 211–5.CrossRefGoogle ScholarPubMed
Robinson, BK, Grobman, WA. Effectiveness of timing strategies for delivery of individuals with vasa previa. Obstet Gynecol 2011; 117: 542–9.CrossRefGoogle ScholarPubMed
Schellpfeffer, MA. Improved neonatal outcome of vasa previa with aggressive intrapartum management: a report of two cases. J Reprod Med 1995; 40: 327–32.Google ScholarPubMed
Publications Committee, Society for Maternal-Fetal Medicine. Placenta accreta. Am J Obstet Gynecol 2010; 203: 430–9.PubMed
Gyamfi-Bannerman, C, Gilbert, S, Landon, MB, et al. Risk of uterine rupture and placenta accreta with prior uterine surgery outside of the lower segment. Obstet Gynecol 2012; 120: 1332–7.CrossRefGoogle ScholarPubMed
Norwitz, ER, Stern, HM, Grier, H, Lee-Parritz, A. Placenta percreta and uterine rupture associated with prior whole body radiation therapy. Obstet Gynecol 2001; 98: 929–31.Google ScholarPubMed
Hare, AA, Olah, KS. Pregnancy following endometrial ablation: a review article. J Obstet Gynaecol 2005; 25: 108–14.CrossRefGoogle ScholarPubMed
Wu, S, Kocherginsky, M, Hibbard, JU. Abnormal placentation: twenty-year analysis. Am J Obstet Gynecol 2005; 192: 1458–61.CrossRefGoogle ScholarPubMed
Wax, JR, Seiler, A, Horowitz, S, Ingardia, CJ. Interpregnancy interval as a risk factor for placenta accreta. Conn Med 2000; 64: 659–61.Google ScholarPubMed
Esh-Broder, E, Ariel, I, Abas-Bashir, N, et al. Placenta accreta is associated with IVF pregnancies: a retrospective chart review. BJOG 2011; 118: 1084–9.CrossRefGoogle ScholarPubMed
Silver, RM, Landon, MB, Rouse, DJ, et al. Maternal morbidity associated with multiple repeat cesarean deliveries. Obstet Gynecol 2006; 107: 1226–32.CrossRefGoogle ScholarPubMed
Berkley, EM, Abuhamad, AZ. Prenatal diagnosis of placenta accrete: is sonography all we need? J Ultrasound Med 2013; 32: 1345–50.CrossRefGoogle Scholar
Comstock, CH, Bronsteen, RA. The antenatal diagnosis of placenta accreta. BJOG 2014; 121: 171–81.CrossRefGoogle ScholarPubMed
D’Antonio, F, Iacovella, C, Palacios-Jarquemada, J, et al. Prenatal identification of invasive placentation using magnetic resonance imaging: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2014; 44: 816CrossRefGoogle ScholarPubMed
Silver, RM, Fox, KA, Barton, JR, et al. Center of excellence for placenta accreta. Am J Obstet Gynecol 2015; 212: 561–8.CrossRefGoogle ScholarPubMed
Robinson, BK, Grobman, WA. Effectiveness of timing strategies for delivery of individuals with placenta previa and accreta. Obstet Gynecol 2010; 116: 835–42.CrossRefGoogle ScholarPubMed
Sentilhes, L, Ambroselli, C, Kayem, G, et al. Maternal outcome after conservative management of placenta accreta. Obstet Gynecol 2010; 115: 526–34.CrossRefGoogle ScholarPubMed
Riggs, JC, Jahshan, A, Schiavello, HJ. Alternative conservative management of placenta accreta: a case report. J Reprod Med 2000; 45: 595–8.Google ScholarPubMed
Grobman, WA, Gersnoviez, R, Landon, MB, et al. Pregnancy outcomes for women with placenta previa in relation to the number of prior cesarean deliveries. Obstet Gynecol 2007; 110: 1249–55.CrossRefGoogle ScholarPubMed
Naeye, RL. Umbilical cord length: clinical significance. J Pediatr 1985; 107: 278–81.CrossRefGoogle ScholarPubMed
Krakowiak, P, Smith, EN, de Bruyn, G, et al. Risk factors and outcomes associated with a short umbilical cord. Obstet Gynecol 2004; 103: 119–27.CrossRefGoogle ScholarPubMed
Rolschau, J. The relationship between some disorders of the umbilical cord and intrauterine growth retardation. Acta Obstet Gynaecol Scand Suppl 1978; 72:1521.CrossRefGoogle ScholarPubMed
Liu, CC, Pretorious, DH, Scioscia, AL, et al. Sonographic prenatal diagnosis of marginal placental cord insertion: clinical importance. J Ultrasound Med 2002; 21: 627–32.CrossRefGoogle ScholarPubMed
Heinonen, S, Ryynaenen, M, Kirkinen, P, et al. Perinatal diagnostic evaluation of velamentous and umbilical cord insertion: clinical, Doppler, and ultrasonic findings. Obstet Gynecol 1996; 87: 112–17.CrossRefGoogle ScholarPubMed
Hasegawa, J, Matsuoka, R, Ichizuka, K, et al. Velamentous cord insertion into the lower third of the uterus is associated with intrapartum fetal heart rate abnormalities. Ultrasound Obstet Gynecol 2006; 27: 425–9.CrossRefGoogle ScholarPubMed
Substance Abuse and Mental Health Services Administration. 2013 National Survey on Drug Use and Health: Summary of National Findings (NSDUH Series H-48, HHS Publication No. [SMA] 14–4863). Rockville, MD: Substance Abuse and Mental Health Services Administration, 2014.
Tan, CH, Denny, CH, Cheal, NE, et al. Alcohol use and binge drinking among women of childbearing age – United States, 2011–2013. MMWR 2015; 64(37): 1042–6.Google ScholarPubMed
Kelly, RH, Zatzick, DF, Anders, TF. The detection and treatment of psychiatric disorders and substance use among pregnant women cared for in obstetrics. Am J Psychiatry 2014; 158(2): 213–9.Google Scholar
Briggs, GG, Freeman, RK,Yaffe, SJ. Introduction. In Drugs in Pregnancy and Lactation, 9th edn. Philadelphia: Lippincott, Williams & Wilkins, 2011: xvxxii.Google Scholar
Kraemer, K. Placental transfer of drugs. Neonatal Netw 1997; 16: 65–7.Google ScholarPubMed
Mahone, PR, Scott, K, Sleggs, G, et al. Cocaine and metabolites in amniotic fluid may prolong fetal drug exposure. Am J Obstet Gynecol 1994; 171: 465–9.CrossRefGoogle ScholarPubMed
Brent, RL. Environmental causes of human congenital malformations: the pediatrician’s role in dealing with these complex clinical problems caused by a multiplicity of environmental and genetic factors. Pediatrics 2004; 113: 957–68.Google ScholarPubMed
Konijnenberg, C. Methodological issues in assessing the impact of prenatal drug exposure. Substance Abuse Res Treat 2015; 9(S2): 3944.Google ScholarPubMed
Snodgrass, SR. Cocaine babies: a result of multiple teratogenic influences. J Child Neurol 1994; 9: 227–33.CrossRefGoogle ScholarPubMed
Lemoine, P, Harousseau, H, Borteyru, JP, et al. Les enfants des parents alcoholiques: anomolies observees a propos de 127 cas (The children of alcoholic parents: anomalies observed in 127 cases). Quest Med 1968; 25: 476–82.Google Scholar
Jones, KL, Smith, DW, Ulleland, CN, Streissguth, AP. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet 1973; 301(7815): 1267–71.CrossRefGoogle Scholar
Stratton, K, Howe, C, Battaglia, F, eds. Institute of Medicine Fetal Alcohol Syndrome: Diagnosis, Epidemiology, Prevention, and Treatment. Washington: National Academy Press; 1996.Google Scholar
May, PA, Keaster, C, Bozeman, R, et al. Prevalence and characteristics of fetal alcohol syndrome and partial fetal alcohol syndrome in a Rocky Mountain region city. Drug Alcohol Depend 2015; 155: 118–27.CrossRefGoogle Scholar
May, PA, Baete, A, Russo, J, et al. Prevalence and characteristics of fetal alcohol spectrum disorders. Pediatrics 2014; 134(5): 855–66.CrossRefGoogle ScholarPubMed
May, PA, Blankenship, J, Marais, AS, et al. Approaching the prevalence of the full spectrum of fetal alcohol spectrum disorders in a South African population-based study. Alcohol Clin Exp Res. 2013; 37(5): 818–30.CrossRefGoogle Scholar
Centre for Addiction and Mental Health C. Fetal alcohol spectrum disorders: how widespread are they in Canada? Available at: (accessed March 29, 2016).
Abel, EL, Sokol, RJ. A revised conservative estimate of the incidence of FAS and its economic impact. Alcohol Clin Exp Res. 1991; 15(3): 514–24.CrossRefGoogle ScholarPubMed
Harwood, H. Updating Estimates of the Economic Costs of Alcohol Abuse in the United States: Estimates, Updated Methods and Data. Report Prepared by the Lewin Group. Bethesda, MD:National Institute on Alcohol Abuse and Alcoholism, 2000.Google Scholar
Stade, BC, Ali, A, Bennett, D, et al. The burden of prenatal exposure to alcohol: revised measurement of cost. J Popul Ther Clin Pharmacol 2009; 16: e91102.Google Scholar
Williams, JF, Smith, VC; Committee on Substance Abuse. Fetal alcohol spectrum disorders. Pediatrics 2015; 136(5): e1395–406.CrossRefGoogle ScholarPubMed
Hoyme, HE, May, PA, Kalberg, WO, et al. A practical clinical approach to diagnosis of fetal alcohol spectrum disorders: clarification of the 1996 institute of medicine criteria. Pediatrics 2005; 115: 3947.CrossRefGoogle ScholarPubMed
Astley, SJ, Clarren, SK. Diagnosing the full spectrum of fetal alcohol-exposed individuals: introducing the 4-digit diagnostic code. Alcohol Alcohol 2000; 35: 400–10.CrossRefGoogle ScholarPubMed
World Health Organization. The ICD-10 Classification of Mental and Behavioral Disorders: Clinical Descriptions and Diagnostic Guidelines. Geneva: WHO, 1992.PubMed
American Psychiatric Association. A Diagnostic and Statistical Manual of Mental Disorders, 5th edn. Arlington, VA: American Psychiatric Publishing, 2013: 798801.PubMed
Centers for Disease Control and Prevention. Fetal Alcohol Spectrum Disorders: Guidelines for Referral and Diagnosis. Atlanta:CDC, 2004.PubMed
Chudley, AE, Conry, J, Cook, JL, et al. Fetal alcohol spectrum disorder: Canadian guidelines for diagnosis. CMAJ 2005; 172: S121.CrossRefGoogle ScholarPubMed
Cook, JL, Green, CR, Lilley, CM, et al. Fetal alcohol spectrum disorder: a guideline for diagnosis across the lifespan. CMAJ 2015; 188(3): 191–7.Google ScholarPubMed
Hoyme, HE, Kalberg, WO, Elliott, AJ, et al. Updated clinical guidelines for diagnosing fetal alcohol spectrum disorders. Pediatrics 2016; 138(2):pii: e20154256.CrossRefGoogle ScholarPubMed
Swayze, VW, Johnson, VP, Hanson, JW, et al. Magnetic resonance imaging of brain anomalies in fetal alcohol syndrome. Pediatrics 1997; 99: 232–40.CrossRefGoogle ScholarPubMed
Mattson, SN, Schoenfeld, AM, Riley, EP. Teratogenic effects of alcohol on brain and behavior. Alcohol Res Health 2001; 25(3): 185–91.Google ScholarPubMed
Spadoni, AD, McGee, CL, Fryer, SL, Riley, EP. Neuroimaging and fetal alcohol spectrum disorders. Neurosci Biobehav Rev 2007; 31(2): 239–45.CrossRefGoogle ScholarPubMed
Jacobson, JL, Jacobson, SW, Sokol, RJ, et al. Effects of alcohol use, smoking and illicit drug use on fetal growth in black infants. J Pediatr 1994; 124: 757–64.CrossRefGoogle ScholarPubMed
Charness, ME, Safran, RM, Perides, G. Ethanol inhibits neural cell-cell adhesion. J Biol Chem 1994; 269: 9304–9.Google ScholarPubMed
DeJonge, MH, Zachman, RD. The effect of maternal ethanol ingestion on fetal rat heart vitamin A: a model for fetal alcohol syndrome. Pediatr Res 1995; 37: 418–23.CrossRefGoogle ScholarPubMed
Naus, CCG, Bechberger, JF. Effect of prenatal ethanol exposure on postnatal neural gene expression in the rat. Dev Genet 1991; 12: 293–8.CrossRefGoogle ScholarPubMed
Miller, MW. Prenatal exposure to ethanol delays the schedule and rate of migration of neurons to rat somatosensory cortex. In Fifth Congress of the International Society for Biomedical Research on Alcoholism (ISBRA). Denver: ISBRA, 1990.Google Scholar
Holzman, C, Paneth, N, Little, R, et al. Perinatal brain injury in premature infants born to mothers using alcohol in pregnancy. Pediatrics 1995; 95: 6673.