Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-7qpfz Total loading time: 1.346 Render date: 2022-11-28T16:53:07.506Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Chapter 3 - Hominin Evolution I

The Origins of Homo sapiens

Published online by Cambridge University Press:  08 September 2022

Riadh Abed
Affiliation:
Mental Health Tribunals, Ministry of Justice, UK
Paul St John-Smith
Affiliation:
Hertfordshire Partnership University NHS Foundation Trust, UK
Get access

Summary

Just over 50,000 years ago – a blink in evolutionary time – there were at least six, possibly seven, human species alive: sapiens, neanderthal, denisova, floresiensis, luzonensis, remnants of erectus and, perhaps, the last of Homo naledi. This is similar to contemporary primates, with chimpanzees, gorillas, baboons and so forth all living side by side. It underlines the important fact that sapiens is one hominin species among many and that it is firmly part of nature and does not stand apart from it. However, we are used to occupying a unique solo position as the only humans, though such a situation accounts for less than 1% of the time since we separated from our last common ancestor with chimpanzees. This has led to the conceit and falsehood that evolution is a linear trail, marked through ever greater brain growth, leading to us. It also adds to the challenge when looking at the fossil record to determine whether some ancient species were indeed our ancestors or just side chains in a rich hominin tree. A further difficulty is that taxonomic descriptions imply clean leaps from species to species, such as between Homo habilis and Homo erectus. However, each child is a close genetic variant of its parents, and there are no hard borders as changes accrue across millennia. Late Australopithecus looks closer to the genus Homo than to early Australopithecines. Determining ‘when is a species a species’ is difficult (Barraclough, ). Adding to the uncertainty, interbreeding between different human species appears to be the rule rather than the exception, with there being complex flows of genetic material. It is a jigsaw for which we do not know how many pieces there are, nor how they might interlink. Further, the pieces are often found in fragments of single bones, and they can be so rare that many finds remain known by their ‘site name’. The last 10 years have seen enormous leaps in palaeoanthropology, from the discovery of previously unknown (and entirely unexpected) human species, to advances in molecular biology that have allowed us to sequence the Neanderthal genome and better estimate temporal links between fossils. Genetic data tell us that there are several other hominin species as yet undiscovered, whose ghostly footprints are currently seen only through a unique genetic imprint across some human populations.

Type
Chapter
Information
Evolutionary Psychiatry
Current Perspectives on Evolution and Mental Health
, pp. 35 - 49
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello, L. C. and Wheeler, P. 1995. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr Anthropol, 36, 199221.CrossRefGoogle Scholar
Anton, S. C., Potts, R. and Aiello, L. C. 2014. Human evolution. Evolution of early Homo: an integrated biological perspective. Science, 345, 1236828.CrossRefGoogle ScholarPubMed
Argue, D., Groves, C. P., Lee, M. S. Y. and Jungers, W. L. 2017. The affinities of Homo floresiensis based on phylogenetic analyses of cranial, dental, and postcranial characters. J Hum Evol, 107, 107133.CrossRefGoogle ScholarPubMed
Arsuaga, J. L., Martinez, I., Gracia, A., Carretero, J. M. and Carbonell, E. 1993. Three new human skulls from the Sima de los Huesos Middle Pleistocene site in Sierra de Atapuerca, Spain. Nature, 362, 534537.CrossRefGoogle Scholar
Balzeau, A., Turq, A., Talamo, S., Daujeard, C., Guerin, G., Welker, F., Crevecoeur, I., Fewlass, H., Hublin, J. J., Lahaye, C., Maureille, B., Meyer, M., Schwab, C. and Gomez-Olivencia, A. 2020. Pluridisciplinary evidence for burial for the La Ferrassie 8 Neandertal child. Sci Rep, 10, 21230.CrossRefGoogle Scholar
Bardo, A., Moncel, M. H., Dunmore, C. J., Kivell, T. L., Pouydebat, E. and Cornette, R. 2020. The implications of thumb movements for Neanderthal and modern human manipulation. Sci Rep, 10, 19323.CrossRefGoogle ScholarPubMed
Barraclough, T. G. 2019. The Evolutionary Biology of Species. Oxford: Oxford University Press.CrossRefGoogle Scholar
Bastir, M., Garcia-Martinez, D., Torres-Tamayo, N., Palancar, C. A., Beyer, B., Barash, A., Villa, C., Sanchis-Gimeno, J. A., Riesco-Lopez, A., Nalla, S., Torres-Sanchez, I., Garcia-Rio, F., Been, E., Gomez-Olivencia, A., Haeusler, M., Williams, S. A. and Spoor, F. 2020. Rib cage anatomy in Homo erectus suggests a recent evolutionary origin of modern human body shape. Nat Ecol Evol, 4, 11781187.CrossRefGoogle ScholarPubMed
Been, E., Gomez-Olivencia, A., Shefi, S., Soudack, M., Bastir, M. and Barash, A. 2017. Evolution of spinopelvic alignment in hominins. Anat Rec (Hoboken), 300, 900911.CrossRefGoogle ScholarPubMed
Bennett, M. R., Harris, J. W., Richmond, B. G., Braun, D. R., Mbua, E., Kiura, P., Olago, D., Kibunjia, M., Omuombo, C., Behrensmeyer, A. K., Huddart, D. and Gonzalez, S. 2009. Early hominin foot morphology based on 1.5-million-year-old footprints from Ileret, Kenya. Science, 323, 11971201.CrossRefGoogle ScholarPubMed
Berger, L. R., De Ruiter, D. J., Churchill, S. E., Schmid, P., Carlson, K. J., Dirks, P. H. and Kibii, J. M. 2010. Australopithecus sediba: a new species of Homo-like australopith from South Africa. Science, 328, 195204.CrossRefGoogle ScholarPubMed
Berger, L. R., Hawks, J., De Ruiter, D. J., Churchill, S. E., Schmid, P., Delezene, L. K., Kivell, T. L., Garvin, H. M., Williams, S. A., Desilva, J. M., Skinner, M. M., Musiba, C. M., Cameron, N., Holliday, T. W., Harcourt-Smith, W., Ackermann, R. R., Bastir, M., Bogin, B., Bolter, D., Brophy, J., Cofran, Z. D., Congdon, K. A., Deane, A. S., Dembo, M., Drapeau, M., Elliott, M. C., Feuerriegel, E. M., Garcia-Martinez, D., Green, D. J., Gurtov, A., Irish, J. D., Kruger, A., Laird, M. F., Marchi, D., Meyer, M. R., Nalla, S., Negash, E. W., Orr, C. M., Radovcic, D., Schroeder, L., Scott, J. E., Throckmorton, Z., Tocheri, M. W., Vansickle, C., Walker, C. S., Wei, P. and Zipfel, B. 2015. Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa. Elife, 4, e09560.CrossRefGoogle ScholarPubMed
Berna, F., Goldberg, P., Horwitz, L. K., Brink, J., Holt, S., Bamford, M. and Chazan, M. 2012. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. PNAS, 109, E1215E1220.CrossRefGoogle ScholarPubMed
Bocquet-Appel, J. P. and Tuffreau, A. 2009. Technological responses of Neanderthals to macroclimatic variations (240,000–40,000 BP). Hum Biol, 81, 287307.CrossRefGoogle Scholar
Bramble, D. M. and Lieberman, D. E. 2004. Endurance running and the evolution of Homo. Nature, 432, 345352.CrossRefGoogle ScholarPubMed
Braun, D. R., Harris, J. W., Levin, N. E., Mccoy, J. T., Herries, A. I., Bamford, M. K., Bishop, L. C., Richmond, B. G. and Kibunjia, M. 2010. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. PNAS, 107, 1000210007.CrossRefGoogle Scholar
Brown, K. S., Marean, C. W., Herries, A. I., Jacobs, Z., Tribolo, C., Braun, D., Roberts, D. L., Meyer, M. C. and Bernatchez, J. 2009. Fire as an engineering tool of early modern humans. Science, 325, 859862.CrossRefGoogle ScholarPubMed
Brown, P., Sutikna, T., Morwood, M. J., Soejono, R. P., Jatmiko, , Saptomo, E. W. and Due, R. A. 2004. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature, 431, 10551061.CrossRefGoogle ScholarPubMed
Bunn, H. T. and Kroll, E. M. 1986. Systematic butchery by Plio-Pleistocene hominids at Olduvai Gorge, Tanzania. Curr Anthropol, 27, 431452.CrossRefGoogle Scholar
Carvalho, S., Biro, D., Cunha, E., Hockings, K., Mcgrew, W. C., Richmond, B. G. and Matsuzawa, T. 2012. Chimpanzee carrying behaviour and the origins of human bipedality. Curr Biol, 22, R180R181.CrossRefGoogle ScholarPubMed
Cerling, T. E., Wynn, J. G., Andanje, S. A., Bird, M. I., Korir, D. K., Levin, N. E., Mace, W., Macharia, A. N., Quade, J. and Remien, C. H. 2011. Woody cover and hominin environments in the past 6 million years. Nature, 476, 5156.CrossRefGoogle ScholarPubMed
Chen, F., Welker, F., Shen, C. C., Bailey, S. E., Bergmann, I., Davis, S., Xia, H., Wang, H., Fischer, R., Freidline, S. E., Yu, T. L., Skinner, M. M., Stelzer, S., Dong, G., Fu, Q., Dong, G., Wang, J., Zhang, D. and Hublin, J. J. 2019. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569, 409412.CrossRefGoogle ScholarPubMed
Davies, T. W., Delezene, L. K., Gunz, P., Hublin, J. J., Berger, L. R., Gidna, A. and Skinner, M. M. 2020. Distinct mandibular premolar crown morphology in Homo naledi and its implications for the evolution of Homo species in southern Africa. Sci Rep, 10, 13196.CrossRefGoogle ScholarPubMed
Detroit, F., Mijares, A. S., Corny, J., Daver, G., Zanolli, C., Dizon, E., Robles, E., Grun, R. and Piper, P. J. 2019. A new species of Homo from the Late Pleistocene of the Philippines. Nature, 568, 181186.CrossRefGoogle ScholarPubMed
Deviese, T., Abrams, G., Hajdinjak, M., Pirson, S., De Groote, I., Di Modica, K., Toussaint, M., Fischer, V., Comeskey, D., Spindler, L., Meyer, M., Semal, P. and Higham, T. 2021. Reevaluating the timing of Neanderthal disappearance in northwest Europe. PNAS, 118, e2022466118.CrossRefGoogle ScholarPubMed
Dirks, P. H., Roberts, E. M., Hilbert-Wolf, H., Kramers, J. D., Hawks, J., Dosseto, A., Duval, M., Elliott, M., Evans, M., Grun, R., Hellstrom, J., Herries, A. I., Joannes-Boyau, R., Makhubela, T. V., Placzek, C. J., Robbins, J., Spandler, C., Wiersma, J., Woodhead, J. and Berger, L. R. 2017. The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa. Elife, 6, e24231.CrossRefGoogle ScholarPubMed
Dunsworth, H. M. 2018. There Is no “obstetrical dilemma”: towards a braver medicine with fewer childbirth interventions. Perspect Biol Med, 61, 249263.CrossRefGoogle ScholarPubMed
Durvasula, A. and Sankararaman, S. 2020. Recovering signals of ghost archaic introgression in African populations. Sci Adv, 6, eaax5097.CrossRefGoogle ScholarPubMed
Foley, R. A., Martin, L., Mirazon Lahr, M. and Stringer, C. 2016. Major transitions in human evolution. Philos Trans R Soc Lond B Biol Sci, 371, 20150229.CrossRefGoogle ScholarPubMed
Froehle, A. W. and Churchill, S. E. 2009. Energetic competition between Neandertals and anatomically modern humans. Palaeoanthropology, 2009, 96116.Google Scholar
Garcia-Martinez, D., Torres-Tamayo, N., Torres-Sanchez, I., Garcia-Rio, F., Rosas, A. and Bastir, M. 2018. Ribcage measurements indicate greater lung capacity in Neanderthals and Lower Pleistocene hominins compared to modern humans. Commun Biol, 1, 117.CrossRefGoogle ScholarPubMed
Gomez-Robles, A., Bermudez De Castro, J. M., Arsuaga, J. L., Carbonell, E. and Polly, P. D. 2013. No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans. PNAS, 110, 1819618201.CrossRefGoogle ScholarPubMed
Gowlett, J. A. 2016. The discovery of fire by humans: a long and convoluted process. Philos Trans R Soc Lond B Biol Sci, 371, 27216521.CrossRefGoogle ScholarPubMed
Grun, R., Pike, A., Mcdermott, F., Eggins, S., Mortimer, G., Aubert, M., Kinsley, L., Joannes-Boyau, R., Rumsey, M., Denys, C., Brink, J., Clark, T. and Stringer, C. 2020. Dating the skull from Broken Hill, Zambia, and its position in human evolution. Nature, 580, 372375.CrossRefGoogle ScholarPubMed
Guillaud, E., Bearez, P., Daujeard, C., Defleur, A. R., Desclaux, E., Rosello-Izquierdo, E., Morales-Muniz, A. and Moncel, M. H. 2021. Neanderthal foraging in freshwater ecosystems: a reappraisal of the Middle Paleolithic archaeological fish record from continental Western Europe. Quat Sci Rev, 252, 106731.CrossRefGoogle Scholar
Hajdinjak, M., Mafessoni, F., Skov, L., Vernot, B., Hubner, S., Fu, Q., Essel, E. S. N., Meyer, M., Skoglund, P., Kelso, J. and Paabo, S. 2021. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature, 592, 253257.CrossRefGoogle ScholarPubMed
Hoffmann, D. L., Standish, C. D., Garcia-Diez, M., Pettitt, P. B., Milton, J. A., Zilhao, J., Alcolea-Gonzalez, J. J., Cantalejo-Duarte, P., Collado, H., De Balbin, R., Lorblanchet, M., Ramos-Munoz, J., Weniger, G. C. and Pike, A. W. G. 2018. U–Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science, 359, 912915.CrossRefGoogle ScholarPubMed
Hsieh, P., Woerner, A. E., Wall, J. D., Lachance, J., Tishkoff, S. A., Gutenkunst, R. N. and Hammer, M. F. 2016. Model-based analyses of whole-genome data reveal a complex evolutionary history involving archaic introgression in Central African Pygmies. Genome Res, 26, 291300.CrossRefGoogle ScholarPubMed
Huerta-Sanchez, E., Jin, X., Asan Bianba, Z., Peter, B. M., Vinckenbosch, N., Liang, Y., Yi, X., He, M., Somel, M., Ni, P., Wang, B., Ou, X., Huasang, , Luosang, J., Cuo, Z. X., Li, K., Gao, G., Yin, Y., Wang, W., Zhang, X., Xu, X., Yang, H., Li, Y., Wang, J., Wang, J. and Nielsen, R. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512, 194197.CrossRefGoogle ScholarPubMed
Ingicco, T., Van Den Bergh, G. D., Jago-On, C., Bahain, J. J., Chacon, M. G., Amano, N., Forestier, H., King, C., Manalo, K., Nomade, S., Pereira, A., Reyes, M. C., Semah, A. M., Shao, Q., Voinchet, P., Falgueres, C., Albers, P. C. H., Lising, M., Lyras, G., Yurnaldi, D., Rochette, P., Bautista, A. and De Vos, J. 2018. Earliest known hominin activity in the Philippines by 709 thousand years ago. Nature, 557, 233237.CrossRefGoogle ScholarPubMed
Isler, K. and Van Schaik, C. P. 2012. How our ancestors broke through the gray ceiling: comparative evidence for cooperative breeding in early Homo. Curr Anthropol, 53, S453S465.CrossRefGoogle Scholar
Jacobs, G. S., Hudjashov, G., Saag, L., Kusuma, P., Darusallam, C. C., Lawson, D. J., Mondal, M., Pagani, L., Ricaut, F. X., Stoneking, M., Metspalu, M., Sudoyo, H., Lansing, J. S. and Cox, M. P. 2019. Multiple deeply divergent Denisovan ancestries in Papuans. Cell, 177, 10101021.e32.CrossRefGoogle ScholarPubMed
Jegou, B., Sankararaman, S., Rolland, A. D., Reich, D. and Chalmel, F. 2017. Meiotic genes are enriched in regions of reduced archaic ancestry. Mol Biol Evol, 34, 19741980.CrossRefGoogle ScholarPubMed
Johanson, D. C., Taieb, M. and Coppens, Y. 1982. Pliocene hominids from the Hadar Formation, Ethiopia (1 973–1 977): stratigraphic, chronologic, and paleoenvironmental contexts, with notes on hominid morphology and systematics. Am J Phys Anthropol, 57, 373402.CrossRefGoogle Scholar
Jungers, W. L., Harcourt-Smith, W. E., Wunderlich, R. E., Tocheri, M. W., Larson, S. G., Sutikna, T., Due, R. A. and Morwood, M. J. 2009. The foot of Homo floresiensis. Nature, 459, 8184.CrossRefGoogle ScholarPubMed
Karakostis, F. A., Haeufle, D., Anastopoulou, I., Moraitis, K., Hotz, G., Tourloukis, V. and Harvati, K. 2021. Biomechanics of the human thumb and the evolution of dexterity. Curr Biol, 31, 13171325.e8.CrossRefGoogle ScholarPubMed
Kimbel, W. H., Lockwood, C. A., Ward, C. V., Leakey, M. G., Rak, Y. and Johanson, D. C. 2006. Was Australopithecus anamensis ancestral to A. afarensis? A case of anagenesis in the hominin fossil record. J Hum Evol, 51, 134152.CrossRefGoogle ScholarPubMed
Kivell, T. L., Deane, A. S., Tocheri, M. W., Orr, C. M., Schmid, P., Hawks, J., Berger, L. R. and Churchill, S. E. 2015. The hand of Homo naledi. Nat Commun, 6, 8431.CrossRefGoogle ScholarPubMed
Lachance, J., Vernot, B., Elbers, C. C., Ferwerda, B., Froment, A., Bodo, J. M., Lema, G., Fu, W., Nyambo, T. B., Rebbeck, T. R., Zhang, K., Akey, J. M. and Tishkoff, S. A. 2012. Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell, 150, 457469.CrossRefGoogle ScholarPubMed
Latimer, B. and Lovejoy, C. O. 1989. The calcaneus of Australopithecus afarensis and its implications for the evolution of bipedality. Am J Phys Anthropol, 78, 369386.CrossRefGoogle ScholarPubMed
Leakey, L. S., Tobias, P. V. and Napier, J. R. 1964. A new species of the genus Homo from Olduvai Gorge. Nature, 202, 79.CrossRefGoogle ScholarPubMed
Lewis, J. E. and Harmand, S. 2016. An earlier origin for stone tool making: implications for cognitive evolution and the transition to Homo. Philos Trans R Soc Lond B Biol Sci, 371, 20150233.CrossRefGoogle Scholar
Linnaeus, C. 1735. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Stockholm: Laurentii Salvii.Google Scholar
Mcpherron, S. P., Alemseged, Z., Marean, C. W., Wynn, J. G., Reed, D., Geraads, D., Bobe, R. and Bearat, H. A. 2010. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature, 466, 857860.CrossRefGoogle ScholarPubMed
Mondal, M., Bertranpetit, J. and Lao, O. 2019. Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania. Nat Commun, 10, 246.CrossRefGoogle ScholarPubMed
Morgan, T. J., Uomini, N. T., Rendell, L. E., Chouinard-Thuly, L., Street, S. E., Lewis, H. M., Cross, C. P., Evans, C., Kearney, R., De La Torre, I., Whiten, A. and Laland, K. N. 2015. Experimental evidence for the co-evolution of hominin tool-making teaching and language. Nat Commun, 6, 6029.CrossRefGoogle ScholarPubMed
Morwood, M. J., Soejono, R. P., Roberts, R. G., Sutikna, T., Turney, C. S., Westaway, K. E., Rink, W. J., Zhao, J. X., Van Den Bergh, G. D., Due, R. A., Hobbs, D. R., Moore, M. W., Bird, M. I. and Fifield, L. K. 2004. Archaeology and age of a new hominin from Flores in eastern Indonesia. Nature, 431, 10871091.CrossRefGoogle ScholarPubMed
Pavlicev, M., Romero, R. and Mitteroecker, P. 2020. Evolution of the human pelvis and obstructed labor: new explanations of an old obstetrical dilemma. Am J Obstet Gynecol, 222, 316.CrossRefGoogle ScholarPubMed
Plummer, T. 2004. Flaked stones and old bones: biological and cultural evolution at the dawn of technology. Am J Phys Anthropol, 125, 118164.CrossRefGoogle Scholar
Pobiner, B. L. 2020. The zooarchaeology and paleoecology of early homininscavenging. Evol Anthropol, 29, 6882.CrossRefGoogle Scholar
Pobiner, B. L., Rogers, M. J., Monahan, C. M. and Harris, J. W. 2008. New evidence for hominin carcass processing strategies at 1.5 Ma, Koobi Fora, Kenya. J Hum Evol, 55, 103130.CrossRefGoogle ScholarPubMed
Pontzer, H., Brown, M. H., Wood, B. M., Raichlen, D. A., Mabulla, A. Z. P., Harris, J. A., Dunsworth, H., Hare, B., Walker, K., Luke, A., Dugas, L. R., Schoeller, D., Plange-Rhule, J., Bovet, P., Forrester, T. E., Thompson, M. E., Shumaker, R. W., Rothman, J. M., Vogel, E., Sulistyo, F., Alavi, S., Prasetyo, D., Urlacher, S. S. and Ross, S. R. 2021. Evolution of water conservation in humans. Curr Biol, 31, 18041810.e5.CrossRefGoogle ScholarPubMed
Portmann, A. 1990. A Zoologist Looks at Humankind. New York: Columbia University Press.Google Scholar
Raichlen, D. A., Armstrong, H. and Lieberman, D. E. 2011. Calcaneus length determines running economy: implications for endurance running performance in modern humans and Neandertals. J Hum Evol, 60, 299308.CrossRefGoogle ScholarPubMed
Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W., Stenzel, U., Johnson, P. L., Maricic, T., Good, J. M., Marques-Bonet, T., Alkan, C., Fu, Q., Mallick, S., Li, H., Meyer, M., Eichler, E. E., Stoneking, M., Richards, M., Talamo, S., Shunkov, M. V., Derevianko, A. P., Hublin, J. J., Kelso, J., Slatkin, M. and Paabo, S. 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 10531060.CrossRefGoogle ScholarPubMed
Rizal, Y., Westaway, K. E., Zaim, Y., Van Den Bergh, G. D., Bettis, E. A., 3Rd, , Morwood, M. J., Huffman, O. F., Grun, R., Joannes-Boyau, R., Bailey, R. M., Sidarto, , Westaway, M. C., Kurniawan, I., Moore, M. W., Storey, M., Aziz, F., Suminto, , Zhao, J. X., Aswan, , Sipola, M. E., Larick, R., Zonneveld, J. P., Scott, R., Putt, S. and Ciochon, R. L. 2020. Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago. Nature, 577, 381385.CrossRefGoogle ScholarPubMed
Rogers, A. R., Harris, N. S. and Achenbach, A. A. 2020. Neanderthal–Denisovan ancestors interbred with a distantly related hominin. Sci Adv, 6, eaay5483.CrossRefGoogle ScholarPubMed
Shea, J. J. 2015. Making and using stone tools: advice for learners and teachers and insights for archaeologists. Lithic Technol, 40, 231248.CrossRefGoogle Scholar
Shea, J. J. 2017. Occasional, obligatory, and habitual stone tool use in hominin evolution. Evol Anthropol, 26, 200217.CrossRefGoogle ScholarPubMed
Slon, V., Mafessoni, F., Vernot, B., De Filippo, C., Grote, S., Viola, B., Hajdinjak, M., Peyregne, S., Nagel, S., Brown, S., Douka, K., Higham, T., Kozlikin, M. B., Shunkov, M. V., Derevianko, A. P., Kelso, J., Meyer, M., Prufer, K. and Paabo, S. 2018. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature, 561, 113116.CrossRefGoogle Scholar
Slon, V., Viola, B., Renaud, G., Gansauge, M. T., Benazzi, S., Sawyer, S., Hublin, J. J., Shunkov, M. V., Derevianko, A. P., Kelso, J., Prufer, K., Meyer, M. and Paabo, S. 2017. A fourth Denisovan individual. Sci Adv, 3, e1700186.CrossRefGoogle ScholarPubMed
Smith, T. M., Tafforeau, P., Reid, D. J., Pouech, J., Lazzari, V., Zermeno, J. P., Guatelli-Steinberg, D., Olejniczak, A. J., Hoffman, A., Radovcic, J., Makaremi, M., Toussaint, M., Stringer, C. and Hublin, J. J. 2010. Dental evidence for ontogenetic differences between modern humans and Neanderthals. PNAS, 107, 2092320928.CrossRefGoogle ScholarPubMed
Spoor, F., Gunz, P., Neubauer, S., Stelzer, S., Scott, N., Kwekason, A. and Dean, M. C. 2015. Reconstructed Homo habilis type OH 7 suggests deep-rooted species diversity in early Homo. Nature, 519, 8386.CrossRefGoogle ScholarPubMed
Sutikna, T., Tocheri, M. W., Faith, J. T., Jatmiko, , Due Awe, , R., Meijer, H. J. M., Wahyu Saptomo, E. and Roberts, R. G. 2018. The spatio-temporal distribution of archaeological and faunal finds at Liang Bua (Flores, Indonesia) in light of the revised chronology for Homo floresiensis. J Hum Evol, 124, 5274.CrossRefGoogle ScholarPubMed
Sutikna, T., Tocheri, M. W., Morwood, M. J., Saptomo, E. W., Jatmiko, , Awe, R. D., Wasisto, S., Westaway, K. E., Aubert, M., Li, B., Zhao, J. X., Storey, M., Alloway, B. V., Morley, M. W., Meijer, H. J., Van Den Bergh, G. D., Grun, R., Dosseto, A., Brumm, A., Jungers, W. L. and Roberts, R. G. 2016. Revised stratigraphy and chronology for Homo floresiensis at Liang Bua in Indonesia. Nature, 532, 366369.CrossRefGoogle ScholarPubMed
Teixeira, J. C., Jacobs, G. S., Stringer, C., Tuke, J., Hudjashov, G., Purnomo, G. A., Sudoyo, H., Cox, M. P., Tobler, R., Turney, C. S. M., Cooper, A. and Helgen, K. M. 2021. Widespread Denisovan ancestry in Island Southeast Asia but no evidence of substantial super-archaic hominin admixture. Nat Ecol Evol, 5, 616624.CrossRefGoogle ScholarPubMed
Trinkaus, E. and Villotte, S. 2017. External auditory exostoses and hearing loss in the Shanidar 1 Neandertal. PLoS ONE, 12, e0186684.CrossRefGoogle ScholarPubMed
Vaesen, K., Dusseldorp, G. L. and Brandt, M. J. 2021. An emerging consensus in palaeoanthropology: demography was the main factor responsible for the disappearance of Neanderthals. Sci Rep, 11, 4925.CrossRefGoogle ScholarPubMed
Van Den Bergh, G. D., Kaifu, Y., Kurniawan, I., Kono, R. T., Brumm, A., Setiyabudi, E., Aziz, F. and Morwood, M. J. 2016. Homo floresiensis-like fossils from the early Middle Pleistocene of Flores. Nature, 534, 245248.CrossRefGoogle ScholarPubMed
Vansickle, C., Cofran, Z. D. and Hunt, D. 2020. Did Neandertals have large brains? Factors affecting endocranial volume comparisons. Am J Phys Anthropol, 173, 768775.CrossRefGoogle ScholarPubMed
Vernot, B., Tucci, S., Kelso, J., Schraiber, J. G., Wolf, A. B., Gittelman, R. M., Dannemann, M., Grote, S., Mccoy, R. C., Norton, H., Scheinfeldt, L. B., Merriwether, D. A., Koki, G., Friedlaender, J. S., Wakefield, J., Paabo, S. and Akey, J. M. 2016. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science, 352, 235239.CrossRefGoogle ScholarPubMed
Villmoare, B., Kimbel, W. H., Seyoum, C., Campisano, C. J., Dimaggio, E. N., Rowan, J., Braun, D. R., Arrowsmith, J. R. and Reed, K. E. 2015. Paleoanthropology. Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science, 347, 13521355.CrossRefGoogle ScholarPubMed
Viola, B., Gunz, P., Neubauer, S., Slon, V., Kozlikin, M. B., Shunkov, M. V., Mayer, M., Paabo, S. and Derevianko, A. P. 2019. A parietal fragment from Denisova cave. Am J Phys Anthropol, 168, 258.Google Scholar
Voisin, J.-L., Feuerriegel, E. M., Churchill, S. E. and Berger, L. R. 2020. The Homo naledi shoulder girdle: an adaptation to boulder climbing. L’Anthropologie, 124, 102783.CrossRefGoogle Scholar
Welker, F., Ramos-Madrigal, J., Gutenbrunner, P., Mackie, M., Tiwary, S., Rakownikow Jersie-Christensen, R., Chiva, C., Dickinson, M. R., Kuhlwilm, M., De Manuel, M., Gelabert, P., Martinon-Torres, M., Margvelashvili, A., Arsuaga, J. L., Carbonell, E., Marques-Bonet, T., Penkman, K., Sabido, E., Cox, J., Olsen, J. V., Lordkipanidze, D., Racimo, F., Lalueza-Fox, C., Bermudez De Castro, J. M., Willerslev, E. and Cappellini, E. 2020. The dental proteome of Homo antecessor. Nature, 580, 235238.CrossRefGoogle ScholarPubMed
Wells, J. C., Desilva, J. M. and Stock, J. T. 2012. The obstetric dilemma: an ancient game of Russian roulette, or a variable dilemma sensitive to ecology? Am J Phys Anthropol, 149, 4071.CrossRefGoogle ScholarPubMed
Wrangham, R. 2009. Catching Fire. How Cooking Made Us Human. London: Profile Books.Google Scholar
Zilhao, J., Angelucci, D. E., Igreja, M. A., Arnold, L. J., Badal, E., Callapez, P., Cardoso, J. L., D’Errico, F., Daura, J., Demuro, M., Deschamps, M., Dupont, C., Gabriel, S., Hoffmann, D. L., Legoinha, P., Matias, H., Monge Soares, A. M., Nabais, M., Portela, P., Queffelec, A., Rodrigues, F. and Souto, P. 2020. Last Interglacial Iberian Neandertals as fisher-hunter-gatherers. Science, 367, eaaz7943.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×