Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-l84fh Total loading time: 0.257 Render date: 2021-10-27T19:59:29.200Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

10 - Formation and evolution

Published online by Cambridge University Press:  01 June 2011

Michael Perryman
Affiliation:
Max-Planck-Institut für Astronomie, Heidelberg
Get access

Summary

Overview

Planetary systems, the solar system amongst them, are believed to form as inevitable and common by-products of star formation. For orientation, an overview of the processes described in this chapter is as follows.

The present paradigm starts with star formation in molecular clouds. Brown dwarfs are formed as the lowmass tail of this process, although some may be formed as a high-mass tail of planet formation. Gas and dust in the collapsing molecular cloud which does not fall directly onto the protostar resides in a relatively long-lived accretion disk which provides the environment for the subsequent stages of planet formation. Terrestrial-mass planets are formed within the disk through the progressive agglomeration of material denoted, as it grows in size, as dust, rocks, planetesimals and protoplanets. A similar process typically occurring further out in the disk results in the cores of giant planets, which then gravitationally accumulate their mantles of ice and/or gas.

As the planet-forming bodies grow in mass, growth and dynamics become more dominated by gravitational interactions. Towards the final phases, and before the remaining gas is lost through accretion or dispersal, the gas provides a viscous medium at least partially responsible for planetary migration. Some migration also occurs during these later stages as a result of gravitational scattering between the (proto-)planets and the residual sea of planetesimals. The final structural stabilisation of the planetary system may be affected by planet–planet interactions, until a configuration emerges which may be dynamically stable over billions of years.

Type
Chapter
Information
The Exoplanet Handbook , pp. 217 - 254
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Formation and evolution
  • Michael Perryman, Max-Planck-Institut für Astronomie, Heidelberg
  • Book: The Exoplanet Handbook
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511994852.011
Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

  • Formation and evolution
  • Michael Perryman, Max-Planck-Institut für Astronomie, Heidelberg
  • Book: The Exoplanet Handbook
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511994852.011
Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

  • Formation and evolution
  • Michael Perryman, Max-Planck-Institut für Astronomie, Heidelberg
  • Book: The Exoplanet Handbook
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511994852.011
Available formats
×