Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-18T22:52:10.701Z Has data issue: false hasContentIssue false

V - Cognitive Neuroscience of Insight

Published online by Cambridge University Press:  02 May 2024

Carola Salvi
Affiliation:
John Cabot University, Rome
Jennifer Wiley
Affiliation:
University of Illinois, Chicago
Steven M. Smith
Affiliation:
Texas A & M University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ash, I. K., & Wiley, J. (2019). Ah-Ha, I knew it all along: Differences in hindsight bias between insight and algebra problems. In Gray, W. D & Schunn, C. D (Eds.), Proceedings of the twenty-fourth annual conference of the cognitive science society. Routledge. https://doi.org/10.4324/9781315782379-52.Google Scholar
Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45( 13), 28832901. https://doi.org/10.1016/j.neuropsychologia.2007.06.015.CrossRefGoogle ScholarPubMed
Baird, B., Smallwood, J., Mrazek, M. D., et al. (2012). Inspired by distraction: Mind wandering facilitates creative incubation. Psychological Science, 23(10), 11171122. https://doi.org/10.1177/0956797612446024.CrossRefGoogle ScholarPubMed
Bartolo, A., Benuzzi, F., Nocetti, L., Baraldi, P., & Nichelli, P. (2006). Humor comprehension and appreciation: An FMRI study. Journal of Cognitive Neuroscience, 18(11), 17891798.CrossRefGoogle ScholarPubMed
Becker, M., & Cabeza, R. (2023). Assessing creativity independently of language: A language-independent remote associate task (LI-RAT). Behavior Research Methods, 55(1), 85-102.CrossRefGoogle Scholar
Becker, M., Sommer, T., & Kühn, S. (2020). Verbal insight revisited: fMRI evidence for early processing in bilateral insulae for solutions with AHA! experience shortly after trial onset. Human Brain Mapping, 41(1), 3045.CrossRefGoogle ScholarPubMed
Beeman, M. J., & Bowden, E. M. (2000). The right hemisphere maintains solution-related activation for yet-to-be-solved problems. Memory and Cognition, 28(7), 12311241. https://doi.org/10.3758/BF03211823.CrossRefGoogle ScholarPubMed
Beeman, M. J., Bowden, E. M., & Gernsbacher, M. A. (2000). Right and left hemisphere cooperation for drawing predictive and coherence inferences during normal story comprehension. Brain and Language, 71(2), 310336. https://doi.org/10.1006/brln.1999.2268.CrossRefGoogle ScholarPubMed
Behrens, J. P., & Olteţeanu, A. M. (2020). Are all remote associates tests equal? An overview of the remote associates test in different languages. Frontiers in Psychology, 11, 1125. https://doi.org/10.3389/fpsyg.2020.01125.CrossRefGoogle ScholarPubMed
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539546. https://doi.org/10.1016/j.tics.2004.10.003.CrossRefGoogle ScholarPubMed
Bowden, E. M. (1997). The effect of reportable and unreportable hints on anagram solution and the aha! experience. Consciousness and Cognition 6(4), 545573.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Beeman, M. J. (1998). Getting the right idea: Semantic activation in the right hemisphere may help solve insight problems. Psychological Science, 9(6), 435440. https://doi.org/10.1111/1467-9280.00082.CrossRefGoogle Scholar
Bowden, E. M., & Jung-Beeman, M. (2003a). Aha! Insight experience correlates with solution activation in the right hemisphere. Psychonomic Bulletin and Review, 10(3), 730737. https://doi.org/10.3758/BF03196539.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (2003b). Normative data for 144 compound remote associate problems. Behavior Research Methods, Instruments, & Computers, 35(4), 634639. https://doi.org/10.3758/BF03195543.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (2007). Methods for investigating the neural components of insight. Methods, 42(1), 8799. https://doi.org/10.1016/j.ymeth.2006.11.007.CrossRefGoogle ScholarPubMed
Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Sciences, 9(7). https://doi.org/10.1016/j.tics.2005.05.012.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6). https://doi.org/10.1016/S1364-6613(00)01483-2.CrossRefGoogle ScholarPubMed
Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective and Behavioral Neuroscience, 7(4), 367379. https://doi.org/10.3758/CABN.7.4.367.CrossRefGoogle ScholarPubMed
Chermahini, S. A., Hickendorff, M., & Hommel, B. (2012). Development and validity of a Dutch version of the Remote Associates Task: An item-response theory approach. Thinking Skills and Creativity, 7(3), 177186.CrossRefGoogle Scholar
Chesebrough, C., Chrysikou, E. G., Holyoak, K. H., Zhang, Z., & Kounios, J. (2023). Conceptual change induced by analogical reasoning sparks Aha moments. Creativity Research Journal. https://doi.org/10.1080/10400419.2023.2188361.CrossRefGoogle Scholar
Cristofori, I., Salvi, C., Beeman, M., & Grafman, J. (2018). The effects of expected reward on creative problem solving. Cognitive, Affective, & Behavioral Neuroscience, 18(5), 925931. https://doi.org/10.3758/s13415-018-0613-5.CrossRefGoogle ScholarPubMed
Danek, A. H. (2018). Magic tricks, sudden restructuring and the Aha! experience: A new model of non-monotonic problem solving. In Vallée-Tourangeau, F. (Ed.), Insight: On the origins of new ideas (pp. 5178). Routledge.CrossRefGoogle Scholar
Danek, A. H., Fraps, T., von Müller, A., Grothe, B., & Öllinger, M. (2013). Aha! experiences leave a mark: Facilitated recall of insight solutions. Psychological Research, 77(5). https://doi.org/10.1007/s00426-012-0454-8.CrossRefGoogle Scholar
Danek, A. H., & Salvi, C. (2020). Moment of truth: Why Aha! experiences are correct. The Journal of Creative Behavior, 54(2), 484486. https://doi.org/10.1002/jocb.380.CrossRefGoogle Scholar
Danek, A. H., & Wiley, J. (2020). What causes the insight memory advantage? Cognition, 205. https://doi.org/10.1016/j.cognition.2020.104411.CrossRefGoogle ScholarPubMed
Danek, A. H., Wiley, J., & Öllinger, M. (2016). Solving classical insight problems without Aha! experience: 9 dot, 8 coin, and matchstick arithmetic problems. Journal of Problem Solving, 9(1). https://doi.org/10.7771/1932-6246.1183.CrossRefGoogle Scholar
Danek, A. H., Williams, J., & Wiley, J. (2020). Closing the gap: Connecting sudden representational change to the subjective Aha! experience in insightful problem solving. Psychological Research, 84(1). https://doi.org/10.1007/s00426-018-0977-8.CrossRefGoogle Scholar
Dodds, R. A., Smith, S. M., & Ward, T. B. (2002). The use of environmental clues during incubation. Creativity Research Journal, 14(3–4), 287304. https://doi.org/10.1207/S15326934CRJ1434_1.CrossRefGoogle Scholar
Duncker, K. (1945). On problem-solving (L. S. Lees, Trans.). Psychological Monographs, 58(5), i113. https://doi.org/10.1037/h0093599.CrossRefGoogle Scholar
Erickson, B., Truelove-Hill, M., Oh, Y., et al. (2018). Resting-state brain oscillations predict trait-like cognitive styles. Neuropsychologia, 120, 18. https://doi.org/10.1016/j.neuropsychologia.2018.09.014.CrossRefGoogle ScholarPubMed
Ernst, G., & Newell, A. (1969). GPS: A case study in generality and problem solving. Academic Press.Google Scholar
Fleck, J. I., & Weisberg, R. W. (2013). Insight versus analysis: Evidence for diverse methods in problem solving. Journal of Cognitive Psychology, 25(4), 436463. https://doi.org/10.1080/20445911.2013.779248.CrossRefGoogle Scholar
Frijda, N. H., & de Groot, A. D. (1981). Otto Selz: His contribution to psychology. Mouton.CrossRefGoogle Scholar
Hark, M. (2010). The psychology of thinking before the cognitive revolution: Otto Selz on problems, schemas, and creativity. History of Psychology, 13(1). https://doi.org/10.1037/a0017442.Google ScholarPubMed
Hill, G., & Kemp, S. M. (2018). Connect 4: A novel paradigm to elicit positive and negative insight and search problem solving. Frontiers in Psychology, 9, 1755. https://doi.org/10.3389/fpsyg.2018.01755.CrossRefGoogle ScholarPubMed
Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7). https://doi.org/10.1016/j.tins.2007.05.001.CrossRefGoogle ScholarPubMed
Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4. https://doi.org/10.3389/fnhum.2010.00186.CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., et al. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), e97. https://doi.org/10.1371/journal.pbio.0020097.CrossRefGoogle ScholarPubMed
Kaplan, C. A., & Simon, H. A. (1990). In search of insight. Cognitive Psychology, 22(3), 374419. https://doi.org/10.1016/0010-0285(90)90008-R.CrossRefGoogle Scholar
Keil, A., Müller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human gamma band activity and perception of a gestalt. Journal of Neuroscience, 19(16). https://doi.org/10.1523/jneurosci.19-16-07152.1999.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., & Becker, M. (2024). A cognitive neuroscience perspective on insight as a memory process: Encoding the solution. In Ball, L. J. & Valleé-Tourangeau, F. (Eds.), Routledge international handbook of creative cognition (pp. 85102). Routledge.Google Scholar
Kizilirmak, J. M., Galvao Gomes da Silva, J., Imamoglu, F., & Richardson-Klavehn, A. (2016). Generation and the subjective feeling of “aha!” are independently related to learning from insight. Psychological Research, 80(6), 10591074. https://doi.org/10.1007/s00426-015-0697-2.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., Schott, B. H., Thuerich, H., et al. (2019). Learning of novel semantic relationships via sudden comprehension is associated with a hippocampus-independent network. Consciousness and Cognition, 69, 113132. https://doi.org/10.1016/j.concog.2019.01.005.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., Thuerich, H., Folta-Schoofs, K., Schott, B. H., & Richardson-Klavehn, A. (2016). Neural correlates of learning from induced insight: A case for reward-based episodic encoding. Frontiers in Psychology, 7(Nov.). https://doi.org/10.3389/fpsyg.2016.01693.CrossRefGoogle ScholarPubMed
Köhler, W. (1925). The mentality of apes. Routledge.Google Scholar
Kounios, J., Fleck, J. I., Green, D. L., et al. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46(1), 281291CrossRefGoogle ScholarPubMed
Kounios, J., Frymiare, J. L., Bowden, E. M., et al. (2006). The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882890. https://doi.org/10.1111/j.1467-9280.2006.01798.x.CrossRefGoogle ScholarPubMed
Landmann, N., Kuhn, M., Piosczyk, H., Feige, B., Riemann, D., Nissen, C. (2014). Entwicklung von 130 deutsch sprachigen Compound Remote Associate (CRA)-Wortraetseln zur Untersuchung kreativer Prozesse im deutschen Sprachraum. Psychologische Rundschau 65, 200211. https://doi.org/10.1026/0033-3042/a000223.CrossRefGoogle Scholar
Laukkonen, R. E., Kaveladze, B. T., Tangen, J. M., & Schooler, J. W. (2020). The dark side of Eureka: Artificially induced Aha moments make facts feel true. Cognition, 196, 104122. https://doi.org/10.1016/j.cognition.2019.104122.CrossRefGoogle ScholarPubMed
Laukkonen, R. E., & Tangen, J. M. (2018). How to detect insight moments in problem solving experiments. Frontiers in Psychology, 9, 282. https://doi.org/10.3389/fpsyg.2018.00282.CrossRefGoogle ScholarPubMed
Laukkonen, R. E., Webb, M. E., Salvi, C., Tangen, J. M., Slagter, H. A., & Schooler, J. W. (2023). Insight and the selection of ideas. Neuroscience and Biobehavioral Reviews, 153(March), 105363. https://doi.org/10.1016/j.neubiorev.2023.105363.CrossRefGoogle ScholarPubMed
Luo, J., & Knoblich, G. (2007). Studying insight problem solving with neuroscientific methods. Methods, 42(1), 7786. https://doi.org/10.1016/j.ymeth.2006.12.005.CrossRefGoogle ScholarPubMed
Luo, J., Niki, K., & Knoblich, G. (2006). Perceptual contributions to problem solving: Chunk decomposition of Chinese characters. Brain Research Bulletin, 70(4–6), 430433. https://doi.org/10.1016/j.brainresbull.2006.07.005.CrossRefGoogle ScholarPubMed
Luo, J., Niki, K., & Phillips, S. (2004). Neural correlates of the “Aha! reaction.” Neuroreport, 15, 20132017. https://doi.org/10.1097/00001756-200409150-00004.CrossRefGoogle ScholarPubMed
MacGregor, J. N., & Cunningham, J. B. (2008). Rebus puzzles as insight problems. Behavior Research Methods, 40(1), 263268.CrossRefGoogle ScholarPubMed
Manfredi, M., Mado, A., Ana, P., et al. (2017). tDCS application over the STG improves the ability to recognize and appreciate elements involved in humor processing. Experimental Brain Research, 235, 18431852. https://doi.org/10.1007/s00221-017-4932-5.CrossRefGoogle ScholarPubMed
Mashal, N., Faust, M., Hendler, T., & Jung-Beeman, M. (2007). An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain and language, 100(2), 115126.CrossRefGoogle ScholarPubMed
Mayer, R. E. (1995). The search for insight: Grappling with Gestalt Psychology’s unanswered questions. In Sternberg, R. J. & Davidson, J. E. (Eds.), The nature of insight (pp. 332). MIT Press.Google Scholar
Mednick, S. (1962). The associative basis of the creative problem solving process. Psychological Review, 69(3), 200232. https://doi.org/10.1037/h0048850.CrossRefGoogle Scholar
Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory & Cognition, 15(3), 238246. https://doi.org/10.3758/BF03197722.CrossRefGoogle ScholarPubMed
Moss, J., Kotovsky, K., & Cagan, J. (2007). The influence of open goals on the acquisition of problem-relevant information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(5), 876891. https://doi.org/10.1037/0278-7393.33.5.876.Google ScholarPubMed
Nam, B., Paromita, P., Chu, S. L., Chaspari, T., & Woltering, S. (2021). Moments of insight in problem-solving relate to bodily arousal. Journal of Creative Behavior, 55(4). https://doi.org/10.1002/jocb.504.CrossRefGoogle Scholar
Oh, Y., Chesebrough, C., Erickson, B., Zhang, F., & Kounios, J. (2020). An insight-related neural reward signal. NeuroImage, 214, 116757. https://doi.org/10.1016/j.neuroimage.2020.116757.CrossRefGoogle ScholarPubMed
Ohlsson, S. (1984). Restructuring revisited: I. Summary and critique of the Gestalt theory of problem solving. Scandinavian Journal of Psychology, 25(1), 6578. https://doi.org/10.1111/j.1467-9450.1984.tb01001.x.CrossRefGoogle Scholar
Olteteanu, A.-M., Taranu, M., & Ionescu, T. (2019b). Normative data for 111 compound remote associates test problems in Romanian. Frontiers in Psychology, 10(1859). https://doi.org/10.3389/fpsyg.2019.01859.CrossRefGoogle ScholarPubMed
Orita, R., Hattori, M., & Nishida, Y. (2018). Development of a Japanese remote associates task as insight problems. Shinrigaku Kenkyu 89, 376386. https://doi.org/10.4992/jjpsy.89.17201.CrossRefGoogle Scholar
Qiu, J., Li, H., Jou, J., et al. (2010). Neural correlates of the “Aha” experiences: Evidence from an fMRI study of insight problem solving. Cortex, 46(3), 397403. https://doi.org/10.1016/j.cortex.2009.06.006.CrossRefGoogle ScholarPubMed
Rothmaler, K., Nigbur, R., & Ivanova, G. (2017). New insights into insight: Neurophysiological correlates of the difference between the intrinsic “Aha” and the extrinsic “oh yes” moment. Neuropsychologia, 95, 204214. https://doi.org/10.1016/j.neuropsychologia.2016.12.017.CrossRefGoogle ScholarPubMed
Salvi, C., Beeman, M., Bikson, M., McKinley, R., & Grafman, J. (2020). TDCS to the right anterior temporal lobe facilitates insight problem-solving. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-57724-1.CrossRefGoogle Scholar
Salvi, C., & Bowden, E. (2020). The relation between state and trait risk taking and problem-solving. Psychological Research, 84(5), 12351248. https://doi.org/10.1007/s00426-019-01152-y.CrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Franconeri, S. L., Kounios, J., & Beeman, M. (2015). Sudden insight is associated with shutting out visual inputs. Psychonomic Bulletin & Review, 22(6), 18141819. https://doi.org/10.3758/s13423-015-0845-0819.CrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Kounios, J., Bowden, E., & Beeman, M. (2016) Insight solutions are correct more often than analytic solutions. Thinking & Reasoning, 22(4), 443460, https://doi.org/10.1080/13546783.2016.1141798.CrossRefGoogle ScholarPubMed
Salvi, C., Costantini, G., Bricolo, E., Perugini, M., & Beeman, M. (2016a). Validation of Italian rebus puzzles and compound remote associate problems. Behavioural Research Methods 48, 664685. https://doi.org/10.3758/s13428-015-0597-9.CrossRefGoogle ScholarPubMed
Salvi, C., Costantini, G., Pace, A., & Palmiero, M. (2020). Validation of the Italian remote associate test. The Journal of Creative Behavior, 54(1), 6274.CrossRefGoogle ScholarPubMed
Salvi, C., Keller, N., Cooper, S. E., Leiker, E., & Dunsmoor, J. E. (2023). Insight enhances learning for incidental information. New evidence supports the insight memory advantage. https://osf.io/preprints/psyarxiv/tvafw/.Google Scholar
Salvi, C., Simoncini, C., Grafman, J., & Beeman, M. (2020). Oculometric signature of switch into awareness? Pupil size predicts sudden insight whereas microsaccades predict problem-solving via analysis. NeuroImage, 217, 116933. https://doi.org/10.1016/j.neuroimage.2020.116933.CrossRefGoogle ScholarPubMed
Santarnecchi, E., Sprugnoli, G., Bricolo, E., et al. (2019). Gamma tACS over the temporal lobe increases the occurrence of Eureka! moments. Scientific Reports, 9(1), 112.CrossRefGoogle ScholarPubMed
Schooler, J. W., Ohlsson, S., & Brooks, K. (1993). Thoughts beyond words: When language overshadows insight. Journal of Experimental Psychology: General, 122(2), 166183. https://doi.org/10.1037//0096-3445.122.2.166.CrossRefGoogle Scholar
Seifert, C. M., Meyer, D. E., Davidson, N., Patalano, A. L., & Yaniv, I. (1995). Demystification of cognitive insight: Opportunistic assimilation and the prepared-mind perspective. In Sternberg, R. J. (Ed.), The nature of insight (pp. 65124). MIT Press.Google Scholar
Shen, W., Tong, Y., Li, F., et al. (2018). Tracking the neurodynamics of insight: A meta-analysis of neuroimaging studies. Biological Psychology, 138, 189198. https://doi.org/10.1016/j.biopsycho.2018.08.018.CrossRefGoogle Scholar
Shen, W., Yuan, Y., Liu, C., & Luo, J. (2017). The roles of the temporal lobe in creative insight: An integrated review. Thinking and Reasoning, 23(4), 321375. https://doi.org/10.1080/13546783.2017.1308885.CrossRefGoogle Scholar
Shen, W., Yuan, Y., Liu, C., Yi, B., & Dou, K. (2016). The development and validity of a Chinese version of the compound remote associates test. American Journal of Psychology, 129, 245258.CrossRefGoogle ScholarPubMed
Simon, H. A., & Newell, A. (1971). Human problem solving: The state of the theory in 1970. American Psychologist, 26(2), 145159. https://doi.org/10.1037/h0030806.CrossRefGoogle Scholar
Smith, R. W., & Kounios, J. (1996). Sudden insight: All-or-none processing revealed by speed-accuracy decomposition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(6), 14431462. https://doi.org/10.1037//0278-7393.22.6.1443.Google ScholarPubMed
Smith, S. M., & Blankenship, S. E. (1989). Incubation effects. Bulletin of the Psychonomic Society, 27(4), 311314. https://doi.org/10.3758/bf03334612.CrossRefGoogle Scholar
Smith, S. M., & Blankenship, S. E. (1991). Incubation and the persistence of fixation in problem solving. The American Journal of Psychology, 104(1), 6187. https://doi.org/10.2307/1422851.CrossRefGoogle ScholarPubMed
Sobków, A., Połeć, A., & Nosal, C. (2017). RAT-PL–constructinon and validation the Polish version of the Remote Associates Test. Psychological Studies, 54(2), 113.Google Scholar
Sprugnoli, G., Rossi, S., Emmendorfer, A., et al. (2017). Neural correlates of Eureka moment. Intelligence, 62. https://doi.org/10.1016/j.intell.2017.03.004.CrossRefGoogle Scholar
Sprugnoli, G., S. Rossi, S. L. Liew, E., et al. (2021). Enhancement of semantic integration reasoning by tRNS. Cognitive, Affective, & Behavioral Neuroscience, 21, 736746.CrossRefGoogle ScholarPubMed
St George, M., Kutas, M., Martinez, A., & Sereno, M. I. (1999). Semantic integration in reading: Engagement of the right hemisphere during discourse processing. Brain, 122(7), 13171325CrossRefGoogle ScholarPubMed
Sternberg, R. J., & Davidson, J. E. (1995). The nature of insight. The MIT Press.Google Scholar
Storm, B. C., & Angello, G. M. (2010). Overcoming fixation. Psychological Science, 21(9), 12631265. https://doi.org/10.1177/0956797610379864.CrossRefGoogle ScholarPubMed
Subramaniam, K., Kounios, J., Parrish, T. B., & Jung-Beeman, M. (2009). A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience, 21(3), 415432. https://doi.org/10.1162/jocn.2009.21057.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C. (2004). Attention and awareness in synchrony. Trends in Cognitive Sciences, 8(12), 523525. https://doi.org/10.1016/j.tics.2004.10.008.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C. (2012). On the neural mechanisms subserving consciousness and attention. Frontiers in Psychology, 3(Jan.). https://doi.org/10.3389/fpsyg.2011.00397.Google Scholar
Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3(4), 151162. https://doi.org/10.1016/S1364-6613(99)01299-1.CrossRefGoogle ScholarPubMed
Tervo, D. G. R., Kuleshova, E., Manakov, M., et al. (2021). The anterior cingulate cortex directs exploration of alternative strategies. Neuron, 109(11), 18761887.CrossRefGoogle ScholarPubMed
Thorndike, E. L. (1898). Animal intelligence: An experimental study of the associative processes in animals. Psychological Monographs, 2(8), 1125–1128.CrossRefGoogle Scholar
Threadgold, E., Marsh, J. E., & Ball, L. J. (2018). Normative data for 84 UK English rebus puzzles. Frontiers in Psychology, 9, 2513. https://doi.org/10.3389/fpsyg.2018.02513.CrossRefGoogle ScholarPubMed
Tian, F., Hou, Y., Zhu, W., et al. (2017). Getting the joke: Insight during humor comprehension – Evidence from an fMRI study. Frontiers in Psychology, 8(Oct.). https://doi.org/10.3389/fpsyg.2017.01835.CrossRefGoogle ScholarPubMed
Tik, M., Sladky, R., Luft, C. D. B., et al. (2018). Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment. Human Brain Mapping, 39(8), 32413252. https://doi.org/10.1002/hbm.24073.CrossRefGoogle ScholarPubMed
Toivainen, T., Olteteanu, A.-M., Repeykova, V., Lihanov, M., & Kovas, Y. (2019). Visual and linguistic stimuli in the remote associates test: A cross-cultural investigation. Frontiers in Psychology, 10(926). https://doi.org/10.3389/fpsyg.2019.00926.CrossRefGoogle Scholar
Topolinski, S., & Reber, R. (2010). Gaining insight into the “Aha” experience. Current Directions in Psychological Science, 19(6), 402405. https://doi.org/10.1177/0963721410388803.CrossRefGoogle Scholar
Touroutoglou, A., Andreano, J. M., Adebayo, M., Lyons, S., & Barrett, L. F. (2019). Motivation in the service of allostasis: The role of anterior mid-cingulate cortex. In Elliot, A. J (Ed.), Advances in motivation science (pp. 125). Elsevier.Google Scholar
Vogt, B. A. (2016). Midcingulate cortex: Structure, connections, homologies, functions and diseases. Journal of Chemical Neuroanatomy, 74, 2846. https://doi.org/10.1016/j.jchemneu.2016.01.010.CrossRefGoogle ScholarPubMed
Wakusawa, K., Sugiura, M., Sassa, Y., et al. (2007). Comprehension of implicit meanings in social situations involving irony: A functional MRI study. NeuroImage, 37(4), 14171426.CrossRefGoogle Scholar
Webb, M. E., Little, D. R., & Cropper, S. J. (2016). Insight is not in the problem: Investigating insight in problem solving across task types. Frontiers in Psychology, 7, 1424. https://doi.org/10.3389/fpsyg.2016.01424.CrossRefGoogle Scholar
Weisberg, R. W., & Alba, J. W. (1982). Problem solving is not like perception: More on Gestalt theory. Journal of Experimental Psychology: General, 111(3), 326330. https://doi.org/10.1037//0096-3445.111.3.326.CrossRefGoogle Scholar
Wertheimer, M. (1945). Productive thinking. University of Chicago Press.Google Scholar
Wiley, J. (1998). Expertise as mental set: The effects of domain knowledge in creative problem solving. Memory & Cognition, 26(4), 716730. https://doi.org/10.3758/bf03211392.CrossRefGoogle ScholarPubMed
Yu, Y., Salvi, C., & Beeman, M. (2022). Solving problems with an Aha! increases uncertainty tolerance. OSF Preprints. September 23. https://doi.org/10.31219/osf.io/z3ng5.CrossRefGoogle Scholar
Zhu, X., Oh, Y., Chesebrough, C., Zhang, F., & Kounios, J. (2021). Pre-stimulus brain oscillations predict insight versus analytic problem-solving in an anagram task. Neuropsychologia, 162. https://doi.org/10.1016/j.neuropsychologia.2021.108044.CrossRefGoogle Scholar

References

Ansburg, P. I., & Hill, K. (2003). Creative and analytic thinkers differ in their use of attentional resources. Personality and Individual Differences, 34(7). https://doi.org/10.1016/S0191-8869(02)00104-6.CrossRefGoogle Scholar
Ash, I. K., Cushen, P. J., & Wiley, J. (2009). Obstacles in investigating the role of restructuring in insightful problem solving. The Journal of Problem Solving, 2(2).CrossRefGoogle Scholar
Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106(3), 529550 https://doi.org/10.1037/0033-295X.106.3.529.CrossRefGoogle ScholarPubMed
Bar, M. (2009). A cognitive neuroscience hypothesis of mood and depression. Trends in Cognitive Sciences, 13(11), 456.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Barry Kaufman, S., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5. https://doi.org/10.1038/srep10964.CrossRefGoogle Scholar
Beaty, R. E., Silvia, P. J., & Benedek, M. (2017). Brain networks underlying novel metaphor production. Brain and Cognition, 111, 163170. https://doi.org/10.1016/j.bandc.2016.12.004.CrossRefGoogle ScholarPubMed
Becker, M., Kühn, S., & Sommer, T. (2021). Verbal insight revisited – dissociable neurocognitive processes underlying solutions accompanied by an AHA! experience with and without prior restructuring. Journal of Cognitive Psychology, 33(6–7), 659684.CrossRefGoogle Scholar
Becker, M., Sommer, T., & Kühn, S. (2020). Verbal insight revisited: fMRI evidence for early processing in bilateral insulae for solutions with AHA! experience shortly after trial onset. Human Brain Mapping, 41(1), 3045CrossRefGoogle ScholarPubMed
Benedek, M., Kenett, Y. N., Umdasch, K., et al. (2017). How semantic memory structure and intelligence contribute to creative thought: a network science approach. Thinking & Reasoning, 23(2), 158183.CrossRefGoogle Scholar
Beyer, S., & Bowden, E. M. (1997). Gender differences in self-perceptions: Convergent evidence from three measures of accuracy and bias. Personality and Social Psychology Bulletin, 23(2), 157172. https://doi.org/10.1177/0146167297232005.CrossRefGoogle Scholar
Bieth, T., Kenett, Y. N., Ovando-Tellez, M., et al. (2021). Dynamic changes in semantic memory structure support successful problem-solving. PsyArXiv. https://doi.org/10.31234/osf.io/38b4w.CrossRefGoogle Scholar
Biss, R. K., Hasher, L., & Thomas, R. C. (2010). Positive mood is associated with the implicit use of distraction. Motivation and Emotion, 34(1), 7377. https://doi.org/10.1007/s11031-010-9156-y.CrossRefGoogle ScholarPubMed
Boot, N., Nevicka, B., & Baas, M. (2020). Creativity in ADHD: Goal-directed motivation and domain specificity. Journal of Attention Disorders, 24(13), 18571866. https://doi.org/10.1177/1087054717727352.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Beeman, M. J. (1998). Getting the right idea: Semantic activation in the right hemisphere may help solve insight problems. Psychological Science, 9(6), 435440. https://doi.org/10.1111/1467-9280.00082.CrossRefGoogle Scholar
Bowden, E. M., & Jung-Beeman, M. (2003a). Aha! Insight experience correlates with solution activation in the right hemisphere. Psychonomic Bulletin and Review, 10(3), 730737. https://doi.org/10.3758/BF03196539.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (2003b). Normative data for 144 compound remote associate problems. Behavior Research Methods, Instruments, & Computers, 35(4), 634639. https://doi.org/10.3758/BF03195543.Google Scholar
Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Sciences, 9(7). https://doi.org/10.1016/j.tics.2005.05.012.CrossRefGoogle ScholarPubMed
Carson, S. H. (2011). Creativity and psychopathology: A shared vulnerability model. Canadian Journal of Psychiatry, 56(3), 144153.CrossRefGoogle ScholarPubMed
Chesebrough, C. B. (2021). Conceptual change induced by analogical reasoning sparks “Aha!” moments (Order No. 28547111). Available from ProQuest Dissertations & Theses Global. (2566074726). www.proquest.com/openview/69e76cc04937c73e12a8075345a70512/1?pq-origsite=gscholar&cbl=18750&diss=y.Google Scholar
Chesebrough, C., Chrysikou, E. G., Holyoak, K. H., Zhang, Z., & Kounios, J. (2023). Conceptual change induced by analogical reasoning sparks Aha moments. Creativity Research Journal. https://doi.org/10.1080/10400419.2023.2188361.CrossRefGoogle Scholar
Chesebrough, C., & Wiley, J. (2019). Exploring Aha! moments during science learning. CogSci (p. 3429). https://cognitivesciencesociety.org/cogsci-2022/.Google Scholar
Chrysikou, E. G. (2018). The costs and benefits of cognitive control for creativity. In Jung, R. & Vartanian, O. (Eds.), The Cambridge handbook of the neuroscience of creativity (pp. 299317). Cambridge University Press. https://doi.org/10.1017/9781316556238.018.Google Scholar
Clos, M., Bunzeck, N., & Sommer, T. (2019). Dopamine is a double-edged sword: Dopaminergic modulation enhances memory retrieval performance but impairs metacognition. Neuropsychopharmacology, 44(3), 555563.CrossRefGoogle ScholarPubMed
Cosgrave, J., Haines, R., Golodetz, S., et al. (2018). Schizotypy and performance on an insight problem-solving task: The contribution of persecutory ideation. Frontiers in Psychology, 9(May). https://doi.org/10.3389/fpsyg.2018.00708.CrossRefGoogle Scholar
Danek, A. H., & Flanagin, V. L. (2019). Cognitive conflict and restructuring: The neural basis of two core components of insight. AIMS Neuroscience, 6(2), 60.CrossRefGoogle ScholarPubMed
Danek, A. H., Fraps, T., Von Müller, A., Grothe, B., & Öllinger, M. (2013). Aha! experiences leave a mark: Facilitated recall of insight solutions. Psychological Research, 77(5), 659669.Google Scholar
Danek, A. H., Fraps, T., von Müller, A., Grothe, B., & Öllinger, M. (2014). It’s a kind of magic – what self-reports can reveal about the phenomenology of insight problem solving. Frontiers in Psychology, 5, 1408.CrossRefGoogle ScholarPubMed
Danek, A. H., & Salvi, C. (2020). Moment of truth: Why Aha! experiences are correct. The Journal of Creative Behavior, 54(2), 484486. https://doi.org/10.1002/jocb.380.CrossRefGoogle Scholar
Danek, A. H., & Wiley, J. (2020). What causes the insight memory advantage? Cognition, 205, 104411. https://doi.org/10.1016/j.cognition.2020.104411.CrossRefGoogle ScholarPubMed
Danek, A. H., Williams, J., & Wiley, J. (2020). Closing the gap: Connecting sudden representational change to the subjective Aha! experience in insightful problem solving. Psychological Research, 84(1), 111119. https://doi.org/10.1007/s00426-018-0977-8.CrossRefGoogle Scholar
Dollinger, S. J. (2003). Need for uniqueness, need for cognition, and creativity. The Journal of Creative Behavior, 37(2), 99116.CrossRefGoogle Scholar
Durso, F. T., Rea, C. B., & Dayton, T. (1994). Graph-theoretic confirmation of restructuring during insight. Psychological Science, 5, 9498.CrossRefGoogle Scholar
Dygert, S. K. C., & Jarosz, A. F. (2020). Individual differences in creative cognition. Journal of Experimental Psychology: General, 149(7), 12491274. https://doi.org/10.1037/xge0000713.CrossRefGoogle ScholarPubMed
Ellis, D. M., Robison, M. K., & Brewer, G. A. (2021). The cognitive underpinnings of multiply-constrained problem solving. Journal of Intelligence, 9(1), 7.CrossRefGoogle ScholarPubMed
Erickson, B., Truelove-Hill, M., Oh, Y., et al. (2018). Resting-state brain oscillations predict trait-like cognitive styles. Neuropsychologia, 120, 18. https://doi.org/10.1016/j.neuropsychologia.2018.09.014.CrossRefGoogle ScholarPubMed
Fleck, J. I., Green, D. L., Stevenson, J. L., et al. (2008). The transliminal brain at rest: Baseline EEG, unusual experiences, and access to unconscious mental activity. Cortex, 44(10), 13531363. https://doi.org/10.1016/j.cortex.2007.08.024.CrossRefGoogle Scholar
Friston, K. J., Lin, M., Frith, C. D., et al. (2017). Active inference, curiosity and insight. Neural Computation, 29(10), 26332683. https://doi.org/10.1162/neco_a_00999.CrossRefGoogle ScholarPubMed
Gabora, L. (2016). A possible role for entropy in creative cognition. arXiv preprint arXiv:1611.03605.Google Scholar
Gabora, L, Beckage, N. M., & Steel, M. (2022). An autocatalytic network model of conceptual change. Topics in Cognitive Science, 14(1), 163188.CrossRefGoogle ScholarPubMed
Gilhooly, K., & Webb, M. E. (2018). Working memory in insight problem solving. Insight, 105119.CrossRefGoogle Scholar
Gopnik, A. (1998). Explanation as orgasm. Minds and Machines, 8(1), 101118. https://doi.org/10.1023/A:1008290415597.CrossRefGoogle Scholar
Goschke, T., & Bolte, A. (2014). Emotional modulation of control dilemmas: The role of positive affect, reward, and dopamine in cognitive stability and flexibility. Neuropsychologia, 62, 403423. https://doi.org/10.1016/j.neuropsychologia.2014.07.015.CrossRefGoogle ScholarPubMed
Hirsh, J. B., Mar, R. A., & Peterson, J. B. (2012). Psychological entropy: A framework for understanding uncertainty-related anxiety. Psychological Review, 119(2), 304320. https://doi.org/10.1037/a0026767CrossRefGoogle ScholarPubMed
Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creative thought. MIT Press.Google Scholar
Isen, A. M., Daubman, K. A., & Nowicki, G. P. (1987). Positive affect facilitates creative problem solving. Journal of Personality and Social Psychology, 52(6), 11221131. https://doi.org/10.1037/0022-3514.52.6.1122.CrossRefGoogle ScholarPubMed
Jarosz, A. F., Colflesh, G. J., & Wiley, J. (2012). Uncorking the muse: Alcohol intoxication facilitates creative problem solving. Consciousness and Cognition, 21(1), 487493. https://doi.org/10.1016/j.concog.2012.01.002.CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., et al. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), e97. https://doi.org/10.1371/journal.pbio.0020097.CrossRefGoogle ScholarPubMed
Kaplan, C. A., & Simon, H. A. (1990). In search of insight. Cognitive Psychology, 22(3), 374419. https://doi.org/10.1016/0010-0285(90)90008-R.CrossRefGoogle Scholar
Karimi, Z., Windmann, S., Güntürkün, O., & AbrAham, A. (2007). Insight problem solving in individuals with high versus low schizotypy. Journal of Research in Personality, 41(2), 473480.CrossRefGoogle Scholar
Kashdan, T. B., Stiksma, M. C., Disabato, D. D., et al. (2018). The five-dimensional curiosity scale: Capturing the bandwidth of curiosity and identifying four unique subgroups of curious people. Journal of Research in Personality, 73, 130149. https://doi.org/10.1016/j.jrp.2017.11.011.CrossRefGoogle Scholar
Kaufman, S. B., Quilty, L. C., Grazioplene, R. G., et al. (2016). Openness to experience and intellect differentially predict creative achievement in the arts and sciences. Journal of Personality, 84(2), 248258.CrossRefGoogle ScholarPubMed
Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8(June). https://doi.org/10.3389/fnhum.2014.00407.CrossRefGoogle ScholarPubMed
Kenett, Y. N., & Faust, M. (2019). A semantic network cartography of the creative mind. Trends in Cognitive Sciences, 23(4), P271274. https://doi.org/10.1016/j.tics.2019.01.007.CrossRefGoogle ScholarPubMed
Kidd, C., & Hayden, B. Y. (2015). The psychology and neuroscience of curiosity. Neuron, 88(3), 449460.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., Schott, B. H., Thuerich, H., et al. (2019). Learning of novel semantic relationships via sudden comprehension is associated with a hippocampus-independent network. Consciousness and Cognition, 69, 113132. https://doi.org/10.1016/j.concog.2019.01.005.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., Thuerich, H., Folta-Schoofs, K., Schott, B. H., & Richardson-Klavehn, A. (2016). Neural correlates of learning from induced insight: A case for reward-based episodic encoding. Frontiers in Psychology, 7(Nov.). https://doi.org/10.3389/fpsyg.2016.01693.CrossRefGoogle ScholarPubMed
Klein, G., & Jarosz, A. (2011). A naturalistic study of insight. Journal of Cognitive Engineering and Decision Making, 5(4). https://doi.org/10.1177/1555343411427013.CrossRefGoogle Scholar
Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65, 7193. https://doi.org/10.1146/annurev-psych-010213-115154.CrossRefGoogle ScholarPubMed
Kounios, J., & Beeman, M. (2015). The Eureka factor: Creative insights and the brain. Random House.Google Scholar
Kounios, J., Fleck, J. I., Green, D. L., Payne, L., et al. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46(1), 281291.CrossRefGoogle ScholarPubMed
Kounios, J., Frymiare, J. L., Bowden, E. M., et al. (2006). The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882890. https://doi.org/10.1111/j.1467-9280.2006.01798.x.CrossRefGoogle ScholarPubMed
Laukkonen, R. E., Kaveladze, B. T., Tangen, J. M., & Schooler, J. W. (2020). The dark side of Eureka: Artificially induced Aha moments make facts feel true. Cognition, 196, 104122. https://doi.org/10.1016/j.cognition.2019.104122.CrossRefGoogle ScholarPubMed
Liljedahl, P. G. (2005). Mathematical discovery and affect: The effect of AHA! experiences on undergraduate mathematics students. International Journal of Mathematical Education in Science and Technology, 36(2–3), 219234. https://doi.org/10.1080/00207390412331316997.CrossRefGoogle Scholar
Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation. Psychological Bulletin, 116(1), 7598. https://doi.org/10.1037//0033-2909.116.1.75.CrossRefGoogle Scholar
Luchini, S., Kenett, Y. N., Zeitlen, D. C., et al. (2023). Convergent thinking and insight problem solving relate to semantic memory network structure. Thinking Skills and Creativity, 48, 101277CrossRefGoogle Scholar
Marvin, C. B., Tedeschi, E., & Shohamy, D. (2020). Curiosity as the impulse to know: Common behavioral and neural mechanisms underlying curiosity and impulsivity. Current Opinion in Behavioral Sciences, 35, 9298. https://doi.org/10.1016/j.cobeha.2020.08.003.CrossRefGoogle Scholar
Mednick, S. (1962). The associative basis of the creative problem solving process. Psychological Review, 69(3), 200232. https://doi.org/10.1037/h0048850.CrossRefGoogle Scholar
Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory & Cognition, 15(3), 238246. https://doi.org/10.3758/BF03197722.CrossRefGoogle ScholarPubMed
Metz, K. E. (1985). The development of children’s problem solving in a gears task: A problem space perspective. Cognitive Science, 9(4), 431471. https://doi.org/10.1207/s15516709cog0904_4CrossRefGoogle Scholar
Moss, J., Kotovsky, K., & Cagan, J. (2007). The influence of open goals on the acquisition of problem-relevant information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(5), 876891. https://doi.org/10.1037/0278-7393.33.5.876.Google ScholarPubMed
Nam, B., Paromita, P., Chu, S. L., Chaspari, T., & Woltering, S. (2021). Moments of insight in problem-solving relate to bodily arousal. Journal of Creative Behavior, 55(4). https://doi.org/10.1002/jocb.504.CrossRefGoogle Scholar
Oettingen, G., Gollwitzer, A., Jung, J., & Okten, I. O. (2022). Misplaced certainty in the context of conspiracy theories. Current Opinion in Psychology, 101393.CrossRefGoogle Scholar
Oh, Y., Chesebrough, C., Erickson, B., Zhang, F., & Kounios, J. (2020). An insight-related neural reward signal. NeuroImage, 214. https://doi.org/10.1016/j.neuroimage.2020.116757.CrossRefGoogle ScholarPubMed
Ovington, L. A., Saliba, A. J., Moran, C. C., Goldring, J., & MacDonald, J. B. (2018). Do people really have insights in the shower? The when, where and who of the Aha! moment. Journal of Creative Behavior, 52(1), 2134. https://doi.org/10.1002/jocb.126.CrossRefGoogle Scholar
Partos, T. R., Cropper, S. J., & Rawlings, D. (2016). You don’t see what I see: Individual differences in the perception of meaning from visual stimuli. PLoS ONE, 11(3), e0150615.CrossRefGoogle ScholarPubMed
Red’ko, V. G., Samsonovich, A. V., & Klimov, V. V. (2023). Computational modeling of insight processes and artificial cognitive ontogeny. Cognitive Systems Research, 78, 7186.CrossRefGoogle Scholar
Rollwage, M., Loosen, A., Hauser, T. U., et al. (2020). Confidence drives a neural confirmation bias. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16278-6.CrossRefGoogle ScholarPubMed
Rominger, C., Weiss, E. M., Fink, A., Schulter, G., & Papousek, I. (2011). Allusive thinking (cognitive looseness) and the propensity to perceive “meaningful” coincidences. Personality and Individual Differences, 51(8), 10021006. https://doi.org/10.1016/j.paid.2011.08.012.CrossRefGoogle Scholar
Rosen, D. S., Oh, Y., Erickson, B., et al. (2020). Dual-process contributions to creativity in jazz improvisations: An SPM-EEG study. NeuroImage, 213, 116632.CrossRefGoogle ScholarPubMed
Runco, M. A. (2022). Uncertainty makes creativity possible. In Beghetto, R. A. & Jaeger, G. J. (Eds.), Uncertainty: A catalyst for creativity, learning and development (pp. 2336). Springer.Google Scholar
Salvi, C., Beeman, M., Bikson, M., McKinley, R., & Grafman, J. (2020). TDCS to the right anterior temporal lobe facilitates insight problem-solving. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-57724-1.CrossRefGoogle Scholar
Salvi, C., & Bowden, E. (2020). The relation between state and trait risk taking and problem-solving. Psychological Research, 84(5), 12351248. https://doi.org/10.1007/s00426-019-01152-y.CrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Franconeri, S. L., Kounios, J., & Beeman, M. (2015). Sudden insight is associated with shutting out visual inputs. Psychonomic Bulletin & Review, 22(6), 18141819. https://doi.org/10.3758/s13423-015-0845-0.CrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Kounios, J., Bowden, E., & Beeman, M. (2016) Insight solutions are correct more often than analytic solutions. Thinking & Reasoning, 22(4), 443460. https://doi.org/10.1080/13546783.2016.1141798.CrossRefGoogle ScholarPubMed
Salvi, C., Simoncini, C., Grafman, J., & Beeman, M. (2020). Oculometric signature of switch into awareness? Pupil size predicts sudden insight whereas microsaccades predict problem-solving via analysis. NeuroImage, 217, 116933. https://doi.org/10.1016/j.neuroimage.2020.116933.CrossRefGoogle ScholarPubMed
Santarnecchi, E., Sprugnoli, G., Bricolo, E., et al. (2019). Gamma tACS over the temporal lobe increases the occurrence of Eureka! moments. Scientific Reports, 9(1), 112.CrossRefGoogle ScholarPubMed
Schilling, M. A. (2005). A” small-world” network model of cognitive insight. Creativity Research Journal, 17(2–3), 131154.CrossRefGoogle Scholar
Seifert, C. M., Meyer, D. E., Davidson, N., Patalano, A. L., & Yaniv, I. (1995). Demystification of cognitive insight: Opportunistic assimilation and the prepared-mind perspective. In Sternberg, R. J. & Davidson, J. E. (Eds.), The nature of insight (pp. 65124). MIT Press.Google Scholar
Shen, W., Tong, Y., Li, F., et al. (2018). Tracking the neurodynamics of insight: A meta-analysis of neuroimaging studies. Biological Psychology, 138, 189198. https://doi.org/10.1016/j.biopsycho.2018.08.018.CrossRefGoogle ScholarPubMed
Siew, C. S., Wulff, D. U., Beckage, N. M., & Kenett, Y. N. (2019). Cognitive network science: A review of research on cognition through the lens of network representations, processes, and dynamics. Complexity, 5915, 124.CrossRefGoogle Scholar
Skaar, Ø. O., & Reber, R. (2020). Motivation through insight: The phenomenological correlates of insight and spatial ability tasks. Journal of Cognitive Psychology, 33(6), 631643.CrossRefGoogle Scholar
Smith, S. M. (1995). Fixation, incubation, and insight in memory and creative thinking. In Smith, S. M., Ward, T. B., & Finke, R. A. (Eds.), The creative cognition approach (pp. 135146). MIT Press.Google Scholar
Stanciu, M. M., & Papasteri, C. (2018). Intelligence, personality and schizotypy as predictors of insight. Personality and Individual Differences, 134. https://doi.org/10.1016/j.paid.2018.05.043.CrossRefGoogle Scholar
Stephen, D. G., & Dixon, J. A. (2009). The self-organization of insight: Entropy and power laws in problem solving. Journal of Problem Solving, 2(1), 72102.CrossRefGoogle Scholar
Stephen, D. G., Boncoddo, R. A., Magnuson, J. S., & Dixon, J. A. (2009). The dynamics of insight: Mathematical discovery as a phase transition. Memory & Cognition, 37, 11321149.CrossRefGoogle ScholarPubMed
Subramaniam, K., Kounios, J., Parrish, T. B., & Jung-Beeman, M. (2009). A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience, 21(3), 415432. https://doi.org/10.1162/jocn.2009.21057.CrossRefGoogle ScholarPubMed
Thagard, P., & Stewart, T. C. (2011). The AHA! experience: Creativity through emergent binding in neural networks. Cognitive Science, 35(1). https://doi.org/10.1111/j.1551-6709.2010.01142.x.CrossRefGoogle ScholarPubMed
Tik, M., Sladky, R., Luft, C. D. B., et al. (2018). Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment. Human Brain Mapping, 39(8), 32413252. https://doi.org/10.1002/hbm.24073.CrossRefGoogle ScholarPubMed
Truelove-Hill, M., Erickson, B. A., Anderson, J., Kossoyan, M., & Kounios, J. (2018). A growth-curve analysis of the effects of future-thought priming on insight and analytical problem-solving. Frontiers in Psychology, 1311.Google Scholar
Tulver, K., Kaup, K. K., Laukkonen, R., & Aru, J. (2023). Restructuring insight: An integrative review of insight in problem-solving, meditation, psychotherapy, delusions and psychedelics. Consciousness and Cognition, 110, 103494.CrossRefGoogle ScholarPubMed
van de Cruys, S., Damiano, C., Boddez, Y., et al. (2021). Visual affects: Linking curiosity, Aha-Erlebnis, and memory through information gain. Cognition, 212. https://doi.org/10.1016/j.cognition.2021.104698.CrossRefGoogle ScholarPubMed
van den Berg, I., Franken, I. H. A., & Muris, P. (2011). Individual differences in sensitivity to Reward. Journal of Psychophysiology, 25(2). https://doi.org/10.1027/0269-8803/a000032.CrossRefGoogle Scholar
Weafer, J., Crane, N. A., Gorka, S. M., Phan, K. L., & de Wit, H. (2019). Neural correlates of inhibition and reward are negatively associated. NeuroImage, 196. https://doi.org/10.1016/j.neuroimage.2019.04.021.CrossRefGoogle ScholarPubMed
Webb, M. E., Little, D. R., & Cropper, S. J. (2016). Insight is not in the problem: Investigating insight in problem solving across task types. Frontiers in Psychology, 7, 1424. https://doi.org/10.3389/fpsyg.2016.01424.CrossRefGoogle Scholar
Webb, M. E., Little, D. R., & Cropper, S. J. (2018). Once more with feeling: Normative data for the aha experience in insight and noninsight problems. Behavior Research Methods, 50(5), 20352056. https://doi.org/10.3758/s13428-017-0972-9.CrossRefGoogle ScholarPubMed
Webb, M. E., Little, D. R., & Cropper, S. J. (2021). Unusual uses and experiences are good for feeling insightful, but not for problem solving: Contributions of schizotypy, divergent thinking, and fluid reasoning, to insight moments. Journal of Cognitive Psychology, 33(6–7), 770792. https://doi.org/10.1080/20445911.2021.1929254.CrossRefGoogle Scholar
White, H. A., & Shah, P. (2016). Scope of semantic activation and innovative thinking in college students with ADHD. Creativity Research Journal, 28(3), 275282. https://doi.org/10.1080/10400419.2016.1195655.CrossRefGoogle Scholar
Wiley, J., & Jarosz, A. F. (2012). Working memory capacity, attentional focus, and problem solving. Current Directions in Psychological Science, 21(4), 258262. https://doi.org/10.1177/0963721412447622.CrossRefGoogle Scholar
Yu, Y., Salvi, C., & Beeman, M. (2023). Solving problems with an Aha! increases risk preference. Thinking & Reasoning, 122.CrossRefGoogle Scholar
Zabelina, D., Saporta, A., & Beeman, M. (2016). Flexible or leaky attention in creative people? Distinct patterns of attention for different types of creative thinking. Memory & Cognition, 44, 488498.CrossRefGoogle ScholarPubMed
Zedelius, C. M., Protzko, J., Broadway, J. M., & Schooler, J. W. (2021). What types of daydreaming predict creativity? Laboratory and experience sampling evidence. Psychology of Aesthetics, Creativity, and the Arts, 15(4), 596611. https://doi.org/10.1037/aca0000342.CrossRefGoogle Scholar
Zhu, X., Oh, Y., Chesebrough, C., Zhang, F., & Kounios, J. (2021). Pre-stimulus brain oscillations predict insight versus analytic problem-solving in an anagram task. Neuropsychologia, 162. https://doi.org/10.1016/j.neuropsychologia.2021.108044.CrossRefGoogle Scholar

References

Amabile, T. M. (1993). Motivational synergy: Toward new conceptualizations of intrinsic and extrinsic motivation in the workplace. Human Resource Management Review, 3(3), 185201. https://doi.org/10.1016/1053-4822(93)90012-S.CrossRefGoogle Scholar
Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106(3), 529550. https://doi.org/10.1037/0033-295X.106.3.529CrossRefGoogle ScholarPubMed
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403450.CrossRefGoogle ScholarPubMed
Auble, P. M., Franks, J. J., Soraci, S. A., et al. (1979). Effort toward comprehension: Elaboration or “Aha”? Memory & Cognition, 7(6), 426434. https://doi.org/10.3758/BF03198259.CrossRefGoogle Scholar
Augustine, J. R. (1996). Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Reviews, 22(3), 229244.CrossRefGoogle ScholarPubMed
Aziz-Zadeh, L., Kaplan, J. T., & Iacoboni, M. (2009). “Aha!”: The neural correlates of verbal insight solutions. Human Brain Mapping, 30(3), 908916. https://doi.org/10.1002/hbm.20554.CrossRefGoogle ScholarPubMed
Ballard, I. C., Murty, V. P., McKell Carter, R., et al. (2011). The dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior. Journal of Neuroscience, 31, 1034010346.CrossRefGoogle ScholarPubMed
Baumann, N., & Kuhl, J. (2005). Positive affect and flexibility: Overcoming the precedence of global over local processing of visual information. Motivation and Emotion, 29(2), 123134.CrossRefGoogle Scholar
Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making, and the orbitofrontal cortex. Cerebral Cortex, 10(3), 295307. https://doi.org/10.1093/cercor/10.3.295.CrossRefGoogle ScholarPubMed
Becker, M., Kühn, S., & Sommer, T. (2021). Verbal insight revisited – dissociable neurocognitive processes underlying solutions accompanied by an AHA! experience with and without prior restructuring. Journal of Cognitive Psychology, 33(6–7), 659684.CrossRefGoogle Scholar
Becker, M., Sommer, T., & Kühn, S. (2020). Verbal insight revisited: fMRI evidence for early processing in bilateral insulae for solutions with AHA! experience shortly after trial onset. Human Brain Mapping, 41(1), 3045. https://doi.org/10.1002/hbm.24785.CrossRefGoogle ScholarPubMed
Becker, M., Wiedemann, G., & Kühn, S. (2020). Quantifying insightful problem solving: A modified compound remote associates paradigm using lexical priming to parametrically modulate different sources of task difficulty. Psychological Research, 84, 528545. https://doi.org/10.1007/s00426-018-1042-3.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Hughes, J. D., Steinberg, B. A., Lewis, L. D., & Heilman, K. M. (1999). Noradrenergic modulation of cognitive flexibility in problem-solving. Neuroreport, 10.CrossRefGoogle ScholarPubMed
Bolte, A., Goschke, T., & Kuhl, J. (2003). Emotion and intuition: Effects of positive and negative mood on implicit judgments of semantic coherence. Psychological science, 14(5), 416421.CrossRefGoogle Scholar
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539546. https://doi.org/10.1016/j.tics.2004.10.003.CrossRefGoogle ScholarPubMed
Bowden, E. M. (1997). The effect of reportable and unreportable hints on anagram solution and the Aha! experience. Consciousness and Cognition, 6(4), 545573.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (2003a). Aha! Insight experience correlates with solution activation in the right hemisphere. Psychonomic Bulletin and Review, 10(3), 730737. https://doi.org/10.3758/BF03196539.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (2003b). Normative data for 144 compound remote associate problems. Behavior Research Methods, Instruments, & Computers, 35(4), 634639. https://doi.org/10.3758/BF03195543.CrossRefGoogle ScholarPubMed
Bozarth, M. A. (1991). The mesolimbic dopamine system as a model brain reward system. In Willner, P and Scheel-Krüger, J (Eds.), The mesolimbic dopamine system: From motivation to action (pp. 301330). London: John Wiley & Sons.Google Scholar
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215222. https://doi.org/10.1016/S1364-6613(00)01483-2.CrossRefGoogle ScholarPubMed
Bush, G., Vogt, B. A., Holmes, J., et al. (2002). Dorsal anterior cingulate cortex: A role in reward-based decision making. Proceedings of the National Academy of Sciences of the United States of America, 99(1), 523528. https://doi.org/10.1073/pnas.012470999.CrossRefGoogle ScholarPubMed
Cahill, L., & McGaugh, J. L. (1996). Modulation of memory storage. Current Opinion in Neurobiology, 6(2), 237242.CrossRefGoogle ScholarPubMed
Campbell, H. L., Tivarus, M. E., Hillier, A., & Beversdorf, D. Q. (2008). Increased task difficulty results in greater impact of noradrenergic modulation of cognitive flexibility. Pharmacology, Biochemistry, and Behavior, 88(3), 222229.CrossRefGoogle ScholarPubMed
Carr, D. B., & Sesack, S. R. (2000). Projections from the rat prefrontal cortex to the ventral tegmental area: Target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. Journal of Neuroscience 20, 38643873.CrossRefGoogle Scholar
Chang, L. J., Yarkoni, T., Khaw, M. W., & Sanfey, A. G. (2012). Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference. Cerebral Cortex, 23(3), 739749.CrossRefGoogle ScholarPubMed
Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458465. https://doi.org/10.1016/j.cognition.2010.03.007.CrossRefGoogle Scholar
Colby, C. L. (1991) The neuroanatomy and neurophysiology of attention. Journal of Child Neurology, 6, S88S116.CrossRefGoogle ScholarPubMed
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306324. https://doi.org/10.1016/j.neuron.2008.04.017.CrossRefGoogle ScholarPubMed
Coull, J. T., Büchel, C., Friston, K. J., & Frith, C. D. (1999). Noradrenergically mediated plasticity in a human attentional neuronal network. NeuroImage, 10(6), 705715. https://doi.org/10.1006/nimg.1999.0513.CrossRefGoogle Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970. https://doi.org/10.1038/nrn2555.CrossRefGoogle Scholar
Cristofori, I., Salvi, C., Beeman, M., & Grafman, J. (2018). The effects of expected reward on creative problem solving. Cognitive, Affective, & Behavioral Neuroscience, 5(18), 925931. https://doi.org/10.3758/s13415-018-0613-5.CrossRefGoogle Scholar
Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1346), 14131420.Google ScholarPubMed
Damasio, A. R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. Harcourt Brace and Co.Google Scholar
Danek, A. H., Fraps, T., von Müller, A., Grothe, B., & Öllinger, M. (2013). Aha! experiences leave a mark: Facilitated recall of insight solutions. Psychological Research, 77, 659669. https://doi.org/10.1007/s00426-012-0454-8.CrossRefGoogle Scholar
Danek, A. H., & Salvi, C. (2018). Moment of truth: Why Aha! experiences are correct. Journal of Creative Behavior, 54(2), 484486. https://doi.org/10.1002/jocb.380.CrossRefGoogle Scholar
Danek, A. H., & Wiley, J. (2017). What about false insights? Deconstructing the Aha! experience along its multiple dimensions for correct and incorrect solutions separately. Frontiers in Psychology, 7, 2077. https://doi.org/10.3389/fpsyg.2016.02077CrossRefGoogle ScholarPubMed
Danek, A. H., & Wiley, J. (2020). What causes the insight memory advantage? Cognition, 205, 104411. https://doi.org/10.1016/j.cognition.2020.104411.CrossRefGoogle ScholarPubMed
de Rooij, A., Vromans, R. D., & Dekker, M. (2018). Noradrenergic modulation of creativity: Evidence from pupillometry. Creativity Research Journal, 30(4), 339351. https://doi.org/10.1080/10400419.2018.1530533.Google Scholar
Dominowski, R. L., & Dallob, P. (1995). Insight and problem solving. In Sternberg, R. J & Davidson, J. E. (Eds.), The nature of insight (pp. 273278). MIT Press.Google Scholar
Dreisbach, G., & Goschke, T. (2004). How positive affect modulates cognitive control: Reduced perseveration at the cost of increased distractibility. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 343.Google ScholarPubMed
Duncan, S., & Barrett, L. F. (2007). The role of the amygdala in visual awareness. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2007.01.007.CrossRefGoogle Scholar
Einhäuser, W., Stout, J., Koch, C., & Carter, O. (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 17041709. https://doi.org/10.1073/pnas.0707727105.CrossRefGoogle ScholarPubMed
Elston, T. W., Croy, E., & Bilkey, D. K. (2019). Communication between the anterior cingulate cortex and ventral tegmental area during a cost-benefit reversal task. Cell Reports, 26(9), 23532361.e3. https://doi.org/10.1016/j.celrep.2019.01.113.CrossRefGoogle ScholarPubMed
Elston, T. W., & Bilkey, D. K. (2017). Anterior cingulate cortex modulation of the ventral tegmental area in an effort task. Cell Rep. 19, 22202230.CrossRefGoogle Scholar
Erickson, B., Truelove-Hill, M., Oh, Y., et al. (2018). Resting-state brain oscillations predict trait-like cognitive styles. Neuropsychologia, 120(May), 18. https://doi.org/10.1016/j.neuropsychologia.2018.09.014.CrossRefGoogle ScholarPubMed
Estrada, C. A., Isen, A. M., & Young, M. J. (1997). Positive affect facilitates integration of information and decreases anchoring in reasoning among physicians. Organizational and Human Decision Processes, 72, 117135.CrossRefGoogle Scholar
Estrada, C., Young, M., & Isen, A. M. (1994). Positive affect influences creative problem solving and reported source of practice satisfaction in physicians. Motivation and Emotion, 18, 285299.CrossRefGoogle Scholar
Federmeier, K. D., Kirson, D. A., Moreno, E. M., & Kutas, M. (2001). Effects of transient, mild mood states on semantic memory organization and use: An event-related potential investigation in humans. Neuroscience Letters, 305(3), 149152.CrossRefGoogle ScholarPubMed
Flynn, F. G., Benson, D. F., & Ardila, A. (1999). Anatomy of the insula: Functional and clinical correlates. Aphasiology, 13(1), 5578.CrossRefGoogle Scholar
Friedman, R. S., Fishbach, A., Förster, J., & Werth, L. (2003). Attentional priming effects on creativity. Creativity Research Journal, 15(2–3), 277286.CrossRefGoogle Scholar
Gao, M., Liu, C. L., Yang, S., et al. (2007). Functional coupling between the prefrontal cortex and dopamine neurons in the ventral tegmental area. Journal of Neuroscience, 27, 54145421.CrossRefGoogle ScholarPubMed
Gariano, R. F., & Groves, P. M. (1988). Burst firing induced in midbrain dopamine neurons by stimulation of the medial prefrontal and anterior cingulate cortices. Brain Research, 462, 194198.CrossRefGoogle ScholarPubMed
Gasper, K., & Clore, G. L. (2002). Attending to the big picture: Mood and global versus local processing of visual information. Psychological Science, 13(1), 3440.CrossRefGoogle Scholar
Goldman-Rakic, P. S. (1988) Topography of cognition: Parallel distributed networks in primate association cortex. Annual Reviews of Neuroscience, 11, 137156.CrossRefGoogle ScholarPubMed
Gompf, H. S., Mathai, C., Fuller, P. M., et al. (2010). Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. Journal of Neuroscience, 30(43), 1454314551. https://doi.org/10.1523/JNEUROSCI.3037-10.2010.CrossRefGoogle Scholar
Greene, T. R., & Noice, H. (1988). Influence of positive affect upon creative thinking and problem solving in children. Psychological Reports, 63, 895898.CrossRefGoogle Scholar
Hamann, S. B., Ely, T. D., Grafton, S. T., & Kilts, C. D. (1999). Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nature Neuroscience, 2(3), 289293.CrossRefGoogle ScholarPubMed
Hedne, M. R., Norman, E., & Metcalfe, J. (2016). Intuitive feelings of warmth and confidence in insight and noninsight problem solving of magic tricks. Frontiers in Psychology, 7, 1314. https://doi.org/10.3389/fpsyg.2016.01314.CrossRefGoogle ScholarPubMed
Holroyd, C. B., & McClure, S. M. (2015). Hierarchical control over effortful behavior by rodent medial frontal cortex: A computational model. Psychological Reviews, 122, 5483.CrossRefGoogle ScholarPubMed
Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends Cognitive Science, 16, 122128.CrossRefGoogle ScholarPubMed
Isen, A. M. (1987). Positive affect, cognitive processes, and social behavior. In Berkowitz, L (Ed.), Advances in experimental social psychology (Vol. 20, pp. 203253). Academic Press.Google Scholar
Isen, A. M. (1999). On the relationship between affect and creative problem solving. Affect, Creative Experience, and Psychological Adjustment, 3(17), 317.Google Scholar
Isen, A. M. (2008). Some ways in which positive affect influences decision making and problem solving. In Lewis, M, Haviland-Jones, J. M, & Barrett, L. F (Eds.), Handbook of emotions (pp. 548573). The Guilford Press.Google Scholar
Isen, A. M., Johnson, M. M., Mertz, E., & Robinson, G. F. (1985). The influence of positive affect on the unusualness of word associations. Journal of Personality and Social Psychology, 48(6), 14131426.CrossRefGoogle ScholarPubMed
Isen, A. M., Shalker, T. E., Clark, M., & Karp, L. (1978). Affect, accessibility of material in memory, and behavior: A cognitive loop? Journal of Personality and Social Psychology, 36, 112.CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., et al. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), e97. https://doi.org/10.1371/journal.pbio.0020097.CrossRefGoogle ScholarPubMed
Karson, C. N. (1983). Spontaneous eye-blink rates and dopaminergic systems. Brain: A Journal of Neurology, 106(3), 643653.CrossRefGoogle ScholarPubMed
Kietzmann, T. C., Geuter, S., & König, P. (2011). Overt visual attention as a causal factor of perceptual awareness. PLoS ONE, 6(7), e22614.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., Thuerich, H., Folta-Schoofs, K., Schott, B. H., & Richardson-Klavehn, A. (2016). Neural correlates of learning from induced insight: A case for reward-based episodic encoding. Frontiers in Psychology, 7(Nov.). https://doi.org/10.3389/fpsyg.2016.01693.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., Thuerich, H., Folta-Schoofs, K., Schott, B. H., & Richardson-Klavehn, A. (2016). Neural correlates of learning from induced insight: A case for reward-based episodic encoding. Frontiers in Psychology, 7, 1693. https://doi.org/10.3389/fpsyg.2016.01693.CrossRefGoogle ScholarPubMed
Köhler, W. (1921). Intelligenzprüfungen am Menschenaffen. Springer.CrossRefGoogle Scholar
Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65(1), 7193. https://doi.org/10.1146/annurev-psych-010213-115154.CrossRefGoogle ScholarPubMed
Kounios, J., Fleck, J. I., Green, D. L., et al. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46(1), 281291.CrossRefGoogle ScholarPubMed
Kounios, J., Frymiare, J. L., Bowden, E. M., et al. (2006). The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882890. https://doi.org/10.1111/j.1467-9280.2006.01798.x.CrossRefGoogle ScholarPubMed
Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry: A window to the preconscious? Perspectives on Psychological Science, 7(1), 1827. https://doi.org/10.1177/1745691611427305.CrossRefGoogle Scholar
Laeng, B., & Teodorescu, D.-S. (2002). Eye scanpath during visual imagery reenact those of perception of the same visual scene. Cognitive Science, 26, 207231.CrossRefGoogle Scholar
Lane, R. D., Reiman, E. M., Axelrod, B., et al. (1998). Neural correlates of levels of emotional awareness: Evidence of an interaction between emotion and attention in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 10(4), 525535.CrossRefGoogle ScholarPubMed
Laukkonen, R. E., Ingledew, D. J., Grimmer, H. J., Schooler, J. W., & Tangen, J. M. (2021). Getting a grip on insight: Real-time and embodied Aha experiences predict correct solutions. Cognition and Emotion, 35(5), 918935. https://doi.org/10.1080/02699931.2021.1908230.CrossRefGoogle ScholarPubMed
Laukkonen, R., & Tangen, J. M. (2017). Can observing a Necker cube make you more insightful? Consciousness and Cognition, 48(Jan.), 198211. https://doi.org/10.1016/j.concog.2016.11.011.CrossRefGoogle ScholarPubMed
Laukkonen, R., Webb, M., Salvi, C., et al. (2023). Insight and the selection of ideas. Neuroscience and Biobehavioral Reviews, 153(March), 105363. https://doi.org/10.1016/j.neubiorev.2023.105363.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. The Behavioral and Brain Sciences, 35(3), 121.CrossRefGoogle ScholarPubMed
Litchfield, D., & Ball, L. J. (2011). Rapid communication: Using another’s gaze as an explicit aid to insight problem solving. Quarterly Journal of Experimental Psychology, 64(4), 649656. https://doi.org/10.1080/17470218.2011.558628.CrossRefGoogle Scholar
Loewenstein, G. F., Weber, E. U., Hsee, C. K., & Welch, N. (2001). Risk as feelings. Psychological Bulletin, 127(2), 267.CrossRefGoogle ScholarPubMed
Ludmer, R., Dudai, Y., & Rubin, N. (2011). Uncovering camouflage: Amygdala activation predicts long-term memory of induced perceptual insight. Neuron, 69(5), 10021014. https://doi.org/10.1016/j.neuron.2011.02.013.CrossRefGoogle ScholarPubMed
Luo, J., Niki, K., & Phillips, S. (2004). Neural correlates of the “Aha! reaction.” Neuroreport, 15, 20132017. https://doi.org/10.1097/00001756-200409150-00004.CrossRefGoogle ScholarPubMed
McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Reviews of Neuroscience, 27, 128.CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214(5–6), 655667.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1990) Large-scale neurocognitive networks and distributed processing of attention, language, and memory. Annual Neurology, 28, 597613.CrossRefGoogle ScholarPubMed
Mesulam, M. M., & Mufson, E. J. (1982). Insula of the old world monkey. III: Efferent cortical output and comments on function. Journal of Comparative Neurology, 212(1), 3852.CrossRefGoogle ScholarPubMed
Metcalfe, J. (1986). Premonitions of insight predict impending error. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12(4), 623634. https://doi.org/10.1037/0278-7393.12.4.623.Google Scholar
Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory & Cognition, 15(3), 238246. https://doi.org/10.3758/BF03197722.CrossRefGoogle ScholarPubMed
Nasby, W., & Yando, R. (1982). Selective encoding and retrieval of affectively valent information: Two cognitive consequences of children’s mood states. Journal of Personality and Social Psychology, 43, 12441253.CrossRefGoogle ScholarPubMed
Nieuwenhuys, R. (2012). The insular cortex: A review. Progress in Brain Research, 195, 123163.CrossRefGoogle ScholarPubMed
Nygren, T. E., Isen, A. M., Taylor, P. J., & Dulin, J. (1996). The influence of positive affect on the decision rule in risk situations: Focus on outcome (and especially avoidance of loss) rather than probability. Organizational Behavior and Human Decision Processes, 66(1), 5972. https://doi.org/10.1006/obhd.1996.0038.CrossRefGoogle Scholar
Oh, Y., Chesebrough, C., Erickson, B., Zhang, F., & Kounios, J. (2020). An insight-related neural reward signal. NeuroImage, 214(Aug. 2019), 116757. https://doi.org/10.1016/j.neuroimage.2020.116757.CrossRefGoogle ScholarPubMed
Olds, J. (1958). Self-stimulation of the brain; its use to study local effects of hunger, sex, and drugs. Science 127, 315324.CrossRefGoogle ScholarPubMed
Osgood, C. E. (1953). Method and theory in experimental psychology. Oxford University Press.Google Scholar
Pessiglione, M. (2014). How the brain translates money. Science, 316 ,904(2007). https://doi.org/10.1126/science.1140459.Google Scholar
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 48(2), 175187.