Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T18:46:23.417Z Has data issue: false hasContentIssue false

10 - Life Within the Leaf: Ecology and Applications of Foliar Bacterial Endophytes

from Part III - Diversity and Community Ecology of Endophytes

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

Endophytic bacteria have evolved to survive within plant leaf tissue while potentially providing benefits to their host. This relationship makes them uniquely applicable as agricultural biocontrol agents, sources of natural chemicals/products, plant growth promoters and mediators of phytoremediation. Foliar bacterial endophytes colonise leaf tissue through vertical transmission (i.e. through seed or pollen) or horizontal transmission (i.e. colonisation through environmental contact of the roots, wounds, stomatal infiltration, insect vectors, and airborne dispersal). The taxonomic diversity of foliar endophytes spans at least seven bacterial classes and they occupy hosts from all taxanomic groups of plants tested. Bacterial leaf endophytes can promote plant health by stimulating and producing plant hormones for growth and preventing pathogenic infection. Plant-pathogenic bacteria can be found residing within leaf tissue asymptomatically raising questions about the relationship between endophyte–host specificity. Similarly, human pathogenic enterobacteria not usually associated with plants have been found to persist as endophytes. Bioactive secondary metabolites produced by these endophytes have been broadly applicable as antifungals, antibiotics, and other compounds used for agricultural and human health. Endophyte research carries unique challenges that require novel and adaptive strategies for separation of plant and bacterial DNA. This chapter will focus on bacteria isolated from within plant leaf tissue with a focus on transmission, diversity, function and challenges associated bacterial leaf endophyte research.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, F., Husain, F. M. and Ahmad, I. (2011). Rhizosphere and root colonization by bacterial inoculants and their monitoring methods: a critical area in PGPR research. In Microbes and Microbial Technology: Agricultural and Environmental Applications, ed. Ahmad, I., Ahmad, F. and Pichtel, J.. New York: Springer, pp. 363391.CrossRefGoogle Scholar
Aman, M. and Rai, V. R. (2016). Antifungal activity of novel indole derivative from endophytic bacteria Pantoea ananatis 4G-9 against Mycosphaerella musicola. Biocontrol Science and Technology, 26, 476491.CrossRefGoogle Scholar
Baltrus, D. A., Nishimura, M. T., Romanchuk, A. et al. (2011). Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. Plos Pathogens, 7, e1002132.CrossRefGoogle Scholar
Barak, J. D., Gorski, L., Naraghi-Arani, P. et al. (2005). Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Applied and Environmental Microbiology, 71, 56855691.CrossRefGoogle ScholarPubMed
Bashan, Y. (1991). Airborne transmission of the rhizosphere bacterium Azospirillum. Microbial Ecology, 22, 257269.CrossRefGoogle Scholar
Bashan, Y. and Holguin, G. (1994). Root-to-root travel of the beneficial bacterium Azospirillum brasilense. Applied and Environmental Microbiology, 60, 21202131.CrossRefGoogle ScholarPubMed
Bazzi, C., Piazza, C. and Burr, T. J. (1987). Detection of Agrobacterium tumefaciens in grapevine cuttings. EPPO Bulletin, 17, 105112.CrossRefGoogle Scholar
Beckers, B., De Beeck, M. O., Thijs, S. et al. (2016). Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Frontiers in Microbiology, 7, 650.CrossRefGoogle Scholar
Bell, C. R., Dickie, G. A., Harvey, W. L. G. et al. (1995). Endophytic bacteria in grapevine. Canadian Journal of Microbiology, 41, 4653.CrossRefGoogle Scholar
Berger, C. N., Sodha, S. V., Shaw, R. K. et al. (2010). Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environmental Microbiology, 12, 23852397.CrossRefGoogle ScholarPubMed
Bertani, I., Abbruscato, P., Piffanelli, P. et al. (2016). Rice bacterial endophytes: Isolation of a collection, identification of beneficial strains and microbiome analysis. Environmental Microbiology Reports, 8, 388398.CrossRefGoogle ScholarPubMed
Bextine, B., Lampe, D., Lauzon, C. et al. (2005). Establishment of a genetically marked insect-derived symbiont in multiple host plants. Current Microbiology, 50, 17.CrossRefGoogle ScholarPubMed
Bhore, S. J., Ravichantar, N. and Loh, C. Y. (2010). Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation, 5, 191197.CrossRefGoogle ScholarPubMed
Bodenhausen, N., Horton, M. W. and Bergelson, J. (2013). Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One, 8, e56329.CrossRefGoogle ScholarPubMed
Bovallius, A., Bucht, B., Roffey, R. et al. (1978). Long-range air transmission of bacteria. Applied and Environmental Microbiology, 35, 12311232.CrossRefGoogle ScholarPubMed
Brandl, M. T. (2006). Fitness of human enteric pathogens on plants and implications for food safety. Annual Review of Phytopathology, 44, 367392.CrossRefGoogle ScholarPubMed
Bright, M. and Bulgheresi, S. (2010). A complex journey: transmission of microbial symbionts. Nature Reviews Microbiology, 8, 218230.CrossRefGoogle ScholarPubMed
Caporaso, J. G., Lauber, C. L., Walters, W. A. et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108, 45164522.CrossRefGoogle Scholar
Castillo, U., Harper, J. K., Strobel, G. A. et al. (2003). Kakadumycins, novel antibiotics from Streptomyces sp NRRL 30566, an endophyte of Grevillea pteridifolia. Fems Microbiology Letters, 224, 183190.CrossRefGoogle ScholarPubMed
Castillo, U. F., Strobel, G. A., Ford, E. J. et al. (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology-Sgm, 148, 26752685.CrossRefGoogle ScholarPubMed
Chatterjee, S., Almeida, R. P. P. and Lindow, S. (2008). Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Annual Review of Phytopathology, 46, 243271.CrossRefGoogle ScholarPubMed
Chee-Sanford, J. C., Williams, M. M., Davis, A. S. and Sims, G. K. (2006). Do microorganisms influence seed-bank dynamics? Weed Science, 54, 575587.CrossRefGoogle Scholar
Chi, F., Shen, S.-H., Cheng, H.-P. et al. (2005). Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology, 71, 72717278.CrossRefGoogle ScholarPubMed
Compant, S., Reiter, B., Sessitsch, A. et al. (2005). Endophytic colonization of Vitis vinifera L. by plant-growth-promoting bacterium Burkholderia sp strain PsJN. Applied and Environmental Microbiology, 71, 16851693.CrossRefGoogle ScholarPubMed
Copeland, J. K., Yuan, L. J., Layeghifard, M. et al. (2015). Seasonal community succession of the phyllosphere microbiome. Molecular Plant–Microbe Interactions, 28, 274285.CrossRefGoogle ScholarPubMed
Costa, L. E. D., De Queiroz, M. V., Borges, A. C. et al. (2012). Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Brazilian Journal of Microbiology, 43, 15621575.CrossRefGoogle Scholar
Curtis, T. P., Head, I. M., Lunn, M. et al. (2006). What is the extent of prokaryotic diversity? Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 20232037.CrossRefGoogle ScholarPubMed
Ding, T. and Melcher, U. (2016). Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS One, 11, e0150895.CrossRefGoogle ScholarPubMed
Ding, L., Munich, J., Goerls, H. et al. (2010). Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorganic & Medicinal Chemistry Letters, 20, 66856687.CrossRefGoogle ScholarPubMed
Ding, L., Maier, A., Fiebig, H. H. et al. (2011). A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Organic & Biomolecular Chemistry, 9, 40294031.CrossRefGoogle ScholarPubMed
Dong, Z. M., Canny, M. J., McCully, M. E. et al. (1994). A nitrogen-fixing endophyte of sugarcane stems: a new role for the apoplast. Plant Physiology, 105, 11391147.CrossRefGoogle ScholarPubMed
Ezra, D., Castillo, U. F., Strobel, G. A. et al. (2004). Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp (MSU-2110) endophytic on Monstera sp. Microbiology-Sgm, 150, 785793.CrossRefGoogle ScholarPubMed
Ferreira, A., Quecine, M. C., Lacava, P. T. et al. (2008). Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. Fems Microbiology Letters, 287, 814.CrossRefGoogle ScholarPubMed
Fouhy, F., Clooney, A. G., Stanton, C. et al. (2016). 16S rRNA gene sequencing of mock microbial populations: impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiology, 16, 123.CrossRefGoogle ScholarPubMed
Franco, C., Michelsen, P., Percy, N. et al. (2007). Actinobacterial endophytes for improved crop performance. Australasian Plant Pathology, 36, 524531.CrossRefGoogle Scholar
Frank, A., Saldierna Guzmán, J. and Shay, J. (2017). Transmission of bacterial endophytes. Microorganisms, 5, E70.CrossRefGoogle ScholarPubMed
Gagne-Bourgue, F., Aliferis, K. A., Seguin, P. et al. (2013). Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. Journal of Applied Microbiology, 114, 836853.CrossRefGoogle ScholarPubMed
Gai, C. S., Lacava, P. T., Quecine, M. C. et al. (2009). Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of citrus variegated chlorosis. Journal of Microbiology, 47, 448454.CrossRefGoogle ScholarPubMed
Gamalero, E. and Glick, B. R. (2015). Bacterial modulation of plant ethylene levels. Plant Physiology, 169, 1322.CrossRefGoogle ScholarPubMed
Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169, 3039.CrossRefGoogle ScholarPubMed
Gonella, E., Pajoro, M., Marzorati, M. et al. (2015). Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects. Scientific Reports, 5, 15811.CrossRefGoogle ScholarPubMed
Hallmann, J. (2001). Biotic interactions in plant-pathogen associations. In Biotic Interactions in Plant-Pathogen Associations, ed. M. J. Jeger and N. J. Spence. Wallingford, UK: CAB International, pp. 87119.CrossRefGoogle Scholar
Hallmann, J., Kloepper, J. W. and Rodriguez-Kabana, R. (1997a). Application of the Scholander pressure bomb to studies on endophytic bacteria of plants. Canadian Journal of Microbiology, 43, 411416.CrossRefGoogle Scholar
Hallmann, J., Quadthallmann, A., Mahaffee, W. F. et al. (1997b). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895914.CrossRefGoogle Scholar
Hardoim, P. R., Van Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Harrison, L., Teplow, D. B., Rinaldi, M. et al. (1991). Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. Journal of General Microbiology, 137, 28572865.CrossRefGoogle ScholarPubMed
Hartmann, R., Fricke, A., Stützel, H. et al. (2017). Internalization of Escherichia coli O157:H7 gfp+ in rocket and Swiss chard baby leaves as affected by abiotic and biotic damage. Letters in Applied Microbiology, 65, 3541.CrossRefGoogle ScholarPubMed
Heaton, J. C. and Jones, K. (2008). Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. Journal of Applied Microbiology, 104, 613626.CrossRefGoogle ScholarPubMed
Horton, M. W., Bodenhausen, N., Beilsmith, K. et al. (2014). Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nature Communications, 5, 5320.CrossRefGoogle ScholarPubMed
Ikeda, S., Kaneko, T., Okubo, T. et al. (2009). Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microbial Ecology, 58, 703714.CrossRefGoogle Scholar
Ikeda, S., Okubo, T., Anda, M. et al. (2010). Community- and genome-based views of plant-associated bacteria: plant–bacterial interactions in soybean and rice. Plant and Cell Physiology, 51, 13981410.CrossRefGoogle ScholarPubMed
Ikenaga, M. and Sakai, M. (2014). Application of locked nucleic acid (LNA) oligonucleotide-PCR clamping technique to selectively PCR amplify the SSU rRNA genes of bacteria in investigating the plant-associated community structures. Microbes and Environments, 29, 286295.CrossRefGoogle ScholarPubMed
Iniguez, A. L., Dong, Y. M., Carter, H. D. et al. (2005). Regulation of enteric endophytic bacterial colonization by plant defenses. Molecular Plant–Microbe Interactions, 18, 169178.CrossRefGoogle ScholarPubMed
Izumi, H., Anderson, I. C., Killham, K. et al. (2008). Diversity of predominant endophytic bacteria in European deciduous and coniferous trees. Canadian Journal of Microbiology, 54, 173179.CrossRefGoogle ScholarPubMed
Jang, H. and Matthews, K. R. (2018). Influence of surface polysaccharides of Escherichia coli O157: H7 on plant defense response and survival of the human enteric pathogen on Arabidopsis thaliana and lettuce (Lactuca sativa). Food Microbiology, 70, 254261.CrossRefGoogle ScholarPubMed
Ji, K. X., Chi, F., Yang, M. F. et al. (2010). Movement of rhizobia inside tobacco and lifestyle alternation from endophytes to free-living rhizobia on leaves. Journal of Microbiology and Biotechnology, 20, 238244.CrossRefGoogle ScholarPubMed
Jiao, J. Y., Wang, H. X., Zeng, Y. et al. (2006). Enrichment for microbes living in association with plant tissues. Journal of Applied Microbiology, 100, 830837.CrossRefGoogle ScholarPubMed
Johnston-Monje, D. and Raizada, M. N. (2011). Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One, 6, e20396.CrossRefGoogle ScholarPubMed
Kamoun, S. and Kado, C. I. (1990). A plant-inducible gene of Xanthomonas-campestris pv campestris encodes an exocellular component required for growth in the host and hypersensitivity on nonhosts. Journal of Bacteriology, 172, 51655172.CrossRefGoogle ScholarPubMed
Kirchhof, G., Eckert, B., Stoffels, M. et al. (2001). Herbaspirillum frisingense sp nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. International Journal of Systematic and Evolutionary Microbiology, 51, 157168.CrossRefGoogle Scholar
Kljujev, I., Raicevic, V., Vujovic, B. et al. (2018). Salmonella as an endophytic colonizer of plants: a risk for health safety vegetable production. Microbial Pathogenesis, 115, 199207.CrossRefGoogle ScholarPubMed
Kniskern, J. M., Traw, M. B. and Bergelson, J. (2007). Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. Molecular Plant–Microbe Interactions, 20, 15121522.CrossRefGoogle ScholarPubMed
Kozich, J. J., Westcott, S. L., Baxter, N. T. et al. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology, 79, 51125120.CrossRefGoogle ScholarPubMed
Law, A. D., Fisher, C., Jack, A. et al. (2016). Tobacco, microbes, and carcinogens: correlation between tobacco cure conditions, tobacco-specific nitrosamine content, and cured leaf microbial community. Microbial Ecology, 72, 120129.CrossRefGoogle ScholarPubMed
Lebeis, S. L., Paredes, S. H., Lundberg, D. S. et al. (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 349, 860864.CrossRefGoogle ScholarPubMed
Lin, C., Lu, C. H. and Shen, Y. M. (2010). Three new 2-pyranone derivatives from mangrove endophytic actinomycete strain Nocardiopsis sp A00203. Records of Natural Products, 4, 176179.Google Scholar
Lin, W. H., Li, L. Y., Fu, H. Z. et al. (2005). New cyclopentenone derivatives from an endophytic Streptomyces sp isolated from the mangrove plant Aegiceras comiculatum. Journal of Antibiotics, 58, 594598.CrossRefGoogle ScholarPubMed
Lindemann, J., Constantinidou, H. A., Barchet, W. R. et al. (1982). Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Applied and Environmental Microbiology, 44, 10591063.CrossRefGoogle ScholarPubMed
Liu, Y. X., Shi, J. X., Feng, Y. G. et al. (2013). Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biology and Fertility of Soils, 49, 447464.CrossRefGoogle Scholar
Lòpez-Fernàndez, S., Mazzoni, V., Pedrazzoli, F., Pertot, I. and Campisano, A. (2017). A phloem-feeding insect transfers bacterial endophytic communities between grapevine plants. Frontiers in Microbiology, 8, 834.CrossRefGoogle ScholarPubMed
Madhaiyan, M., Alex, T. H. H., Ngoh, S. T. et al. (2015). Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas. Biotechnology for Biofuels, 8, 222.CrossRefGoogle ScholarPubMed
Magnani, G. S., Didonet, C. M., Cruz, L. M. et al. (2010). Diversity of endophytic bacteria in Brazilian sugarcane. Genetics and Molecular Research, 9, 250258.CrossRefGoogle ScholarPubMed
Mano, H., Tanaka, F., Nakamura, C. et al. (2007). Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microbes and Environments, 22, 175185.CrossRefGoogle Scholar
Mastretta, C., Taghavi, S., Van Der Lelie, D. et al. (2009). Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation, 11, 251267.CrossRefGoogle Scholar
McEvoy, A., O’Regan, F., Fleming, C. C. et al. (2016). Bleeding canker of horse chestnut (Aesculus hippocastanum) in Ireland: incidence, severity and characterization using DNA sequences and real-time PCR. Plant Pathology, 65, 14191429.CrossRefGoogle Scholar
Miller, C. M., Miller, R. V., Garton-Kenny, D. et al. (1998). Ecomycins, unique antimycotics from Pseudomonas viridiflava. Journal of Applied Microbiology, 84, 937944.CrossRefGoogle ScholarPubMed
Mitter, B., Pfaffenbichler, N., Flavell, R. et al. (2017). A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Frontiers in Microbiology, 8, 11.CrossRefGoogle ScholarPubMed
Morris, C. E., Barny, M. A., Berge, O. et al. (2017). Frontiers for research on the ecology of plant-pathogenic bacteria: Fundamentals for sustainability challenges in bacterial molecular plant pathology. Molecular Plant Pathology, 18, 308319.CrossRefGoogle ScholarPubMed
Mundt, J. O. and Hinkle, N. F. (1976). Bacteria within ovules and seeds. Applied and Environmental Microbiology, 32, 694698.CrossRefGoogle ScholarPubMed
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2018). From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. Journal of Fungi (Basel), 4, E24.Google ScholarPubMed
Nocker, A., Burr, M. and Camper, A. K. (2007). Genotypic microbial community profiling: a critical technical review. Microbial Ecology, 54, 276289.CrossRefGoogle ScholarPubMed
Qin, S., Xing, K., Jiang, J.-H. et al. (2011). Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic Actinobacteria. Applied Microbiology and Biotechnology, 89, 457473.CrossRefGoogle ScholarPubMed
Qin, S., Chen, H.-H., Zhao, G.-Z. et al. (2012). Abundant and diverse endophytic Actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environmental Microbiology Reports, 4, 522531.CrossRefGoogle ScholarPubMed
Raaijmakers, J. M. and Mazzola, M. (2012). Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology, 50, 403424.CrossRefGoogle ScholarPubMed
Reinhold-Hurek, B. and Hurek, T. (2011). Living inside plants: bacterial endophytes. Current Opinion in Plant Biology, 14, 435443.CrossRefGoogle ScholarPubMed
Reiter, B. and Sessitsch, A. (2006). Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Canadian Journal of Microbiology, 52, 140149.CrossRefGoogle ScholarPubMed
Ren, J. H., Li, H., Wang, Y. F. et al. (2013). Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biological Control, 67, 421430.CrossRefGoogle Scholar
Ren, X. L., Zhang, N., Cao, M. H. et al. (2012). Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5. Biology and Fertility of Soils, 48, 613620.CrossRefGoogle Scholar
Ringelberg, D., Foley, K. and Reynolds, C. M. (2012). Bacterial endophyte communities of two wheatgrass varieties following propagation in different growing media. Canadian Journal of Microbiology, 58, 6780.CrossRefGoogle ScholarPubMed
Roos, I. M. M. and Hattingh, M. J. (1983). Scanning electron-microscopy of Pseudomonas syringae pv morsprunorum on sweet cherry leaves. Journal of Phytopathology, 108, 1825.CrossRefGoogle Scholar
Rosenblueth, M. and Martinez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant–Microbe Interactions, 19, 827837.CrossRefGoogle ScholarPubMed
Ruppel, S., Hechtbuchholz, C., Remus, R. et al. (1992). Settlement of the diazotrophic, phytoeffective bacterial strain Pantoea agglomerans on and within winter-wheat – an investigation using ELISA and transmission electron-microscopy. Plant and Soil, 145, 261273.CrossRefGoogle Scholar
Ryan, R. P., Germaine, K., Franks, A. et al. (2008). Bacterial endophytes: recent developments and applications. Fems Microbiology Letters, 278, 19.CrossRefGoogle ScholarPubMed
Sakai, M. and Ikenaga, M. (2013). Application of peptide nucleic acid (PNA)-PCR clamping technique to investigate the community structures of rhizobacteria associated with plant roots. Journal of Microbiological Methods, 92, 281288.CrossRefGoogle ScholarPubMed
Saleem, M., Arshad, M., Hussain, S. et al. (2007). Perspective of plant-growth- promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34, 635648.CrossRefGoogle ScholarPubMed
Saleem, M., Law, A. D. and Moe, L. A. (2016). Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microbial Ecology, 71, 469472.CrossRefGoogle ScholarPubMed
Saleem, M., Meckes, N., Pervaiz, Z. H. et al. (2017). Microbial interactions in the phyllosphere increase plant performance under herbivore biotic stress. Frontiers in Microbiology, 8, 41.CrossRefGoogle ScholarPubMed
Saleem, M., Law, A. D., Sahib, M. R. et al. (2018). Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere, 6, 4751.CrossRefGoogle Scholar
Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda, M. D. et al. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 9299.CrossRefGoogle ScholarPubMed
Schloss, P. D., Westcott, S. L., Ryabin, T. et al. (2009). Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 75377541.CrossRefGoogle ScholarPubMed
Seo, S. and Matthews, K. R. (2014). Exposure of Escherichia coli O157:H7 to soil, manure, or water influences its survival on plants and initiation of plant defense response. Food Microbiology, 38, 8792.CrossRefGoogle ScholarPubMed
Shen, Z. Y., Mustapha, A., Lin, M. S. et al. (2017). Biocontrol of the internalization of Salmonella enterica and Enterohaemorrhagic Escherichia coli in mung bean sprouts with an endophytic Bacillus subtilis. International Journal of Food Microbiology, 250, 3744.CrossRefGoogle ScholarPubMed
Simko, I., Zhou, Y. G. and Brandl, M. T. (2015). Downy mildew disease promotes the colonization of romaine lettuce by Escherichia coli O157:H7 and Salmonella enterica. BMC Microbiology, 15, 19.CrossRefGoogle ScholarPubMed
Sørensen, J. S. A. (2007). Plant-associated bacteria: lifestyle and molecular interactions. In Modern Soil Microbiology, 2 edn, ed. van Elsas, J. D., Jansson, J. K. and Trevors, J. T.. Boca Raton, FL: CRC Press, pp. 211236.Google Scholar
Sprent, J. I. and Defaria, S. M. (1988). Mechanisms of infection of plants by nitrogen-fixing organisms. Plant and Soil, 110, 157165.CrossRefGoogle Scholar
Stewart, E. J. (2012). Growing unculturable bacteria. Journal of Bacteriology, 194, 41514160.CrossRefGoogle ScholarPubMed
Strobel, G. and Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67, 491502.CrossRefGoogle ScholarPubMed
Su, C., Lei, L. P., Duan, Y. Q. et al. (2012). Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Applied Microbiology and Biotechnology, 93, 9931003.CrossRefGoogle ScholarPubMed
Sumner, J. (2000). The Natural History of Medicinal Plants. Portland, OR: Timber Press.Google Scholar
Sun, L., Qiu, F. B., Zhang, X. X. et al. (2008). Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microbial Ecology, 55, 415424.CrossRefGoogle ScholarPubMed
Teplitski, M., Barak, J. D. and Schneider, K. R. (2009). Human enteric pathogens in produce: un-answered ecological questions with direct implications for food safety. Current Opinion in Biotechnology, 20, 166171.CrossRefGoogle ScholarPubMed
Tyler, H. L. and Triplett, E. W. (2008). Plants as a habitat for beneficial and/or human pathogenic bacteria. Annual Review of Phytopathology, 46, 5373.CrossRefGoogle ScholarPubMed
Tyson, G. W. and Banfield, J. F. (2005). Cultivating the uncultivated: a community genomics perspective. Trends in Microbiology, 13, 411415.CrossRefGoogle ScholarPubMed
Vijayan, P., Shockey, J., Levesque, C. A. et al. (1998). A role for jasmonate in pathogen defense of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 95, 72097214.CrossRefGoogle ScholarPubMed
Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10, 828840.CrossRefGoogle ScholarPubMed
Wang, H. X., Geng, Z. L., Zeng, Y. et al. (2008). Enriching plant microbiota for a metagenomic library construction. Environmental Microbiology, 10, 26842691.CrossRefGoogle ScholarPubMed
Warriner, K. and Namvar, A. (2010). The tricks learnt by human enteric pathogens from phytopathogens to persist within the plant environment. Current Opinion in Biotechnology, 21, 131136.CrossRefGoogle ScholarPubMed
Warriner, K., Ibrahim, F., Dickinson, M. et al. (2003). Internalization of human pathogens within growing salad vegetables. Biotechnology & Genetic Engineering Reviews, 20, 117134.CrossRefGoogle ScholarPubMed
Wennstrom, A. (1994). Endophyte: the misuse of an old term. Oikos, 71, 535536.CrossRefGoogle Scholar
Wilson, D. (1995). Endophyte: the evolution of a term, and clarification of its use and definition. Oikos, 73, 274276.CrossRefGoogle Scholar
Wistrom, C. and Purcell, A. H. (2005). The fate of Xylella fastidiosa in vineyard weeds and other alternate hosts in California. Plant Disease, 89, 994999.CrossRefGoogle ScholarPubMed
Wright, K. M., Crozier, L., Marshall, J. et al. (2017). Differences in internalization and growth of Escherichia coli O157:H7 within the apoplast of edible plants, spinach and lettuce, compared with the model species Nicotiana benthamiana. Microbial Biotechnology, 10, 555569.CrossRefGoogle ScholarPubMed
Yang, B., Wang, Y. and Qian, P. Y. (2016). Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics, 17, 135.CrossRefGoogle ScholarPubMed
You, C. B., Lin, M., Fang, X. J. et al. (1995). Attachment of Alcaligenes to rice roots. Soil Biology & Biochemistry, 27, 463466.CrossRefGoogle Scholar
Zhang, H. W., Song, Y. C. and Tan, R. X. (2006). Biology and chemistry of endophytes. Natural Product Reports, 23, 753771.CrossRefGoogle ScholarPubMed
Zhang, X., Zhou, Y. Y., Li, Y. et al. (2017). Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew. Crop Protection, 96, 173179.CrossRefGoogle Scholar
Zhao, Y. F., Sundin, G. W. and Wang, D. P. (2009). Construction and analysis of pathogenicity island deletion mutants of Erwinia amylovora. Canadian Journal of Microbiology, 55, 457464.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×